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A global dataset and model of earthquake-induced
landslide fatalities

Abstract In this study, we present a newly developed, compre-
hensive dataset of 196 historical earthquakes, including 127 events
with known landslide fatality counts, which we use to examine the
impact of earthquake-induced landslides. Using this dataset, we
assess the potential impact of seismically induced landslides on
affected populations, based on the exposure of population to
expected landslide occurrence. We calculate predicted landslide
probabilities out of a global statistical landslide model in the area
surrounding each earthquake using USGS’s ShakeMap model of
strong ground motion. We identify estimated population expo-
sure by comparing the predicted probability grid with a time-
corrected global population dataset to determine a predicted
landslide exposure index. We compare these values to the number
of actual fatalities for 91 training events and use these compari-
sons, together with the United Nations Human Development
Index as a vulnerability proxy, to develop a multiple regression
model that can potentially be used to provide order-of-magnitude
estimates of human impact of earthquake-induced landslides. We
observe a significant positive correlation between predicted and
observed fatalities, but with very high variability in fatality rates
for similar exposure levels, suggesting that other factors (e.g.,
landslide type and density, the effect of urbanization on popula-
tion exposure) should be used to improve this estimate. We also
demonstrate that these estimates of landslide impacts can be used
in a deterministic mode, in collaboration with use of scenario
earthquakes, to assess the potential impacts of anticipated future
events. With further development, these landslide scenarios can
be used by vulnerable communities to improve land use planning,
structural design, and emergency response in landslide-prone
areas.

Keywords Landslides . Earthquakes . Earthquake-
induced . Hazards . Fatalities . Empirical

Introduction
Earthquake-induced landslides can have significant impacts on
the populations affected by damaging earthquakes, ranging
from 5% (Marano et al. 2009) to 11% (Daniell et al. 2017) of all
earthquake-related fatalities. While this is a modest percentage,
the estimation of Marano et al. (2009) is equivalent to about
71,000 fatalities between 1968 and 2008. In addition to these
studies, Bird and Bommer (2004) also disaggregated losses due
to ground failure from primary losses due to ground shaking.
They observed that landslides were the primary cause of dam-
age in 37% of earthquakes that had transportation disruption/
damage and 6% of earthquakes that had damage to buildings.
Budimir et al. (2014) modeled fatalities due to both earthquakes
and earthquake-induced landslides, showing that earthquakes
that caused landslides typically caused more fatalities (a cascad-
ing hazard) than those without landslides. Their study devel-
oped a linear statistical model, relating earthquake-induced

landslide fatalities to moment magnitude, and presented a mul-
tiple regression model that is capable of predicting the number
of fatalities for an earthquake with a term accounting for land-
slide occurrence. However, their model, based on a training set
of only 18 events, was shown to over predict fatalities for events
that included landsliding, potentially due to the small sample
size of landslide fatality observations used to train their model.
The Global Earthquake Model Earthquake Consequences Data-
base (GEMECD) also provides estimates of fatalities and losses
related to individual earthquakes, but only includes the largest,
most recent events, and therefore cannot be used alone as a
comprehensive database (So 2014). These studies highlight an
emerging need to improve the estimates of human impacts of
earthquake-related ground shaking, specifically to disaggregate
the direct effects of ground shaking from those associated with
secondary effects such as landslides.

The global summaries of earthquake impacts cited above vary
significantly in their estimates of landslide impact. This can mainly
be attributed to the difficulty in differentiating the cause of death
after a major disaster; thus, the fatality counts generally vary from
source to source (Daniell et al. 2017). Extensive post-disaster
reconnaissance efforts often are not completed, leaving the undif-
ferentiated death estimates unexamined. These ground-failure im-
pacts are frequently lumped together with estimates of fatalities
due to ground shaking (Marano et al. 2009).

A critical component of understanding landslide risk involves
assessment of landslide hazard. Multiple studies have attempted to
provide a global estimation of this hazard, including those of
Nadim et al. (2006) and Daniell et al. (2017). Others model the
probability of landslide occurrence based on physical susceptibil-
ity factors (e.g., Godt et al. 2008; Nowicki et al. 2014; Kritikos et al.
2015; Parker et al. 2015). However, little effort has focused on
modeling the socioeconomic losses associated with landsliding.

In order to provide a comprehensive description of the impact
caused by earthquake-induced landslides, we present a newly
compiled global dataset of landslide-triggering earthquakes from
1811 to 2016. The comprehensive dataset includes observations of
both earthquake-related and landslide-related fatalities (when
available). We then solve for a quantitative model of landslide
fatalities trained using 91 of these earthquakes with landslide-
related fatality observations for which ShakeMaps are available.
We then demonstrate that the model can be used to provide order-
of-magnitude estimates of the impact of future earthquakes by
examining the distribution of landslide probabilities due to hypo-
thetical scenario earthquakes. This approach can provide a more
robust estimate of the potential impact that earthquake-induced
landslides can have on their surroundings, whether prior to an
earthquake or within minutes of its occurrence, and ultimately
can, with further development, contribute to near real-time im-
pact assessments such as the USGS PAGER system (Wald et al.
2008a).
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Methods

Dataset of landslide-inducing earthquakes
Currently, there are many datasets describing landslides caused by
individual earthquakes, and global inventories of earthquake-
induced landslides; however, there is no dataset that comprehensive-
ly describes the number of fatalities caused by earthquake-induced
landslides. The dataset presented here includes information on every
earthquake documented in the literature that has produced known
landslides for the 207-year period from 1811 through 2016. The
dataset includes (where available) information on earthquake size
(moment magnitude, Mw), depth, earthquake fault type, date and
time, location, the availability of a ShakeMap that estimates the
spatial distribution of ground shaking from the USGS ShakeMap
system (Worden and Wald 2016), information about landslide oc-
currence (number of landslides, area or volume of landsliding, area
affected by landsliding), and earthquake/landslide impact (total fa-
talities, landslide fatalities, and number of injuries due to the effects
of the earthquake). The full dataset is provided as Online Resource 1,
including information on the data source(s) for each data compo-
nent. A subset of the dataset, showing events for which landslide
fatality counts are available, is shown in Online Resource 2. Figure 1
shows a map of all earthquake epicenters included in the full dataset
and also shows the fatal earthquake epicenters, plotted as a function
of the number of landslide fatalities caused by each earthquake.

Data assembly
This newly developed dataset is unique as it provides an estimate of
the total fatalities and landslide fatalities caused by landslide-
inducing earthquakes. This dataset was formed following the
workflow and data sources summarized in Fig. 2. Data regarding
landslide occurrence were compiled from the USGS Prompt Assess-
ment of Global Earthquakes for Response Catalog (PAGER-CAT;

Allen et al. 2009), the International Disaster Database from the
Centre for Research on the Epidemiology of Disasters (EM-DAT;
Guha-Sapir et al. 2017), the USGS PDE (USGS n.d.), and major
articles in the literature (Keefer 1984, 2002; Rodriguez et al. 1999;
Hancox et al. 2002). These data were then cross-checked with the
recent comprehensive database of landslide-triggering events from
the study of Tanyas et al. (2017). Fatality and landslide fatality counts
were collected from the USGS PAGER-CAT (Allen et al. 2009), EM-
DAT (Guha-Sapir et al. 2017), the Catalog of Damaging Earthquakes
in the World (UTSU; http://iisee.kenken.go.jp/utsu/index_eng.html),
and the Global Earthquake Model Earthquake Consequences Data-
base (GEMECD, http://www.globalquakemodel.org; So 2014). When
fatality counts were not available through these main databases, they
were found in news articles or publications, as described in the data
table. When conflicting fatality counts arose, we elected to use the
number from the most recent, comprehensive source (thus deemed
most reliable), or that was recorded in the largest number of sources.
Discrepancies are discussed in database annotations. When no in-
formation was available on landslide fatalities, no fatality count was
included. However, in cases when there were zero total fatalities
recorded for an event, a zero was recorded for landslide fatalities
and listed using the same source.

Description and analysis
Our new dataset provides information on 196 earthquakes that have
induced landslides over the past 207 years. There are 127 earthquakes
that also have landslide fatality counts available (including both zero
and non-zero fatality counts); 76 of these caused at least one land-
slide fatality. The entire dataset represents 1,210,213 total fatalities, of
which 213,913 or 17.7% were caused by landsliding.

We began by analyzing the overall geographic and seismologi-
cal patterns of earthquake-triggering landslides. As can be seen in
Fig. 1, the earthquakes tend to cluster in mountainous areas along

Fig. 1 Epicentral map of earthquakes that have caused landslides (diamonds). Solid and open symbols respectively show events that were used or omitted from the
landslide impact model. Symbol size is scaled by the number of landslide fatalities, as shown in the legend
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the boundary of the Pacific Plate, in South and Central Asia, and in
Southern Europe. Figure 3 shows the location of these events
classified by continent. A majority of the earthquakes occurred
in Asia, followed by North America, Oceania, South America,
Europe, and Africa. This pattern is the same for all landslide-
inducing earthquakes, or the subset that produced landslide fatal-
ities (labeled “fatal landslide events”). This pattern is likely due to
the number of earthquakes occurring on each continent combined
with the area’s topographic relief. A majority of these 196 events
were strike-slip earthquakes (see Fig. 3), followed by reverse-
faulting earthquakes, with the smallest number of normal-
faulting earthquakes. This trend is also present in the dataset both
as a whole and as the fatal landslide events.

We examine the correlation between earthquake magnitude
(Mw) and earthquake and landslide fatalities (Fig. 4). Both total
fatalities and landslide fatalities generally increase with Mw. How-
ever, there is much scatter present in the observed data. An upper
bound, with distinctly different slopes, can be seen in this rela-
tionship between Mw and both total fatalities and landslide
fatalities.

Through time, the number of fatal and fatal landslide earth-
quakes appears to have increased (Fig. 5a), likely a consequence of
growing populations in landslide-vulnerable areas, as well as im-
proved reporting through time. While this trend continues
through the estimated number of events in the current decade
for fatal earthquakes, the number of estimated fatal landslide
earthquakes decreased in the current decade. The short-term var-
iability can be seen when the data are viewed by year (Fig. 5b); the
numbers of fatal and fatal landslide events lessen after 2008. This
process is subject to a quasi-random distribution through time.

The numbers of fatalities and landslide fatalities since 1900
(Fig. 5c) show that decades with large numbers of both fatalities
and landslide fatalities occur regularly but do not seem to follow a
systematic pattern. The portion of the total fatalities caused by
landsliding also changes through time and does not exhibit a clear
trend. This may be due to the highly nonlinear relationship be-
tween earthquake occurrence, landslide triggering, and potential
exposure of human settlements, combined with the dominating
influence of relatively rare, high-fatality events.

Estimating impact
While a number of models are available to estimate the number of
fatalities due to earthquake shaking (e.g., Shiono et al. 1991;
Murakami 1992; Shakhramanian et al. 2000; FEMA 2006; Jaiswal
and Wald 2010), there are currently none available to estimate the
number of fatalities due to earthquake-induced landslides. We use
this dataset of earthquake-induced landslide fatalities to train a
model that can be used to estimate a bound on the number of
potential fatalities due to landslides caused by an earthquake. We
do so by estimating exposure of a population to landsliding and
compare this exposure to the actual number of landslide-related
fatalities. These estimates could be critical in the minutes and
hours following a devastating earthquake.

Exposure calculations
In order to estimate the number of people potentially exposed to
landslide activity, we need to determine the population in the area
surrounding each fatal earthquake. We use the LandScan popula-
tion dataset (Bright et al. 2014) available for 2014. Since this is a
fixed population estimate for 2014, we need to correct the

Fig. 2 Workflow to compile the earthquake-induced landslide dataset, complete with landslide fatality counts
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population values forward or back to the time of each fatal earth-
quake. Details of this correction are given in Online Resource 3
(Text 1). This is a coarse correction and does not account for intra-
country variations (e.g., urbanization) or events that cross national
boundaries. These second-order corrections could be examined
further in future refinements but are unlikely to have a significant
effect on the observations described in the following sections.

We present two approaches to estimating exposure to landslide
impacts. The most direct is a comparison between population
density and actual landslide inventories. However, there are only
a small number of events for which both landslide inventories and
fatality counts are available, leaving us only a small set of events to
examine. The more indirect method, which provides a more sta-
tistically robust set of events, involves comparison of estimated
landslide probability out of a statistical model with population
exposure in a given area.

In order to calculate the estimated landslide exposure, we
overlay the corrected population values for each grid cell with
the landslide probability calculated by the landslide model pre-
sented in the study of Nowicki Jessee et al. (2018). We compute the
Probabilistic Landslide Exposure Index (PLEI) for each fatal earth-
quake using Eq. (1)

PLEI ¼ ∑
n

1
P0 � PLð Þ ð1Þ

where P0 is the corrected population count in each grid cell, n is
the number of pixels of reported shaking (from the USGS
ShakeMap) for that earthquake, and PL is the estimated landslide
probability value in each grid cell.

In order to examine the direct landslide exposure, we use the 20
earthquakes in the dataset for which both a landslide fatality count
and an inventory of mapped landslides are available. When a
landslide inventory is available, we assign each grid cell that
contains a landslide a value of 1, and multiply these values by
the population in each grid cell. We then sum this value for the
entire ShakeMap area to represent the mapped landslide exposure
for that earthquake. In order to determine how the exposure of
actual (mapped) landslides relates to the estimated PLEI for each
event, we plot the two values (Online Resource 3 Figure 2). The
logarithm of these values is plotted approximately on a line with a
slope of 1, giving confidence that the PLEI estimate offers a rea-
sonable predictor of actual landslide exposure. Given this

Landslides 17 & (2020)1366
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validation, we use the PLEI values to move forward with modeling
the exposure for each earthquake.

We compare the predicted exposure value for each fatal earthquake
(PLEI) to the observed landslide fatality count in Fig. 6a. Note that both
parameters vary over 6–7 orders of magnitude. We observe a general
pattern of increase in the logarithm of landslide fatalities as the loga-
rithm of PLEI increases. Not surprisingly, there is a large range of
fatality rates observed for each PLEI value. This indicates that other
variables are likely contributing to the distribution of fatalities.
Figure 6c shows the estimates of PLEI from both the 2014 population
data and the corrected population data. Note that most of the PLEI
values remain close to one another, demonstrating that the population
correction described in the previous section is a second-order effect.We
choose to examine the entire dataset and also a subset of recent events
when modeling. Recent events are more likely to have more accurate
fatality counts than earlier events, as well as a population distribution
closer to the LandScan population data used here (2014), and thus may
provide a better estimate of the actual population exposed to landslid-
ing. Similarly, Fig. 6b shows a clear increase in observed landslide
fatalities with the actual landslide exposure values, albeit for a smaller
set of data. Landslides mapped as both points and polygons are
included in this analysis, as indicated by the two colors on the plot.
The scatter still present in these data may be due in part to varying
levels of quality in the mapped landslide data and fatality estimates.

Method to account for variable vulnerability by country
In order to account for varying vulnerability within the fatal
landslide dataset, we hypothesize that landslide vulnerability, like

earthquake vulnerability (e.g., Jaiswal et al. 2009; Jaiswal and Wald
2010), is variable and likely to be affected by level of development.
We therefore classify the data based on the United Nations Human
Development Index (UNHDI) value for the country in which each
earthquake occurred. The UNHDI is a multidimensional summary
of the level of human development for all countries in the world,
based on how well three key aspects of human life are achieved: a
long and healthy life, access to knowledge, and a decent standard
of living. While we recognize that the parameters used in calcu-
lating the UNHDI are not directly related to disaster vulnerability,
we believe they provide a reasonable proxy for the level of resil-
ience to natural disasters in each country. In addition, the UNHDI
is provided for each decade from 1990 to 2010, and yearly for 2011
to 2015, thus offering a way to classify relative resilience as a
function of time (UNDP 2016). We choose the UNHDI value of
the epicentral country for each earthquake in the year closest to
when the earthquake occurred and use this as an estimate of the
vulnerability of that area to landslide-related impacts.

Fatality estimation
Based on the observed variation in landslide fatalities with esti-
mated population exposure, we can use a univariate least squares
linear regression to provide an empirical estimate of expected
landslide fatalities based on the computed probabilistic landslide
exposure index. In order to determine a best-fitting model to these
data, we compute eight potential models and compare the results:
(1) a linear regression using all 91 events for which fatality counts,
PLEI values, and ShakeMaps are available; (2) a linear regression
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using only recent events (since 2000, assuming that more recent
events are less error-prone, in both population and ground shak-
ing estimates); (3) a linear regression using only non-zero land-
slide fatalities to train the model, since events with zero fatalities
cannot be accurately incorporated on a logarithmic regression; (4)
a linear regression using the actual (rather than predicted) expo-
sure values (i.e., based on mapped landslide inventories); (5) a
multiple linear regression between landslide probability, popula-
tion, and observed number of landslide fatalities; (6) a multiple
linear regression between landslide probability, population, and
observed number of landslide fatalities, which also accounts for
interaction between landslide probability and population; (7) a
multiple linear regression between the observed number of land-
slide fatalities, PLEI, and vulnerability of each epicentral country,
as classified by the UNHDI; and (8) a multiple linear regression
between the observed number of landslide fatalities, PLEI, and the
UNHDI for each epicentral country using only recent events (since
2000).

In order to quantify the relationship present between the de-
pendent variable (observed fatalities) and each of the independent
variables, we compute the correlation coefficient of each pair. To
determine the degree to which the variation in the fatality data is
captured by the available landslide exposure estimates, we com-
pute the adjusted R-squared values for each model we tested. We
also test the variable for significance in the model and compute

prediction intervals for each regression line, which shows the
expected fatality values at the 68.0%, 95.0%, and 99.7% confidence
intervals (corresponding to 1σ, 2σ, and 3σ uncertainties,
respectively).

Results

Fatality modeling results
Table 1 shows the correlation coefficient between the potential
predictor variables and the observed number of landslide fatalities.
Table 2 shows the fit of each model to the observed fatality data.
These results show that the multiple regression model with inde-
pendent variables of PLEI and the UNHDI of each epicentral
country has the highest adjusted R-squared value, indicating it
explains the greatest amount of the variation in the observed
fatality data of any of the tested models. Table 3 provides a
description of the regression models with the highest adjusted R-
squared values, and the significance of individual variables in each
of the models.

Figure 7 shows fatality predictions of these two regression
models. Figure 7a shows the result of the linear regression using
all of the available data. This model predicts fatality values similar
to the multiple regression model with high UNHDI values, shown
in Fig. 7b. This indicates that we can produce a model that
captures more of the variability in the data than this simple linear
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regression model does. The result of classifying each earthquake
based on a proxy for the epicentral country’s vulnerability is
shown in Fig. 7b. We observe a general trend of higher UNHDI
countries within the lower right portion of the graph (relatively
low fatality rate per exposure) and lower UNHDI countries within
the upper left portion of the graph (relatively higher fatality rate
per exposure). There are a number of notable key outliers, events
with particularly high impacts given their exposure value. These
include the 1970 Huascaran earthquake in Peru (27,500 landslide
fatalities; Allen et al. 2009), the 2005 Kashmir, Pakistan earthquake
(26,500 landslide fatalities from GEMECD; So 2014), and the 2008
Wenchuan, China earthquake (20,000 landslide fatalities; Yin et al.
2009). All of these events fall above the 2σ (95%) regression mean.
The landslide fatality counts for all three of these high-fatality
events are presented as estimates which vary from study to study,
often by an order of magnitude, as fatality counts are often
difficult to constrain. The Huascaran event is notable given Peru’s
status as a high human development country. Note that the basis
for this classification was our earliest data (1990), averaged for the

country as a whole. We consider this, in part, a limitation of our
method, as Peru was at a considerably lower development level in
the 1970s and the rural area of the country affected by this earth-
quake was probably at a considerably lower level of development
than the country as a whole. Furthermore, the large number of
deaths was attributed to a single low-probability event—the trig-
gering of a single massive debris avalanche of volume >
50 × 106 m3 (Plafker et al. 1971); such extreme, single-landslide
events (like the devastating Khait (USSR) landslide of 1949 (Evans
et al. 2009)) are probably at margins of the statistical basis of our
regression. In the case of the 1989 Gissar, Tajikistan earthquake, it
was anomalous in the high number of fatalities (> 200; Havenith
et al. 2015) given its very low magnitude (Mw 5.5). However, we
opted to exclude it from the model given the unusual conditions
associated with this earthquake-triggered event, which resulted
from liquefaction of highly porous loess deposits (Ishihara et al.
1990), rather than the more common rockfall or earthflow phe-
nomena associated with earthquake-induced landslides. The event
is also complicated by anthropogenic factors, including saturation

100 102 104 106 108

Probabilistic Landslide Exposure Index (PLEI)

10-1

100

101

102

103

104

105

F
at

al
ity

 C
ou

nt

100 102 104 106 108

Probabilistic Landslide Exposure Index (PLEI)

10-1

100

101

102

103

104

105

F
at

al
ity

 C
ou

nt

100 102 104 106 108

Probabilistic Landslide Exposure Index (PLEI)

10-1

100

101

102

103

104

105

F
at

al
ity

 C
ou

nt

10-2 100 102 104 106 108

Landslide Exposure

10-1

100

101

102

103

104

105

F
at

al
ity

 C
ou

nt

dc

a b

Since 2000
Before 2000

Very High UNHDI
High UNHDI
Medium UNHDI
Low UNHDI

Corrected Population
2014 Original Population

Polygon Inventory
Point Inventory

Fig. 6 a Comparison of landslide fatality counts with probabilistic exposure to landsliding. b Comparison of landslide fatality counts with exposure to mapped landslides.
c Population correction results for each earthquake. Purple dots show the corrected population value, while red dots show the original population estimate for 2014. d
Earthquakes in the fatal landslide dataset, classified by the United Nations Human Development Index for the epicentral country. Classification from United Nations
Development Programme (UNDP 2016)

Landslides 17 & (2020) 1369



of the loess deposits by water infiltration from agricultural irriga-
tion (Havenith and Bourdeau 2010). As a general pattern, we
observe a higher fatality rate per exposure to landsliding as the
human development index values get lower, indicating an inverse
relation between human development and landslide vulnerability.

Given all of these models, we choose the multiple regression
model trained using PLEI and UNHDI as the best-fitting model, as
it has the best fit to the data (highest adjusted R-squared value)
and accounts for more of the variability in the data. There is a
positive correlation between log10 (PLEI) and log10 (observed fa-
talities) (r = 0.507, p < 0.001), as well as a high negative correlation
between UNHDI and log10 (observed fatalities) (r = − 0.491,
p < 0.001). The regression yields the model shown in Eq. (2)

log10 Pfatality
� � ¼ 0:639þ 0:417� log10 PLEIð Þ−2:939

� UNHDIð Þ ð2Þ
The estimates of both the PLEI coefficient and UNHDI coeffi-

cient are statistically significant (p < 0.001). Although the intercept

value is not statistically significant (p = 0.365), we chose not to
force the model to have an intercept value of zero as this would
falsely indicate one fatality (log10 1 = 0) when zero people are
exposed to landsliding. The model fit gave an adjusted R-squared
value of 0.373, showing a better fit than the model that included all
of the data.

We then apply this model to all of the training data. We find
that the predictions fit the data well except for the three largest
fatality observations (the Peru earthquake of 1970, the Kashmir,
Pakistan earthquake of 2005, and the Wenchuan, China earth-
quake of 2008), as shown by the difference between the observed
and predicted landslide fatality counts for each of the earthquakes
in Fig. 7b and Table 1 in Online Resource 3. Given this forward
model, an increase in PLEI by a factor of 10 would increase the
fatality prediction by a factor of 2.6.

Deterministic landslide predictions with scenario earthquakes
The USGS ShakeMap system permits, in addition to rapid predic-
tion of strong ground motion in the aftermath of earthquakes, the

Table 1 Correlation coefficients computed between individual variables and landslide fatality counts

Variable Correlation coefficient with log10 (landslide fatalities) p-value

log10 (PLEI) 0.507 < 0.001

log10 (recent PLEI) 0.617 < 0.001

log10 (non-zero PLEI) 0.484 < 0.001

Landslide exposure 0.295 0.206

log10 (sum (LS probability)) 0.164 0.12

log10 (sum (population)) 0.386 < 0.001

log10 (sum (LS probability × population) and fatalities)) 0.469 < 0.001

UNHDI − 0.491 < 0.001

log10 (UNHDI) − 0.447 < 0.001

Recent UNHDI − 0.312 0.047

Landslide (LS) probability was calculated by the landslide model of Nowicki Jessee et al. (2018)

PLEI Probabilistic Landslide Exposure Index, UNHDI United Nations Human Development Index

Table 2 Goodness-of-fit measures for each of the regression models trained to fit log10 (landslide fatalities)

Model number Model Adjusted R2 R2 AIC valuea

1 Regression with log10 (PLEI) 0.249 0.257 281.244

2 Regression with log10 (PLEI) on recent data (since 2000) 0.364 0.380 113.620*

3 Regression with log10 (PLEI) on non-zero data 0.222 0.235 175.645*

4 Landslide exposure 0.0366 0.087 81.023*

5 Multiple regression with landslide probability, population 0.241 0.257 283.240

6 Multiple regression with multiplicative factor (landslide probability, population) 0.241 0.257 285.240

7 Multiple regression with log10 (PLEI), UNHDI 0.373 0.387 265.777

8 Multiple regression on recent events (since 2000) with log10 (PLEI), UNHDI 0.366 0.397 114.465*

Italic indicates the best-fitting model

PLEI Probabilistic Landslide Exposure Index, UNHDI United Nations Human Development Index, AIC Akaike information criterion
a Used as a goodness-of-fit measure

*Model was not trained with the whole dataset of earthquakes, and therefore, the AIC value cannot be compared to the other AIC values
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analysis of hypothetical future earthquakes, as a contribution to
deterministic earthquake hazard assessment. The USGS recently
published a set of catalogs of scenario earthquakes for the conti-
nental United States (https://earthquake.usgs.gov/scenarios/cata-
log/). These scenario earthquakes give a deterministic prediction
of the resulting ground shaking distribution given a particular size
of earthquake, with a particular fault plane, at a specified location
and depth (Worden and Wald 2016). These scenario events can be
used to inform emergency responders and government officials of
potential exposure of roads, lifelines, and buildings to earthquake
shaking and can be used for planning emergency response and
hazard mitigation.

Here, we demonstrate that these scenario earthquakes can be
used in conjunction with the near real-time model presented in

Nowicki Jessee et al. (2018) to assess spatial patterns of landslide
hazards in areas of plausible future earthquake activity. Given that
the landslide regression model is framed by ShakeMap estimates
of ground motion, this model is easily adapted to provide esti-
mates of potential future landslide occurrence.

Examples are shown in Fig. 8 for three scenario earthquakes of
variable sizes in the earthquake-prone region of Bhutan, along the
Himalayan front. These scenarios were developed as part of an
applied earthquake hazard mitigation program with the govern-
ment of Bhutan (GeoHazards International 2012). These three
scenarios have the same epicentral location, while the differences
in magnitude and assumed fault geometry impact the area that
experiences high levels of ground shaking and, consequently, the
area of high landslide probability. In all cases, the scenario

Table 3 Regression results for the two best-fitting regressions described in the text

Estimate p-value Lower CI Upper CI SE T statistic

Regression model on all data

Intercept − 1.882 < 0.001 − 2.727 − 1.038 0.425 − 4.432

PLEI 0.529 < 0.001 0.340 0.719 0.095 5.553

Multiple regression with log10 (PLEI) and UNHDI

Intercept 0.639 0.365 − 7.549 2.033 0.702 0.911

log10 (PLEI) 0.417 < 0.001 0.236 0.597 0.091 4.584

UNHDI − 2.939 < 0.001 − 4.292 − 1.585 0.681 0.681

PLEI Probabilistic Landslide Exposure Index, CI confidence interval, SE standard error, UNHDI United Nations Human Development Index
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landslide probability maps show that the highest landslide proba-
bilities occur nearest to the assumed fault rupture. The combina-
tion of high levels of expected ground shaking with the
mountainous terrain in this region results in high landslide prob-
ability for moderate and large earthquakes in this region, while the
smallest scenario (Mw 6.1) has low to medium landslide probabil-
ity. This figure also shows the area of higher landslide probability
increases as a function of earthquake magnitude.

Additional examples from areas of high seismic hazard in the
USA, including scenario events in Northern California, in the
Pacific Northwest, and in the New Madrid region of the Central
United States, are presented in Fig. 9. The resulting landslide
probability pattern in these maps is directly related to the location
and size of the earthquake, particularly the location and orienta-
tion of fault rupture. In all cases, the highest landslide probabilities
occur nearest the fault rupture. The Hayward, California scenario
(Fig. 9a) represents a Mw 7.0 earthquake along the Hayward Fault
in the San Francisco Bay region of California (Detweiler and Wein
2017). This event results in high landslide probabilities over a
moderate-sized region, due to the moderate size of the potential
fault rupture and the area of high relief surrounding the earth-
quake. The Cascadia scenario (Fig. 9b) represents a great Mw 9.0
megathrust earthquake on the Cascadia subduction zone.

Although the epicenter is offshore, this scenario results in the
highest landslide probabilities over the largest region when com-
pared to the two other US events, which can be attributed to the
large size of the shaking area with this earthquake magnitude,
combined with high relief, resulting in high landslide probabilities
over extended areas of the Pacific Northwest. The New Madrid
scenario (Fig. 9c) represents a Mw 7.7 earthquake on the New
Madrid fault near Saint Louis, Missouri, and Memphis, Tennessee,
comparable to a repeat of the February 7, 1812 M~7.7 event of the
1811–1812 earthquake sequence. This potential earthquake results
in the lowest overall landslide probability, over a much smaller
area (~ 2° latitude square). This may be due to the relatively flat
topography surrounding the fault rupture; regardless of the
strength or duration of ground shaking, landslides are less likely
to occur in the comparatively relatively flat terrain of this region.

By utilizing the global landslide model (described by Nowicki
Jessee et al. 2018) to predict where landslides are to occur due to a
particular scenario earthquake, we can identify areas that are more
and less prone to landslides. Given this tool, an emergency planner
can identify areas that might need additional attention given to
vulnerable structures and can also inform city planners and resi-
dents of their proximity to areas that might be prone to landslides
in the future.

M8.6 Bhutan Scenario

86˚ 87˚ 88˚ 89˚ 90˚ 91˚ 92˚ 93˚ 94˚

24˚

25˚

26˚

27˚

28˚

29˚

30˚

31˚

50 km

89˚ 90˚ 91˚

27˚

28˚

50 km

0.0 0.3 0.6 0.9

LandslideProbability

89˚ 90˚ 91˚

27˚

28˚

50 km

a      M6.1 Bhutan Scenario

b      M7.0 Bhutan Scenario

c

Fig. 8 Landslide probability maps for three sizes of potential (scenario) earthquakes in Bhutan. Note that these maps are all shown using the same map scale to show the
impact of magnitude on the area of high landslide probability; note the increase in size of high predicted landslide probabilities as the magnitude of the scenario
earthquake increases
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Scenario earthquakes can also be used in conjunction with the
fatality model developed here. Once the landslide probability
distribution is computed for a scenario earthquake, this can be
overlain with population to compute a PLEI for the surrounding
region. By substituting this PLEI value into the fatality estimation
model, we can compute a fatality estimate for that particular
hypothetical earthquake. For example, the Hayward scenario
earthquake (see Fig. 9a) has a PLEI value of 6.62 × 105. Using this
value in conjunction with the fatality estimation model predicts 2
fatalities, with a very large range (3 orders of magnitude) for the
95% prediction interval—i.e., between zero and 2374 deaths. Note
that these models are computed on a logarithmic scale, and thus
the upper and lower bounds on the predictions are also computed
on a logarithmic scale. This results in the predicted values
appearing to be much closer to the lower bound (effectively zero,
as zero fatalities cannot be represented on a logarithmic scale)
than the upper bound on an integer level. We note, however, that

the bounds are an equal number of orders of magnitude apart
from the predicted values. The predicted fatality ranges for the
scenario events are shown in Table 4. These predicted fatality
counts reflect the size of the earthquake and therefore distribution
of high levels of ground shaking and potential landsliding;
Cascadia is expected to have the highest number of landslide-
related fatalities, while New Madrid comes next, followed by the
Hayward scenario. The scenario earthquakes in Bhutan result in a
much larger predicted fatality counts that increase with the size of
the earthquake. For example, the smallest of these scenarios has a
range from zero to 5666 estimated fatalities, while the largest has a
range from zero to 47,859 fatalities (both for the 95% prediction
interval). These ranges are large, and the maximum value in-
creases with higher exposure to high ground shaking, as well as
with a lower human development index in Bhutan as compared to
the USA. While these ranges are large, they reflect the real vari-
ability in landslide-related fatalities and should be presented as
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other map provided for that region
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order-of-magnitude estimates, as fatality estimates are currently
represented in the USGS PAGER system (Wald et al. 2008a).

Discussion
We present a newly developed, comprehensive global dataset of
earthquake-induced landslides including, where available, esti-
mates of landslide-related fatalities corresponding to each earth-
quake. The relatively simple empirical fatality model shows a
significant positive correlation between predicted and observed
fatalities, but with very high variability in fatality rates for similar
exposure levels. Our analysis provides preliminary evidence indi-
cating that a significant component of the variability results from
varying vulnerability to landslide impact as a function of the level
of development in the epicentral area. The remaining variability
suggests that other factors should be used to improve this esti-
mate. These could include type of landslide, climate, time of day
of the earthquake, landslide density per unit area, and the effect of
urbanization on population exposure. Ideally, future models in-
cluding estimates of these factors could be tested to improve the
fit to the data.

These estimates of potential landslide fatalities can also be used
together with scenario earthquakes described here to understand
the potential for landsliding in an area prior to the occurrence of a
large earthquake. Further investigation using scenario earth-
quakes could apply this method to different case study areas and
investigate the impact of source location, depth, source faulting,
and magnitude on landslide occurrence to provide a more robust
understanding of potential for landsliding.

Together, these products provide a basis for a more compre-
hensive understanding of potential landslide impacts, whether
estimated prior to or after a large earthquake occurs. The results
can be used, with further development, by vulnerable communi-
ties to improve land use planning, structural design, and emer-
gency response in landslide-prone areas. This analysis of
earthquake-triggered landslides has the capacity to significantly
expand the breadth and impact of the USGS’ near real-time
shaking and damage assessment tools including the ShakeMap,
PAGER, and ShakeCast systems. A system similar to ShakeCast
(Wald et al. 2008b) could be developed to overlay predicted
landslide probabilities with locations of key infrastructure. This
would identify roads, bridges, and buildings that are at high risk of
landslide exposure. In the future, this type of analysis could
provide information critical to responders, emergency planning
officials, and residents of earthquake-affected areas in responding
to an emerging natural disaster. Furthermore, the same suite of
tools can offer an opportunity to study the anticipated secondary
effects of future earthquakes, and thus contribute effectively to
disaster risk reduction efforts.

Conclusions
We present a newly developed, comprehensive global dataset of
earthquake-induced landslides including, where available, esti-
mates of landslide-related fatalities corresponding to each earth-
quake. We used the dataset to train an empirical fatality model
using a linear regression between probabilistic landslide expo-
sures and fatality counts based on past earthquake-induced land-
slide events. We observe a significant positive correlation between
predicted and observed fatalities, but with very high variability in
fatality rates for similar exposure levels. The remaining variabilityTa
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suggests that other factors should be used to improve this esti-
mate, such as type of landslide, climate, time of day of the earth-
quake, landslide density per unit area, and the effect of
urbanization on population. Ideally, future models including esti-
mates of these factors could be tested to improve the fit to the
data. Together, these products provide a basis for a more compre-
hensive understanding of potential landslide impacts, whether
estimated prior to or after a large earthquake occurs. The results
could be used, with further development, by vulnerable commu-
nities to improve land use planning, structural design, and emer-
gency response in landslide-prone areas.
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