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Abstract Rock avalanches involve extremely rapid, flow-like
movement of fragmented rock with extreme destructive potential.
With increasing development pressures in mountainous regions,
there is a need for simple, stochastic estimates of runout distances
to aid in hazard assessments and prioritize sites for more detailed
investigation. To support the development of an empirical predic-
tive tool, a systematic method was used to describe 49 rock
avalanches in the Canadian Cordillera, which had been document-
ed in the literature but not previously compiled into a regional
inventory. These cases were described using measured or estimat-
ed numerical values for volume, fall height, runout length, total
impacted area and the ratio of total impacted area over runout
length (referred to as mean path width), and qualitative descrip-
tions of the topographic confinement, substrate material and
source geology. Linear regressions were fit to the data, with qual-
itative attributes treated as indicator variables. A strong relation-
ship was found for runout distance predicted from volume, fall
height and lateral confinement. A second relationship was found
for mean path width over runout length predicted from volume.
These relationships were converted to survival functions to esti-
mate the runout exceedance probability and the mean path width
exceedance probability. These survival functions were implement-
ed in a computer tool, called the Probabilistic Runout
Estimator—Rock Avalanche (PRE-RA), which can be used to esti-
mate spatial impact probability ranges for rock avalanche runout.
An application of this tool was demonstrated using two recent
Canadian rock avalanches, which were not used in the dataset to
estimate the statistical relationships.

Keywords Rock avalanche - Runout - Regression - Stochastic
prediction

Introduction

Rock avalanches are characterized by “extremely rapid (> 5 m/s),
massive, flow-like motion of fragmented rock from a large rock
slide or rock fall” (Hungr et al. 2014). Increasing residential and
industrial development in mountainous areas means that more
people and infrastructure are exposed to potential rock ava-
lanche hazards, motivating further study to better estimate the
mobility of these events. Mitigation of these events is generally
not technically or economically feasible, thus risk-based man-
agement approaches are typically employed, considering hazard
and consequence. To assess the hazard posed by a rock ava-
lanche, the probabilities of several aspects of a potential event
must be estimated, including (1) the probability the entire source
volume will fail in a single event; (2) the probability the rock
mass will fragment and move in a flow-like manner; and (3) the
probability the fragmented mass will travel a certain distance,
commonly referred to as a runout analysis. This paper focuses on
developing empirical methods for performing probabilistic
runout analyses.
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Rock avalanche runout prediction using stochastic
analysis of a regional dataset

With a few exceptions (e.g. Mergili et al. 2015), runout analyses,
using either empirical or numerical methods, are commonly per-
formed using deterministic analyses. Previously developed empir-
ical relationships for rock avalanche runout based on linear
regression have a high degree of variability about the fitted regres-
sion lines. Attempts have been made to reduce the variability in
the relationships by dividing datasets into categories based on
qualitative descriptions of the events and fitting separate regres-
sions to each category (e.g. Nicoletti and Sorriso-Valvo 1991;
Corominas 1996; Strom et al. 2019). Probabilistic prediction
methods that account for the inherent variability are desirable,
particularly in the context of quantitative landslide risk assess-
ment (McDougall 2017). The method described in this paper uses
the variability in the observed runout of rock avalanches as a
means of characterizing the uncertainty around potential events.
The method incorporates qualitative attributes, such as confine-
ment, to improve prediction accuracy.

In many practical situations, screening-level tools are in de-
mand to provide quantitative estimates of rock avalanche travel
distance using data that does not require detailed site investigation
and characterization. In practice, this situation generally arises
when there is a need to prioritize assessment of many hazard sites
or determine if more detailed study is warranted. Such tools may
also be used to cross-check the results of a detailed study. The
objective of this work is to develop a simple probabilistic estima-
tion tool for rock avalanche runout that makes use of qualitative
descriptions of the events to refine the mobility estimates. To
support this work, a high-quality database of event descriptions,
with a focus on attributes that can be reliably described for pre-
dictive analysis, has been compiled. Regression models were fitted
using the compiled data, which were then used to develop statis-
tical relationships to quantify the variability in the predictions for
key runout parameters. The statistical relationships were incorpo-
rated into a screening-level predictive tool, called the Probabilistic
Runout Estimator—Rock Avalanche (PRE-RA). This tool was de-
veloped with geohazard practitioners in mind, who often need to
do quick, initial assessments with limited site information.

Existing tools for practitioners

There are many empirical and numerical runout estimation tools
available for practitioners. The focus of this section is primarily on
empirical mobility relationships, as those are most commonly
used for initial, screening-level assessments.

Empirical measures of rock avalanche mobility have been in
use since the pioneering work completed by Albert Heim in the
late 1800s and early 1900s. Heim (1932) introduced the concept of
fahrboschung, or angle of reach, which is the arctangent of the
ratio of the fall height, H, defined as the elevation change from the
rock avalanche crest to the furthest runout location, over the travel
distance, L, defined as the planimetric distance following the flow
path between those two points (Fig. 1). The physical basis of the
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Fig. 1 Schematic of fall height, H, and the travel distance, L (after Heim 1932) and definition sketch showing a schematic of the scarp, source zone (in red), transport zone
(in grey) and deposit area (in blue). Total impacted area is the sum of the source zone, transport zone and deposit zone

angle of reach is related to the dynamic sliding friction angle
derived from a one-dimensional sliding block analysis, consider-
ing conservation of energy (Heim 1932). Heim (1932) found that
the angle of reach was inversely proportional to the total volume,
V, of the failed mass for the cases he analyzed.

Many other authors have compiled databases of rock avalanche
case histories and presented results in terms of angle of reach (e.g.
Scheidegger 1973; Li 1983; Corominas 1996; Hermanns et al. 2012;
Zhan et al. 2017). All authors mentioned have found the same
inversely proportional trend as Heim (1932), although the slope
and intercept of the regressions have varied. Several other param-
eters, such as deposit area (Li 1983), path topography (Nicoletti
and Sorriso-Valvo 1991; Corominas 1996; Strom et al. 2019) and
average channel slope (Zhan et al. 2017), have been reported by
different authors and incorporated into empirical runout relation-
ships. The impacted area is also an important consideration for
assessing the hazard posed by rock avalanche events. Several
authors have examined the area covered by the deposit as a
function of the volume of the event, either purely empirically (Li
1983; Strom et al. 2019), or constraining the empirical relationships
using geometric scaling laws (Hungr and Evans 1993; Griswold and
Iverson 2008).

The previous empirical studies mentioned above have focused on
generating log-linear regression lines or power laws that linearize in
log-log space. Examination of the data shows that there is a high
degree of variability around the fitted regression lines, especially
when consideration is given to the fact that the data is linearized
using a logarithmic transformation of both the response and predic-
tor variables. Comparison of the datasets and resulting relationships
is complicated by the fact that there is no standard system for
describing rock avalanche runout and deposit characteristics.

Empirical relationships to estimate runout have been imple-
mented in a GIS environment to provide a preliminary character-
ization of potential debris flow and rock avalanche runout
scenarios (Griswold and Iverson 2008; Horton et al. 2013; Mergili
et al. 2015). Empirical relationships for deposit area and cross-
sectional flow area as a function of event volume were used by
Griswold and Iverson (2008) in the development of LAHARZ. This
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concept was adapted by Simoni et al. (2011) to estimate the poten-
tial variability in debris flow events using uncertainty factors on
the regression coefficients used to estimate deposit and cross-
sectional areas. The approach taken by Horton et al. (2013) was
to consider susceptibility to impact based on flow routing and
simple, friction-based propagation rules to determine runout
length, without explicitly considering an event volume. Mergili
et al. (2015) used a constrained random walk methodology for
flow routing, with a variety of empirical relationships, such as
angle of reach, to estimate when stopping occurs. In the latter
two examples, the stopping criteria to determine the propagation
of each path are treated deterministically. However, multiple flow
paths are combined, using the variability in the flow routing and
potentially different regression coefficients for the stopping
criteria for different paths, as a means to estimate the potential
variation in the runout length and impacted area after aggregating
many runs.

A number of advanced numerical models have been developed
for the purpose of predicting the runout of rock avalanches or
other flow-like landslides (e.g. Hungr and McDougall 2009;
Christen et al. 2012; Mergili et al. 2017; Wang et al. 2017; Xu et al.
2019). These models are generally used for detailed assessments of
potential rock avalanches, and there is generally insufficient data
to build and calibrate one of these models for a screening-level
assessment. The specifics of the numerical models and their as-
sumptions will not be discussed in detail here.

There is still a need for improved tools that allow for a rapid
assessment of the variability in runout. In this study, we developed
linear regressions for travel distance and a simplified representation
of the total impacted area. The error distributions of those regres-
sions were used to develop equations that can be used to make a
stochastic prediction of mobility, accounting for the variability in
travel distance and impacted area directly, with only topographic
information required. The analysis uses a user-specified path, which
allows the examination of large run-up events that can be challeng-
ing to address in flow routing-based analyses.

Two types of analyses can be carried out with the PRE-RA
predictive tool: path analysis and point analysis. Both analyses



use a user-input path, topography and the stochastic predictive
equations. The path analysis option can be applied when a poten-
tially unstable source zone and volume are identified, and there is
a need to estimate probabilities of the impacted length and mean
width for a potential travel path originating from the source. The
point analysis option can be applied when an element at risk is
present at a known location near a potentially unstable source
zone, and an estimate of the failure volume corresponding to a
certain probability of runout exceedance is required. This scenario
generally arises when a practitioner is tasked with determining if
there is a credible volume that could cause an impact to an
element at risk, which is a scenario that has not been directly
addressed in previous empirical runout estimation tools.

Methodology

Data compilation

To support the development of the regressions and predictive
equations, a systematic method was developed to describe rock
avalanches and create a regional inventory of rock avalanches
occurring in the Canadian Cordillera. The Canadian Cordillera
refers to the mountainous region extending from the foothills of
the Great Plains in the east to the Pacific Ocean on the west, with
the border with the continental USA forming the southern bound-
ary and the border with Alaska forming the northwestern bound-
ary, as shown in Fig. 2. The mountain belts within this region
formed as a result of plate convergence along the western edge
of the North American Plate, leading to the accretion of offshore
arcs and back arc basins, tectonic uplift and extensive volcanic
activity through the Jurassic and Cretaceous periods (Monger and
Price 2002). Through the Pleistocene, there has been extensive
reworking of the landscape during multiple glacial advances and
retreats (Clague 2000). Deglaciation within this area happened
within the past 10,000 to 14,000 years (Clague 2017), providing a
maximum age for landslides with observable deposits. Several
notable rock avalanches have occurred in this region within re-
corded history, including the 1903 Frank Slide (Cruden and Krahn
1973), 1965 Hope Slide (Matthews and McTaggart 1978) and 2010
Mount Meager landslide (Guthrie et al. 2012). A total of 49 cases
that have been documented in the literature, but not previously
compiled into a regional inventory, were selected. The locations of
the case studies are shown in Fig. 2.

The dataset focusses on events that have relatively well-
preserved deposits that exhibit characteristic features of flow-like
motion. Quantitative measurements of the deposit areas and
runout profiles were digitized using Global Mapper software
(Blue Marble Geographics 2018). The ASTER version 2 Global
Digital Elevation Model (GDEM) was used for all cases for consis-
tency. The measured values that were used for the statistical
analysis were checked against the values reported in the refer-
ences, where available, for validation purposes. Qualitative de-
scriptions of the path topography were made using terminology
consistent with Strom et al. (2019). The descriptions of path sub-
strate material were made using terminology consistent with Aar-
on and McDougall (2019), noting that cases where the rock
avalanches are known to involve a significant amount of snow
and ice have been excluded from this dataset. The substrate con-
ditions were assessed using descriptions of the substrate material
where given in the references or by visual interpretation of the

runout path. Events with a significant splash zone or large volumes
of observed entrainment were interpreted to involve saturated
substrate (Hungr and Evans 2004). Since many events overran
multiple substrate materials, the criterion for determining the
representative substrate material was the substrate within the
impacted area that would be considered excess mobility (angle of
reach >32°) (Hsil 1975). The description of source geology was
made using the criteria proposed by Whittall et al. (2017) for
distinguishing between strong/fresh and weak/weathered rock
masses. The information obtained for this dataset is summarized
in Table 1.

The event volumes reported in the references were not re-
examined as part of this study. The volumes have been estimated
using a variety of methods, and often without the expected error in
the estimates reported. The uncertainty associated with the vol-
ume estimates and potential implications for the results of this
study are examined in the “Discussion” section.

As summarized in the “Existing Tools for Practitioners sec-
tion”, most studies on rock avalanche area focus on the deposition
zone. In this study, we have gathered information on the total
impacted area. One reason for this approach is that the boundary
between the transport zone and deposition zone is often unclear as
a result of vegetation growth, subsequent rock fall activity and
erosion, especially for the prehistoric events (temporal uncertainty
classes 2 and 3). The other reason is that, from a hazard assessment
standpoint, any area impacted by a rock avalanche is of concern,
not just the deposit area.

Rock avalanches can mobilize saturated sediments encountered
along their travel path, resulting in more fluid and mobile deposits
downslope and along the flanks of a coarse, boulder deposit (e.g.
Heim 1932; Cruden and Hungr 1986; Hungr and Evans 2004; Orwin
et al. 2004). The dataset described in this paper has a mix of older
deposits, where evidence of saturated sediment mobilization is not
well preserved, and modern deposits with post-event aerial imagery
and/or detailed field investigations. For consistency, the digitized
deposit areas and runout paths include only the coarse, rocky
deposits, as shown in Fig. 3, which are expected to be identifiable
in the topography in the future. Inconsistencies in the method to
determine the travel distance are the most common source of
differences between the referenced literature and the values that
are used for the analyses detailed in this paper. For example, the
runout length of the Zymoetz River Rock Avalanche shown in Fig. 3
was described by Boultbee et al. (2006) as 4200 m, which includes the
area shown as mobilized sediment, whereas for this analysis, the
runout distance specific to the coarse deposit zone was measured as
1220 m. Ongoing fluvial processes are affecting the channel, and the
impacted area along the channel is much less apparent now, even less
than 20 years after the event. If an event were to bulldoze coarse
colluvium at the foot of the slope that would likely be identifiable in
the imagery or topography long term, similar with coarse material
that may be rafted on top of a more fluid bed.

The delineation of the deposits for this study was done in an
attempt to map the features in historic events that we interpret will
be identifiable in the future, so that we can directly compare those
runout distances and total impacted areas to the prehistoric deposits.
The validity of this approach was supported by the lack of statistically
significant differences in fitted models when considering the prehis-
toric events and historic events separately, as detailed in the “Results”
section.
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Fig. 2 Location of study area and rock avalanches included in this dataset. The numbers correspond to the numbers given in the complete dataset (included as

Supplemental Material)

Regression analysis

Several analyses were explored to find statistical models of the
variation in runout length and total impacted area predicted from
the attributes in the dataset of Canadian Cordillera rock ava-
lanches. A simple approach of applying a linear regression to the
H/L ratio (tangent of the angle of reach) versus volume was
conducted using logarithmically transformed data for the predic-
tor and response variables. A multiple linear regression was also fit
by treating the volume and fall height as separate predictors of
runout length, using logarithmic transformations of all three var-
iables (similar to the graphical analysis presented in Li 1983). An
analysis of the residuals of the linear regressions was completed to
examine potential clustering or stratification of the data. Box plots
of residuals for each of the descriptive factors outlined in Table 1
were generated and used to evaluate whether a difference in the
behaviour of the events could be observed on the basis of these
factors.
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Following the exploratory analysis, the descriptive factors that
showed the strongest stratification in the box plots were included
in the linear regressions as indicator variables. An indicator vari-
able is a binary variable that is 1 if the condition is true and o if it is
false (Young 2017). For example, if a regression was generated
using saturated substrate as an indicator variable, the regression
would use all of the data in the dataset; however, the saturated
cases (where the indicator variable has a value of 1) would have an
offset applied to the regression to account for the different mobil-
ity of these cases. An advantage of this approach versus generating
separate regressions for each factor is that it does not require
subdividing the dataset, and there are estimation efficiency gains
because fewer parameters generally need to be fitted using the
entire dataset. The regression model for runout distance we con-
sidered is written as:

logL = 3, + 3,logV + B,logH + 3,C + ¢ (1)



Table 1 Attributes and sources of information used to describe events included in the dataset

Attribute Units/descriptor Source/comments
Quantitative Volume M m? Published references
Fall height m ASTER GDEM v2
Travel distance m Digitized path
Total impacted m? Digitized deposit
Area
Qualitative Path topography Unconfined Visual interpretation of deposit shape and topographic features in the impacted

Laterally confined

Frontally confined

area

uncertainty

Path substrate Saturated Published references, if available, or visual interpretation of landforms from
aerial/satellite imagery
Unsaturated
Bedrock
Source geology Weak/weathered Published references, if available, or estimated from publicly available geological
maps
Strong/fresh
Temporal 0—yknown Date of event from eyewitness reports, daily satellite imagery and/or seismic

signal

1—well constrained

Year of event from eyewitness accounts or aerial photographs

2—moderately
constrained

Approximate age from radio carbon or cosmogenic nuclide dating

3—approximately
constrained

General geologic/geomorphic evidence available (e.g. post-glacial)

where L, V and H are as defined in the “Existing tools for
practitioners” section; 3o, 35, 3, and 3; are the regression coeffi-
cients; C is an indicator variable (o or 1) and ¢ is the error term,
assumed to be normally distributed with zero mean, e~N(o, o).

The impact area for the coarse fractured rock debris was also
considered, and a linear regression of the logarithm of volume
versus the logarithm of the total impacted area was generated. A
challenge with using the impacted area is predicting the shape of
the deposit. A simple metric of the spreading of an event can be
estimated using the mean path width, found by dividing the total
impacted area by the runout length. The logarithm of mean path
width (W) was compared with the logarithm of event volume. The
variability in the data was quantified by fitting a normal distribu-
tion to the regression residuals. The regression model for the mean
path width is written as:

logW = 3, + B,logV + ¢ (2)

where all terms are as defined previously.

Predictive analysis

The two linear regression models given in Egs. (1) and (2) were
used to develop stochastic predictive equations. The key assump-
tion is that the models in Egs. (1) and (2) capture the range of
potential outcomes of future events. Relying on the assumption of
the normally distributed error term, €, we can rearrange the linear
regression equation into the form of a survival function (Young
2017). The survival function for the travel distance derived from
Eq. (1) is written as:

P(L=IH=h,V=v,C=¢)
o (logl—ﬂo—ﬂllogv—ﬁzlogh—ﬂsc) >0

(3)

g

where I, h, v and ¢ are given values for runout distance, fall
height, volume and lateral confinement (true or false), respective-
ly; @ is the cumulative distribution function for a standard normal
variable.

Likewise, the survival function derived from Eq. (2) follows the
same format and is written as:

logw—3,— 3,1
ogw—03, BlogV)7W>o

g

P(W=w|V =v) = 1—<D( (4)

where w is a given value for mean path width; all other terms
are consistent with Egs. (2) and (3).

The values of P(L>I[H=h, V=v, C=c) and P((W>w|V =v) are
referred to as runout exceedance probability and mean width
exceedance probability, respectively, throughout this paper.

Implementation

The survival functions given in Egs. (3) and (4) have been imple-
mented in the PRE-RA predictive tool. In the path analysis option,
the PRE-RA tool provides estimates of the runout exceedance
probability and the mean width exceedance probability at multiple
points along a user-defined path. In the point analysis option, the
tool provides an estimate of the minimum failure volume required
to result in a specified runout exceedance probability at a specified
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Fig. 3 Example of separation of coarse rocky deposits from the channelized sediments that were highly mobile for the 2002 Zymoetz River Rock Avalanche

point (typically corresponding to the location of a key element at
risk). The graphical representation and statistical analyses for both
the path analysis and point analysis types have been implemented
in R (R Core Team 2018).

The workflow for the PRE-RA program is summarized in
Fig. 4. Both analysis types start in the same way, with separate
linear regressions fit to the data for travel distance and mean
path width based on the data from the 49 Canadian Cordillera
rock avalanche cases. The estimates of regression coefficients
and error distribution standard deviations for the data are then
obtained. A digital elevation model (DEM) with northing and
easting values in metres is provided by the user. The DEM is read
into the program, and a hillshade representation is generated,
onto which the user digitizes a runout path. The program ex-
tracts the elevation data from the DEM at each digitized point
and calculates the 2D profile to obtain the change in elevation
from the top of the path to each digitized point (h), and the path
distance from the source (I) in metres.
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A potential landslide volume, in M m?, is entered by the user for
the path analysis option. The runout exceedance probability at
each digitized point along the travel path is calculated using
Eq. (3). The runout exceedance probability is presented as a range
instead of exact values as a way of demonstrating the uncertainty
inherent in the analysis. The values along the profile correspond-
ing to the set end points of the probability ranges are found using
linear interpolation. Once the points are found on the 2D profile,
the equivalent points along the 3D path are found and plotted on
the topography. The mean deposit width is estimated from the
event volume using Eq. (4) and applied as an offset on either side
of the digitized runout path.

The point analysis iteratively solves Eq. (3) by adjusting v so
that it produces the calculated P(L > lf{H =h; V=v, C=c) for the
last point on the runout profile (I5 hy). The calculated minimum
failure volume is output along with a plot of the runout path.

The version of the predictive tool presented here only uses the
Canadian Cordillera rock avalanche dataset with the multiple
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linear regression for the logarithm of runout length, and a simple
linear regression for the logarithm of mean path width. Mitchell
et al. (2018) presented an earlier version of this tool, which used
several datasets published by other authors and H/L as the basis
for runout probability estimation.

Results

Dataset

The events included in the Canadian Cordillera dataset range
from 0.1 to 500 M m?. The fall heights range from 220 to 1720 m,
and the runout distances range from 950 to 8950 m, with H/L
ranging from 0.12 to 0.6 (angle of reach of 7° to 31°). A summary
table of all cases, attributes and references is included as Sup-
plementary Material. The precision of the measured attributes is
dependent on many factors, including the age and preservation
of the deposit, vegetation cover, topographic data quality and
resolution, and imagery quality, and a detailed estimation of the
limit of precision or measurement accuracy has not been com-
pleted. To recognize the limited precision possible in these mea-
surements, runout distances and fall heights are reported to the
nearest 10 m, and volumes are reported to two significant figures.

Regression analyses

Travel distance

The simple linear regression of log-H/L versus log-volume is
shown in Fig. 5. A multiple linear regression with log-volume
and log-fall height as predictors of log-runout distance was fit,
and an exploratory analysis was carried out by making box
plots of the residuals from the multiple linear regression for L
using the descriptive factors included in the database (Table 1),
provided as Supplementary Material. The results indicate that
frontal confinement tends to reduce mobility, while lateral con-
finement enhances it, and unconfined cases are relatively unbi-
ased compared with the overall regression. Unsaturated
substrates tend to have less mobility; however, the sample size
is small, reducing our ability to quantify this potential relation-
ship. No clear stratification of the residuals can be observed for
the source geology. From this visual analysis, amongst the de-
scriptive factors included in the database, topographic confine-
ment has the strongest effect on the residuals.

Following the finding that confinement was a strong control on
mobility for this dataset, new multiple linear regression models
were fit using lateral and frontal confinement as indicator vari-
ables. A summary of the regression fit statistics for these analyses
is provided in Table 2. The adjusted R value is higher and the
standard error is lower on all coefficients for the regression using
lateral confinement as the indicator variable, indicating this is the
stronger statistical relationship compared with frontal confine-
ment. The regression surfaces for lateral confinement being true
and false are shown in Fig. 6.

The assumption that the prehistoric events (temporal uncer-
tainty classes 2 and 3, described in Table 1) were comparable with
the rest of the dataset where only the coarse debris was mapped
was tested by fitting separate regression models to subsets of the
data separated into temporal uncertainty classes o and 1 (historical
events with better preserved deposits and often evidence of im-
pacts beyond the coarse, rocky debris preserved) and temporal
uncertainty classes 2 and 3 (included as Supplemental Material).
For this analysis, confinement was not used as a predictor. The
results showed no significant difference between the regression
models fit to the two subsets at a 95% confidence level, supporting
the assumption that the various ages of deposits can be grouped
together for this analysis using the deposit mapping methodology
described in this paper.

Mean path width

A simple linear regression of log-total impacted area versus log-
volume was fit, which indicated strong associations between log-
area and log-volume, as well as a multiple linear regression using
log-area predicted from log-volume and log-fall height (included
as Supplemental Material). To simplify the predictive process,
regressions using a simplified measure of the area, represented
by the mean path width, were fit. The simple linear regression of
mean path width versus event volume is shown in Fig. 7. The
associated regression fit summary is shown in Table 3. There is a
strong correlation between the volume and the mean deposit
width. Multiple linear regression models with width predicted
from runout length and volume or from fall height and volume
were fitted, but the association was less strong than the simple
linear regression, as summarized in Table 3. An exploratory
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analysis was carried out by making box plots of the residuals from the
simple linear regression for W (Supplemental Material) using the de-
scriptive factors included in the database (Table 1). Clear stratification of
the residuals was not observed in this dataset. Weak stratification was
noted for path topography; however, the statistical association was not
strong when confinement was used as an indicator variable.

Error analysis

The predictive analysis uses the assumption that errors are normally
distributed with zero mean. To assess this assumption, Fig. 8 shows
histograms as well as Q-Q plots for the residuals from the regressions
used in the predictive analysis and, for comparison, from the regression
of H/L versus volume. The error distributions for both the multiple
linear regression for runout length and the simple linear regression for
mean path width appear to be closer to a normal distribution than the
simple linear regression of H/L versus volume, especially visible in the
assessment of the tail behaviour through Q-Q plots.

Table 2 Summary of regression fit statistics

Predictive analysis

The coefficients found for the regression using lateral confinement
as an indicator variable (Table 2) and the standard deviation of the
residuals, as an estimate of o, were substituted into Eq. (3) to
produce the following survival function to estimate the runout
exceedance probability for the Canadian Cordillera dataset:

P(L>I|H=h,V =v,C=¢)

o (logl—l.412—0.13910gv—o.64ologh—o.169c) >0 (5)

0.105

The coefficients found for the regression of mean path width (Table 3)

and the standard deviation of its residuals were substituted into Eq. (4) to

produce the following survival function to estimate the mean width
exceedance probability for the Canadian Cordillera dataset:

logw—2.327—0.3251
P(W2w|V:v):1—cD(0gw 2.327 o3250gv)7w>0 (6)

0.156

Simple linear regression Multiple linear regression Multiple linear Multiple linear
regression—frontal regression—lateral
confinement confinement

Adjusted R 0.19 0.71 0.76 0.80

Coefficients Estimate Standard Estimate Standard Estimate Standard Estimate Standard
error error error error

log(V)? —0.0847 0.0239 0.105 0.026 0.136 0.026 0.139 0.023

log(H)? NA NA 0.807 0.109 0.732 0.104 0.640 0.098

C NA NA NA NA —0.114 0.037 0.169 0.037

Intercept —0.505 0.030 1.027 0.297 1.260 0.284 1.412 0.262

(o) 0.132 0.128 0.116 0.105

?See Table 1 for units
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A sensitivity analysis was completed by evaluating the proba-
bility of exceedance for a range of runout distance values at fixed
fall heights, volumes and lateral confinement conditions. The
values chosen for plotting, shown in Fig. 9, span the range of most
fall heights and volumes in the dataset. The zone where the travel
angle is greater than 32°, corresponding to Hsii’s (1975) definition
of excess mobility, is also shown.

Example analysis

A demonstration of the PRE-RA tool developed in this study is
shown using the 2019 Joffre Peak Rock Avalanches in British
Columbia (Friele et al. press). One rock avalanche occurred on

May 13, 2019, and a second rock avalanche from an adjacent area
on the rock face occurred on May 16, 2019. Both events originated
from the northeast face of Joffre Peak, and travelled down a
laterally confined path. The runout lengths and areas reported
here were estimated using 3-m pixel size satellite imagery collected
on May 13, 2019, and May 30, 2019 (Planet Team 2017). Elevation
data were obtained from the Canadian Digital Elevation Model
(CDEM) Mosaic for the area between 50° 20’ 20.6” and 50° 23’ 19.7"
north latitude and 122° 23" 42.1” and 122° 27’ 32.3" west longitude.
Volumes of the two events were estimated by comparing photo-
grammetry models of the pre-event topography in 2017: the post-
first event topography collected on May 15, 2019 and the post-

®  Observations
— Best-fit regression

5,000
1

1,000 2,000
1

Mean path width, m
500

log(W) = 0.325log(V) + 2.33

T T I

10 100 1,000

Volume, M m®

Fig. 7 Mean runout path width versus rock avalanche volume relationship for the 49 Canadian Cordillera rock avalanches considered in this study
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Table 3 Summary of simple linear regression fit statistics for mean runout path width versus rock avalanche volume relationship

Simple linear regression

Multiple linear regression

Multiple linear regression

Adjusted R? 0.73 0.73 0.73

Coefficients Estimate Standard error Estimate Standard error Estimate Standard error
log(V)® 0.325 0.028 0.335 0.032 0.340 0.037

log(H)? NA NA —0.099 0.133 NA NA

log(L)?® NA NA NA NA —0.078 0.122
Intercept 2327 0.035 2.593 0.362 2.576 0.392

g 0.156 0.155 0.156

?See Table 1 for units

second event topography collected on May 18, 2019. Features of
this rock avalanche are summarized in Table 4. The rock avalanche
deposits, paths and profiles are shown along with key geographic
features in Fig. 10.

The CDEM elevation grid data were converted to a UTM grid
using Global Mapper software. A path analysis was run for event
volumes of 2 M m?® and 3 M m? with lateral confinement set as true. A
path was digitized from the crest of each event’s head scarp, follow-
ing the actual deposit, then extending down the Cerise Creek drain-
age to where it joins with Cayoosh Creek. Output of the analyses for
the runout exceedance probability at any point along the digitized
path, as well as offsets showing the range of path width exceedance
probabilities, are shown in Fig. 11. The runout and mean path width
values for each analysis are provided in Table 5.

A point analysis, performed to estimate the volume required for a
potential future failure to dam Cayoosh Creek, was run along the
May 16, 2019 event path (Fig. 12). The algorithm used to perform a
point analysis is summarized in the “Implementation” section. An
arbitrary target of P(L > lf|H =hs V=v C=c)=o0.25 where l¢=
5700 m, hf=1440 m and c=1, was selected for this analysis. The

b

Q

10 12

8 10 12
1

8
|

Frequency
6
|
Frequency
6
|

o O o

minimum failure volume estimated from this analysis, assuming
lateral confinement, is 4 M m?>. Therefore, an event with a volume of
4 M m?® is estimated to have a probability of 0.25 of travelling as far as
Cayoosh Creek. Smaller volume events are estimated to have a prob-
ability less than 0.25 of reaching this point given the conditions above.

Discussion

A marked improvement is noted in the strength of the associations
using fall height and volume as separate variables in the model to
predict runout distance (Table 2), consistent with the findings of
Zhan et al. (2017). Furthermore, the predicted runout distances
were found to be highly sensitive to the fall height, as shown in
Fig. 9. This generally agrees with the results of Nicoletti and
Sorriso-Valvo (1991), who found fall height was a stronger predic-
tor than volume when performing a simple linear regression. The
relative magnitudes of the coefficients also generally agree with the
results of Zhan et al. (2017). These findings are contrary to the
conclusions of Legros (2002), who suggested that long travel
distances were primarily related to local slope and volume. Anal-
yses of residuals of the H/L and runout length versus fall height
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and volume analyses in this study show path topography has the
strongest effect on the residuals, with unconfined paths generally
well described by the regression, lateral confinement having en-
hanced mobility and frontal confinement having limited mobility
(Table 2).

There is potential for some of the factors examined in this study
to be inter-related. For example, laterally confined cases tend to

run out further, generally following valleys, thus they are more
likely to have saturated substrate. Numerical modelling work
looking at the effect of path substrate on the mobility of back
analyzed events showed a similar trend of saturated substrate
tending to enhance mobility relative to unsaturated substrate
(Aaron and McDougall 2019). In that study, the effect of substrate
was likely stronger on the clustering of results, as the model that
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Table 4 Geometric characteristics of the Joffre Peak rock avalanches

Event May 13, 2019 May 16, 2019
Volume (M m’?) 2 3

Runout distance (m) 4000 3650

Fall height (m) 1200 1300

Area (m?) 1.27 x 10° 1.15 x 10°
Mean path width (m) 320 315

was used explicitly considers the effect of the 3D terrain variation.
Analysis of runouts in open-pit settings found good clustering of
the results based on the source geology (Whittall et al. 2017), which
was not observed in this analysis of natural rock avalanches. The
runout path topography and substrate conditions tend to be much
less variable in open-pit settings than they are in natural rock
avalanche paths, thus the effects of source geology may have a
stronger expression. The analysis of the rock avalanche cases
presented in this paper suggests that path confinement is a reliable
qualitative predictor of mobility, which is consistent with the work

Legend
Streams

e May 16, 2019 Path

May 13, 2019 Path

m May 16, 2019 Area
[ ] may 13,2019 Area

s Kilometers

- “

i\ )

of Nicoletti and Sorriso-Valvo (1991), Corominas (1996) and Strom
et al. (2019). With a larger dataset of consistently described events,
a hierarchy of factors could be developed to help guide practi-
tioners in decisions on what factors to prioritize for investigation
to refine runout estimates, such as source volume, topographic
relief, path confinement, path substrate and source material.

The relationship between area and volume found for this dataset
shows a positive correlation with a strong linear association. Mean
path width has been investigated as a way to predict spreading
behaviour for a given event volume without performing a flow
routing calculation. A positive relationship exists with good statisti-
cal strength (Table 3). The simplicity of this analysis is attractive for
making screening-level predictions; however, judgement is required
to interpret the results. As the prediction is for a mean value, some
areas are expected to spread more or less than the predicted value.
This is demonstrated in Fig. 11, where the observed spread was
significantly outside of the mean width, especially in areas where
the rock avalanche went around bends. Significantly wider spreading
than the mean value can also be expected at the distal ends of
deposits in frontally confined cases or unconfined cases where the
mass is free to spread, for example on an open valley floor.
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Fig. 10 Joffre Peak Rock Avalanche deposit areas and profiles overlain on Planet Inc. imagery from May 30, 2019
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Table 5 Observed values and probability ranges for the Joffre Peak rock avalanches

Runout P(L>IH=h V=v, C=1) Width (m) P(W>w|V=1v)

g)rg)served 0.95 0.75 0.50 L Observed 0.95 0.75
May 13, 2019 4000 2550 3330 3950 4860 320 147 208 265 340
May 16, 2019 3650 2920 3750 4530 5480 315 168 238 303 387
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Fig. 12 Volume output for a specified P(L >I{H = h; V =v, C =c) for an event originating from the May 16, 2019 crest location that could have blocked Cayoosh

Creek

There is some degree of uncertainty associated with characteriz-
ing the rock avalanche volumes, impacted areas, runout lengths and
fall heights in the dataset presented. This is especially true for older,
eroded and/or overgrown deposits, which are not as clearly defined
as more recent events. Since rock avalanches are relatively rare
compared with other mass movement processes, eliminating the
older events would result in a very limited dataset. An effort was
made to limit the effect of the uncertainties by using consistent
methods and data sources for topography, and checking values
against multiple sources where possible. There is also some subjec-
tivity involved in assigning the descriptive attributes. A common
challenge is that more than one descriptor could be applied to many
cases. As an example, a failure may start on an open, unconfined
slope, enter a confined valley, then spill out onto a broad floodplain
and encounter bedrock, unsaturated and saturated sediments along
its path. Judgement is needed to assign a representative value for the
descriptive factors, and practitioners may need to look at multiple
scenarios when performing a forward analysis.

The parameter with the greatest uncertainty is event volume, as very
few events have pre- and post-event topographic data available, thus
various indirect volume estimation methods were applied by the authors
of the referenced case studies. The results of the regression analyses
indicate that the predicted runout length has a relatively low sensitivity
to volume. For example, using the multiple linear regression presented
in Fig. 6 and a hypothetical event with a fall height of 500 m and volume
of 10 M m?, without lateral confinement the predicted runout distance
would be 1900 m. If the volume was overestimated by a factor of 2, i.e.
20 Mm%, the predicted runout distance would be 2090 m or only a 10%
difference. The relatively low sensitivity to this variable, and the fact that
the predictions focus on ranges of possible outcomes, help mitigate the
effect of the uncertainty that generally comes with estimating event
volumes, both for back analysis and forward predictive analysis. The
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sensitivity analysis (Fig. 9) indicates the strong effect of confinement,
where an approximate order of magnitude increase in volume is needed
to produce a runout length in a non-laterally confined case equivalent to
the runout in a laterally confined case. The point on the curves where the
P(L>1|Vv, H=h, C=c) values are well below the value of 1 are generally
consistent with the minimum 32° angle of reach value proposed by Hsii
(1975).

The runout exceedance probabilities are presented as ranges
rather than distinct values as a way of recognizing the uncertainty
inherent in the data and, as a result, in the analysis. The relatively
broad probability ranges output by the predictive tool are appropri-
ate given that it is intended to be used as a screening-level tool.
Where this screening-level analysis indicates a sufficiently high
probability of impact from a credible rock avalanche event, detailed
site investigation and more sophisticated numerical analysis may be
completed as a follow-up. The probabilistic outputs presented here
can also be used for preliminary risk analysis. The runout probabil-
ities obtained from the analysis are relevant for the bulk of a poten-
tial landslide event; however, there may be significant mobilizations
of saturated sediments that could form a splash zone or become
channelized and have a significantly greater runout (e.g. Fig. 3).

The output of the PRE-RA tool was compared with the observed
runout and spreading behaviour of the 2019 Joffre Peak rock avalanches,
which followed a laterally confined runout path. The observed runout of
the May 13, 2019 event was within the zone where P(L >[|V=2 M m?,
H=h, C=1) is in the range of 0.50 to 0.25, and the observed runout of
the May 16, 2019 event was within the zone where P(L >[|V=3 M m’,
H=h, C=1) is in the range of 0.95 to 0.75. The observed deposit width
for both events was within the zone where P(W >w|V =2 M m’) and
P(W>w|V =3 M m®) are in the range of 0.50 to 0.25. This implies that
the mobility and spreading of the first event was within a typical range
compared with the other events in the dataset with consideration of



volume, fall height and confinement; however, the travel distance of the
second event was relatively low.

The observed behaviour of the two 2019 Joffre Peak events compared
with the empirical predictions show some notable differences. Given the
volume estimates and fall heights, the second event would be expected
to be more mobile based on the relationships presented here, while in
reality, the runout distance was slightly less than the first event despite a
greater volume and fall height. This could be due to the presence of the
first event deposit, which occupied the most efficient path down the
slope and provided a rougher surface over which the second event had
to travel. Additionally, if a mobility enhancing substrate material was
present, it may have been mobilized by the first event and not available
to enhance the mobility of the second event.

The results of the point analysis indicate that a failure of over
4 M m?, i.e. less than the combined volume of both events, would
have a probability of reaching Cayoosh Creek greater than o.25. If
the creek was blocked, it could have important implications for
upstream flooding and the potential for a breach of the landslide
dam to impact downstream people and infrastructure. The limited
mobility of the second event and the plausibility of the combined
volume deposit directly impacting Cayoosh Creek highlight the
importance of determining if unstable source zones fail as single
events or multiple events when performing hazard or risk assess-
ments. Additionally, the presence of snow and ice within the
source area of events could have enhanced mobility beyond what
would otherwise be expected. Events that clearly ran out over
glaciers were excluded from this dataset; however, it is possible
that significant amounts of snow and ice were involved in the
prehistoric events in the dataset. Associated effects of the rock
avalanches, such as the mobilization of sediment and woody
debris in the drainage downslope of the deposit (Friele et al. in
review) are also not captured in this analysis, but can have impor-
tant implications for risks to people or infrastructure.

There may be advantages to converting descriptive variables to
continuous numeric variables where possible. One potential path
of inquiry could involve morphometric analyses of the runout
areas to look for ways to quantify confinement numerically.

This dataset only considers events from the Canadian Cordillera.
Consistent simple and systematic descriptions of more events in a
wider variety of locations could help to build larger, more statistically
robust datasets for future analysis. Larger datasets described in a
consistent manner may also help to better determine the effect of
some attributes, such as path substrate or source material. Exami-
nation of events from other geographic regions could provide further
insight on regional factors contributing to rock avalanche runout.

Conclusions

A simple, screening-level tool to provide geohazard practitioners
with stochastic estimates of potential rock avalanche runout has
been developed. To support this work, a regional dataset of 49 rock
avalanches from the Canadian Cordillera was compiled through
literature review and GIS-based mapping. Quantitative and qual-
itative descriptions of the events were made using attributes that
are descriptive, yet simple enough to allow for larger grouping of
events. Statistical analyses of the data indicated that treating vol-
ume and fall height as independent predictors of runout distance
significantly improves the regression strength, relative to the more
common method of using volume as a predictor of the angle of
reach. The travel distance regression residuals show strong

stratification on the basis of path topography, and a weaker strat-
ification on the basis of path substrate. A multiple linear regres-
sion accounting for whether or not there is lateral confinement
along the runout path was generated. The mean path width of the
deposit is proposed as a simple estimate of spreading, which can
be estimated with good statistical strength using the event volume.

The regression analysis for runout distance predicted from fall
height, event volume and confinement, and an independent analysis
of the mean path width predicted from event volume were imple-
mented into the PRE-RA screening-level predictive tool. The tool can
be used to estimate the runout exceedance probability and the mean
path width exceedance probability along a user-specified path or to
estimate a volume that results in a specified runout exceedance
probability at a specified point. The probabilistic output was devel-
oped with risk-based decision-making in mind and ease of use by
practitioners involved in estimating landslide impact hazards. The
screening-level information provided by the tool could be applied to
provide preliminary estimates of spatial impact probability in a
hazard or risk assessment and to determine if more detailed inves-
tigation and numerical modelling is warranted. If more detailed
numerical modelling is pursued, this analysis could help constrain
the volumes and model domains considered.

Further work is underway to develop a larger database of
worldwide events described in a consistent manner. This would
allow for more robust statistical analyses and could be used to re-
examine some of the weaker effects found in this study, which
could in turn help to better define the relative importance of the
attributes on mobility. Finally, a consistent global database could
be used to test if distinct regional trends can be observed.
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