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Evaluating the performances of satellite-based rainfall
data for global rainfall-induced landslide warnings

Abstract Satellite-based precipitation estimates (SPEs) show great
promise for promoting landslide warning and mitigating landslide
disaster risk with quasi-global coverage, near real-time monitor-
ing, increasing spatial-temporal resolution, and accuracy. In this
study, we evaluated the performances of four SPE products in
detecting the initiation of rainfall-induced landslides globally
using Hanssen-Kuiper (HK) skill score based on rainfall
frequentist thresholds. The results show that SPEs can distinguish
rainfall events responsible for landslides from those not related to
landslides, suggesting that SPEs can capture rainfall conditions
corresponding to landslide occurrence well and are of great use
for landslide detecting. Further investigation indicates that perfor-
mances at the global scale vary with products. CMORPH-3h V1
(HK = 0.43) and TMPA-3B42RT V7 (HK = 0.42) are superior to two
other rainfall products with high HK values. Rainfall threshold
establishment and evaluation for specific landslide types can im-
prove SPEs’ performances in landslide modeling with higher HK
values compared to results based on all landslide records. Perfor-
mances also vary spatially with HK values ranging from 0.1 to
0.9 at a spatial grid of 5° × 5°. Linear relationship analysis reveals
the variation in mean annual precipitation can partially explain
the heterogeneous spatial distribution of rainfall threshold param-
eters. These findings serve to promote the application of satellite-
based rainfall data in landslide warnings.
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Introduction
Rainfall-induced landslides are a frequent and world-wide phenome-
non that claims mass lives and causes huge damages (Iverson 2000;
Nadim et al. 2006; Froude and Petley 2018); they are intensified under
a changing environment (Gariano and Guzzetti 2016; Guha-Sapir et al.
2016; Lewkowicz and Way 2019). To prepare for and mitigate these
disasters, landslide early warning systems (LEWSs) are needed to
determine the time and location of landslide occurrence and respond
immediately, especially in landslide-prone and vulnerable areas. Re-
gional LEWSs have been developed around the world, such as inHong
Kong (Premchitt et al. 1994), Piedmont, Italy (Aleotti 2004), Seattle,
USA (Chleborad et al. 2006), and Norway (Devoli et al. 2015); a
detailed review of these systems was prepared by Piciullo et al.
(2018). Nevertheless, some areas are still threatened with untimely
and imprecise monitoring and warnings (Harp et al. 2009; Broeckx
et al. 2018). Existing LEWSs are implemented by costly gauge obser-
vations with limited spatial coverage (Martelloni et al. 2012;
Kirschbaum and Stanley 2018). With quasi-global coverage and
(near) real-time monitoring, satellite-based precipitation estimates
(SPEs) could be a better proxy for rain-gauged input in operational
LEWSs, potentially promoting the timeliness of global landslide warn-
ings and substantially reducing landslide disasters (Gebremichael and
Hossain 2010; Sun et al. 2018).

Several studies have focused on the application of SPEs in
LEWSs over global to regional scales. Hong et al. (2006, 2007)
proposed a preliminary framework for early global landslide warn-
ing with the Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) rainfall estimates, based on
rainfall thresholds for landslide occurrence. This landslide hazard
algorithm was updated by Kirschbaum et al. (2009, 2012).
Farahmand and AghaKouchak (2013) created another satellite-
based global landslide model using the Precipitation Estimation
from Remotely Sensed Information Using Artificial Neural Net-
works (PERSIANN) rainfall data. Apip et al. (2010) integrated the
Climate Prediction Center (CPC) Morphing Technique (CMORPH)
precipitations into landslide modeling in Indonesia. Consequently,
LEWS forced by SPE have been implemented, such as LHASA
global model (https://pmm.nasa.gov/precip-apps; Kirschbaum
and Stanley 2018). However, there have been few attempts to
evaluate the performance of landslide modeling, largely because
data availability is limited, as noted by Kirschbaum et al. (2009)
and Farahmand and AghaKouchak (2013). Kirschbaum and
Stanley (2018) pointed out that the absence of a global database
of “nonlandslide” points is a main obstacle for a robust evaluation.
Additionally, previous studies were mostly conducted with the
goal of applying particular SPE product, whereas comparison of
various rainfall products would be required to comprehensively
evaluate the performances of SPEs for landslide modeling.

To date, efforts to evaluate and compare the performances of
various SPEs for landslide modeling have been limited at regional
scale. Rossi et al. (2017) compared the landslide rainfall thresholds
defined by gauged and TMPA rainfall data in the Umbria region,
Italy. Brunetti et al. (2018) evaluated the performance of four SPE
products to forecast the possible occurrence of rainfall-triggered
landslides in Italy by employing a uniform evaluation procedure.
The performances of various SPE products applied in the global
LEWSs are poorly assessed and compared. The reasons may lie in
the questioned accuracy or bias of SPEs as compared to gauged
rainfall data (Hossain et al. 2014; Camici et al. 2018), the lack of a
global rainfall-induced landslide database with records of reliable
time and location information (Kirschbaum et al. 2009), and the
demand for a solid evaluation procedure (Gariano et al. 2015).

TMPA (Huffman et al. 2007), PERSIANN (Hsu et al. 1997),
CMORPH (Joyce et al. 2004), and Multi-Source Weighted-Ensem-
ble Precipitation (MSWEP; Beck et al. 2017) rainfall products are
state-of-the-art SPEs with increasing spatial-temporal resolution
and accuracy. These four rainfall datasets are evaluated and com-
pared for landslide modeling in this study. We employ the Global
Landslide Catalog (GLC; Kirschbaum et al. 2010) for integration of
landslides and their triggering rainfall conditions. This global
rainfall-induced landslide dataset provides reliable occurrence
information of landslide events and is adequate for a solid evalu-
ation procedure. This paper addresses three specific scientific
questions: (1) do SPE products distinguish rainfall events respon-
sible for landslides from those not related to landslides? (2) how
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do SPE products perform in providing global landslide warnings
and which product is best? (3) how do SPE products perform in
landslide warnings based on landslide type and regional effects?

To address the questions above, we first reconstruct rainfall events
that are responsible for landslide events and those are not and conduct
preliminary comparisons between these two rainfall event data sets for
each SPE product. Then, we establish cumulated event rainfall (E)–
rainfall duration (D) thresholds (denoted as ED rainfall thresholds)
based on rainfall events that are responsible for landslides. Threshold
uncertainties are considered by using frequentist thresholds corre-
sponding to different exceedance probabilities. For quantitative eval-
uations, skill scores of ED rainfall thresholds are estimated at the
global scale. Despite the fact that a good few practices used available
datasets to generate unique global thresholds for landslide initiation
(reviewed in Guzzetti et al. 2008), climatic and geological environ-
ments contribute to regional differences of rainfall thresholds by
influencing rainfall and landslide patterns (Guzzetti et al. 2007;
Zhang et al. 2011; Peruccacci et al. 2017). Landslide category also plays
an important role in rainfall threshold establishment, since failure
mechanisms vary with landslide types (Cruden and Varnes 1996;
Hungr et al. 2014). Thus, we also establish rainfall thresholds and
evaluate their performances for particular landslide types and regions.
Specifically, we calculate the skill scores at the scale of 5° × 5° of latitude
and longitude, i.e., each 5° × 5° grid is an individual region.

Data and methods

Data

Global landslide catalog
The GLC has been compiled by the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center since 2007 to
promote landslide disaster evaluation and reduction (Kirschbaum
et al. 2010). The catalog records 10,988 landslide events worldwide as
recently as September, 2017 (last updated on April 3, 2018; https://
data.nasa.gov/Earth-Science/Global-Landslide-Catalog-Export/
dd9e-wu2v). GLC details occurrence time, occurrence location, and
trigger factor, which are vital for extracting rainfall information
corresponding to landslide events. However, the accuracy of each
record varies and unquantifiable uncertainties exist in GLC due to
heterogeneous and limited data availability (Kirschbaum et al. 2015).

The following criteria were used to select valid records: (1) records
with location accuracy worse than 25 kmwere excluded; (2) landslide
events initiated by triggers other than rainfall were removed; (3)
occurrence time listed by local time was converted to Coordinated
Universal Time (UTC) and ambiguous descriptions were replaced
with specific times (e.g., 6:00 as a substitute for “early morning”);
and (4) landslide events occurring in the period from 2007 to 2014
were selected with an ending time corresponding to TRMM instru-
ment termination in early 2015. The selected landslide dataset con-
sists of 5164 records (Fig. 1). According to Kirschbaum et al. (2015),
landslide classifications in GLC were modified from Cruden and
Varnes (1996) and USGS (2004) classfications. The top type with
the most landslide records is still the generic term “landslide”
(68.8%), which is not specifically defined in the original sources.
Thus, only types of mudslide, complex, rock fall, and debris flow are
considered in type effect analysis (section “Rainfall threshold estab-
lishment and evaluation for different landslide types”). Additionally,
82.7% of records reported are distributed in Asia andNorth America.

Satellite-based precipitation estimates
SPEs play a vital role in global hydrological modeling and rainfall-
related hazard monitoring. We used four notable SPEs—TMPA,
CMORPH, PERSIANN, and MSWEP products with the same tem-
poral resolution and similar spatial resolution (Table 1)—to ex-
plore the association between rainfall data and rainfall-induced
landslides in this study.

TMPA rainfall data merge precipitation estimates from multiple
satellite sensors. 3B42RT of version 7 is provided by the NASA
Precipitation Measurement Missions (PMM) Science Team (https://
pmm.nasa.gov/TRMM). The original CMORPH rainfall data cover
the period 2002–present. Recently, reprocessed and biased-corrected
CMORPH rainfall estimates since 1998 are available (http://
ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/), provided by
the National Oceanic and Atmospheric Administration (NOAA).
PERSIANN algorithm generates hourly rainfall data by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the Univer-
sity of California, Irvine. The suite of PERSIANN rainfall data is
accessible on the official website (http://chrsdata.eng.uci.edu/).
MSWEP is a newly developed SPE dataset, merged from a wide range
of satellites, rain gauges, and reanalysis estimates. The latest version
is depicted online (http://www.gloh2o.org/). All the datasets integrate
high-quality combined microware precipitation estimates derived
from low earth orbit satellites and variable rain rate infrared precip-
itation estimates collected from geostationary satellites.

Methods

Rainfall event reconstruction
To acquire rainfall conditions triggering landslide events, we
employed an automatic algorithm proposed by Melillo et al.
(2015, 2016). The algorithm defines dry period with no rain to
distinguish individual rainfall events from each other. When a
dry period is given, we can extract a single rainfall event with its
rainfall duration (D) and cumulated event rainfall (E) based on its
specific time or acquire all the rainfall events during a period. A
continuous rainfall series is required as input. We used an updated
version of the algorithm in which the dry periods vary with the
climatic and geographical environment (Melillo et al. 2018). The
distributed dry periods were generated at a grid scale of 0.25°
based on available global datasets and details are provided in the
appendix.

Two types of rainfall events were classified—those responsible
for landslide occurrence (landslide-initiating rainfall events, LREs)
and those triggering no landslides (non-landslide-initiating rain-
fall events, NLREs). Rainfall series of the SPE grids in which
landslides occurred were used as input to the rainfall event recon-
struction algorithm. LREs were extracted according to the land-
slide occurrence time. We assumed that all rainfall events that
precede LREs are NLREs for every rainfall series. The rainfall event
reconstruction was conducted for each landslide record. For SPE
grids with more than one landslide event, only rainfall events
before the first LRE were considered as NLREs.

Considering the uncertainties in the landslide and SPE datasets,
some landslide events may miss their rainfall conditions with zero
cumulated event rainfall. To assess the capability of the recon-
struction algorithm, we defined the reconstruction percentage,
equal to the ratio of landslide records matching their rainfall
conditions over the total landslide records.
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Rainfall threshold establishment
Rainfall thresholds have been a powerful tool for LEWSs, present-
ing a minimum rainfall condition over which landslides are likely
to occur, thus providing a simple and effective method to model
the possible occurrence of landslides (Guzzetti et al. 2007; Segoni
et al. 2018). ED rainfall thresholds are a common rainfall thresh-
old, revealing a linear increasing trend of cumulated event rainfall
with rainfall duration in the logarithmic coordinates for rainfall
conditions that are responsible for landslides (Innes 1983;
Peruccacci et al. 2012), which can be written as

E ¼ αDβ ð1Þ

where E is the cumulated event rainfall or total rainfall of a single
rainfall event in millimeters and D is the rainfall duration of the
single rainfall event in hours, β and α are the fitting parameters,
and β ranges from 0 to 1.

Practically, various ED rainfall thresholds can be fitted based on
differentmethods and stochastic concepts. High thresholds tend tomiss
more real disasters, whereas low thresholds could be more sensitive to
small rain, leading to false positives. The frequentist method was pro-
posed to define multiple thresholds corresponding to different exceed-
ance probabilities (frequentist thresholds, FTs; Brunetti et al. 2010;
Piciullo et al. 2017), providing the choice to search for better thresholds
for an operational LEWS. This method yields thresholds for any given
exceedance probability, e.g., a 5% threshold (T5) indicates that rainfall
conditions below the threshold may initiate landslide events at a prob-
ability of less than 5% for a sufficiently complete and representative
catalog of rainfall events responsible for landslide occurrences. We
employed (E, D) data points of LREs during the period of 2007–2014
to fit FTs from 1 to 50% for each rainfall product. The definition of
rainfall thresholds using frequentist method was also compiled in
Melillo et al. (2018; http://geomorphology.irpi.cnr.it/tools/rainfall-
events-and-landslides-thresholds/ctrl-algorithm/ctrl-code/
CTRL_code.R/). Wemodified the algorithm for grid rainfall application.

Fig. 1 Spatial distribution of the 5164 selected landslide records during the period of 2007–2014 from the Global Landslide Catalog (GLC)

Table 1 Information about the four satellite-based rainfall products analyzed in this study

Rainfall datasets Temporal/spatial resolution Spatial coverage Data period References

TMPA-3B42RT V7 3 h/0.25° 50°N − 50°S 2000.03–present Huffman et al. 2010

CMORPH-3h V1 3 h/0.25° 60°N − 60°S 1998.01–present Xie et al. 2017

PERSIANN-3h 3 h/0.25° 60°N − 60°S 2000.03–present Sorooshian et al. 2014

MSWEP-3h V2 3 h/0.1° 90°N − 90°S 1979.01–2017.12 Beck et al. 2019

Note: The names of rainfall datasets are noted in three parts, the name of satellite-based rainfall series, detailed products marked by temporal resolution, and the version of the
dataset
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Skill scores for evaluation
Using the FT at a given exceedance probability, both of LREs and
NLREs are divided into two subsets. ED data points of LREs above
FT are true positives (TPs), and those below FT are false negatives
(FNs). Similarly, rainfall events of NLREs above FT are false pos-
itives (FPs) and those below FT are true negatives (TNs). Skill
scores, such as Hanssen-Kuiper (HK) skill score (Hanssen and
Kuipers 1965), δ skill score, and comprehensive skill score index
(Gariano et al. 2015), are defined as functions of the TPs, FNs, FPs,
and TNs. HK skill score has been widely used in previous LEWS
evaluations (Peres and Cancelliere 2014; Gariano et al. 2015;
Brunetti et al. 2018), as it has a simple formula, robust perfor-
mance, and general applicability for identifying the usability and
accuracy of scientific data, methods, or models. The following
formula show the definition of HK:

HK ¼ POD−POFD ¼ TP
TPþ FN

−
FP

TN þ FP
ð2Þ

where the probability of detection (POD) is the hit rate,
representing the ratio of correctly forecasted landslides over re-
corded landslides; the probability of false detection (POFD) is the
false alarm rate, which is the ratio of falsely forecasted rainfall
events initiating landslides over the total rainfall events of NLREs.
Both indexes range from 0 to 1. Thus, HK ranges from − 1 to 1 and
its optimal value is 1, representing the ideal case in which all
recorded landslides are correctly forecasted (POD = 1) without
incorrect predictions (POFD = 0).

We calculated the POD, POFD, and HK for each FT and SPE
product. The performance of each SPE was exhibited by HK curves
(HK values against the exceedance probability of each FT, respec-
tively). The evaluation procedure was conducted using rainfall
information from LREs and NLREs during the period of 2007–
2014. Based on HK curves, we determined the best-performing FTs
with the highest HK values. The same evaluation procedure was
conducted using landslide events and their rainfall conditions for
different types of landslides and 5° × 5° latitude and longitude
grids across global land areas. To ensure reliability of evaluation,
we removed grids with less than ten LREs.

Results

Rainfall event reconstruction and rainfall characteristics
We reconstructed LREs and NLREs and summarized the number
of each and the reconstruction percentage (Table 2). Rainfall
conditions for most landslide events were captured by the SPE
products with an average reconstruction percentage of 92.9%, i.e.,
almost 7% of landslide events fail to associate with valid rainfall
amount. The reconstruction results vary with rainfall products and
landslide types. There are significant differences in the number of
NLREs, suggesting that rainfall characteristics are distinct for
different rainfall products. To determine regional differences, we
counted the number of LREs in each 5° × 5° latitude and longitude
grid (Fig. 2).

The statistics of the rainfall variables for LREs and NLREs are
analyzed in Figure 3. Empirical cumulative distribution function
(ECDF) curves show that LREs tend to have shorter rainfall dura-
tion, larger cumulated rainfall, and higher rainfall intensity

compared with NLREs except for PERSIANN-3h data. ECDF
curves of rainfall intensity for LREs and NLREs are almost the
same in PERSIANN-3h data whereas shorter rainfall duration is
accompanied by less cumulated rainfall for LREs. PERSIANN’s
poor reconstruction percentage may be one reason for this anom-
aly (Table 2). Boxplots of rainfall variables reveal similar results
and show that the rainfall intensity of LREs is lightly higher than
that of NLREs for PERSIANN-3h data. Overall, satellite-based
rainfall data can distinguish LREs from NLREs and are of potential
use in global landslide modeling.

Rainfall threshold establishment and evaluation at the global scale
Figure 4 displays the scattered (E, D) points of LREs and FTs of 1%,
5%, 20%, and 50% (denoted by T1, T5, T20, and T50) for the four
SPE datasets, with rainfall duration ranging from 3 to 1000 h. The
slopes of thresholds capture the increasing linear relationship
between cumulated event rainfall and rainfall duration, indicating
that ED rainfall thresholds are appropriate for linking rainfall-
induced landslides and satellite-based rainfall data. With an in-
creasing probability, the threshold moves upward and tends to
miss more real active disasters. Rainfall thresholds defined by
TMPA-3B42RT V7 are higher than those defined by CMORPH-3h
V1, MSWEP-3h V2, and PERSIANN-3h. Specifically, more cumu-
lated rainfall is required for TMPA-3B42RT V7 and CMORPH-3h
V1 than MSWEP-3h V2 and PERSIANN-3h when the rainfall du-
ration is shorter than a few days. When the rainfall duration
reaches 1 month or longer, rainfall conditions for landslide occur-
rence are almost the same for the CMORPH-3h V1, MSWEP-3h V2,
and PERSIANN-3h datasets.

HK curves indicating the variation of performances of rainfall
thresholds at different exceedance probability levels are shown in
Figure 5. The results reveal that HK values first rise and then
decline with the exceedance probability increasing. CMORPH-3h
V1 performs the best with the highest HK curve, followed by
TMPA-3B42RT V7, whose HK values are about 0.03 lower than
those of CMORPH-3h V1 for the exceedance probability lower than
27% and almost the same for greater exceedance probabilities. The
HK curve of MSWEP-3h V2 is significantly lower than that of
TMPA-3B42RT V7 and PERSIANN-3h performs the worst. The
average differences of HK values between TMPA-3B42RT V7 and
MSWEP-3h V2, MSWEP-3h V2 and PERSIANN-3h are 0.15 and
0.14, respectively. The best-performing FTs with the highest HK
values are T22 for CMORPH-3h V1, T27 for TMPA-3B42RT V7, T31
for MSWEP-3h V2 and T9 for PERSIANN-3h. Detailed ED rainfall
threshold information and evaluation results for the best-
performing FTs are shown in Table 3.

Rainfall threshold establishment and evaluation for different landslide
types
We established rainfall frequentist thresholds based on landslide types
in GLC following the same procedure in section “Rainfall threshold
establishment and evaluation at the global scale”. Figure 6 shows the
performances of rainfall thresholds for different landslide types by HK
variations with exceedance probability. HK values for different land-
slide types follow the rising-and-falling trend and are at least as good
as HK values for all landslide types. Comparatively, the rainfall thresh-
olds for mudslide and debris flow perform equally well to that for all
landslide types; thresholds for rock fall and complex perform better,
withHK values 0.02 higher on average than those of all landslide types.
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Detailed evaluation results for the best-performing FTs are displayed
in Table 4.

These results show significant differences among rainfall
thresholds for various landslide types (Fig. 7). All rainfall thresh-
olds for specific landslide types are significantly different from the
rainfall thresholds of all landslide types, except rock fall and
complex for TMPA-3B42RT V7 data. As the rainfall duration in-
creases, so do differences in the cumulated rainfall thresholds of
the four landslide types. Specifically, the rainfall threshold of
debris flow is higher than that of all landslide types, except for
PERSIANN-3h data, i.e., on average, the occurrence of debris flow
requires higher rainfall intensity than other types of landslides for
a given rainfall duration. In contrast, rainfall thresholds of
mudslide and complex are lower than that of all types excluding

CMORPH-3h V1. Admittedly, systematic uncertainties exist con-
sidering the completeness and representativeness of landslide
events for different landslide types. This work serves as a prelim-
inary and qualitative analysis.

Rainfall threshold establishment and evaluation at a grid scale
Rainfall thresholds were established and evaluated for each 5° × 5°
latitude and longitude grid proposed in section “Rainfall event
reconstruction and rainfall characteristics” (Fig. 2), i.e., we calcu-
lated rainfall threshold parameters α, β, and HK values for each
grid. The total number of grids with more than ten LREs ranges
from 79 for PERSIANN-3h to 102 for CMORPH-3h V1, and the HK
values of the best-performing FTs range from 0.1 (the worst for
PERSIANN-3h) to 0.9 (the best for TMPA-3B42RT V7; Fig. 8).

Table 2 Summary of rainfall event reconstruction for landslide-initiating rainfall events (LREs) and non-landslide-initiating rainfall events (NLREs). Landslide types of 0~6
represent all landslide types, landslide, mudslide, debris flow, rock fall, complex, and other types, respectively

Rainfall datasets Landslide type LRE Reconstruction percentage (%) NLRE

TMPA-3B42RT V7 0 4859 94.1 758,270

1 3378 95.1 522,711

2 1137 93.0 188,590

3 68 76.4 10,455

4 91 91.0 13,942

5 159 92.4 14,630

6 26 92.9 5334

CMORPH-3h V1 0 5045 97.7 2,199,052

1 3493 98.3 1,463,236

2 1179 96.5 563,221

3 84 94.4 42,743

4 95 95.0 45,545

5 166 96.5 46,184

6 28 100.0 15,578

PERSIANN-3h 0 3671 71.1 1,405,139

1 2447 68.9 934,187

2 943 77.2 366,336

3 78 87.6 30,958

4 67 67.0 29,019

5 118 68.6 29,412

6 18 64.3 10,583

MSWEP-3h V2 0 4776 92.5 2,928,957

1 3338 93.9 1,990,394

2 1094 89.5 729,259

3 69 77.5 53,063

4 92 92.0 61,051

5 157 91.3 61,134

6 26 92.9 19,003

Average 0 4587.75 92.9 1,822,855
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Fig. 2 Landslide-initiating rainfall events (LREs) in 5° × 5° latitude and longitude grids worldwide for a TMPA-3B42RT V7, b CMORPH-3h V1, c PERSIANN-3h, and d
MSWEP-3h V2 rainfall products. TG represents the total number of 5° × 5° grids
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Fig. 3 Empirical cumulative distribution function (ECDF) curves and boxplots of rainfall duration, cumulated event rainfall, and rainfall intensity of the LREs and NLREs
during the period of 2007–2014 for TMPA-3B42RT V7 (a–c), CMORPH-3h V1 (d–f), PERSIANN-3h (g–i), and MSWEP-3h V2 (j–l) rainfall products. The mean values of
rainfall variables are labeled
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Fig. 4 Rainfall events and thresholds during the period of 2007–2014 for a TMPA-3B42RT V7, b CMORPH-3h V1, c PERSIANN-3h, and d MSWEP-3h V2 rainfall products.
The dark gray points represent ED data points responsible for landslide events as defined in Melillo et al. (2018). T1, T5, T20, and T50 are the ED rainfall thresholds with
the exceedance probability of 1%, 5%, 20%, and 50%, respectively

Fig. 5 Hanssen-Kuiper (HK) skill score curves (HK values against the exceedance probability of each frequentist threshold) for each rainfall products based on ED rainfall
thresholds. The individual points highlight HK values of the best-performing frequentist thresholds for each rainfall product
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Inspection of Figure 8 proves that TMPA-3B42RT V7 and
CMORPH-3h V1 are superior to the other two rainfall products
with more grids of high HK, a finding that coincides with the
results in section “Rainfall threshold establishment and evaluation
at the global scale”. By contrast, TMPA-3B42RT V7 performs better
than CMORPH-3h V1 with more grids that have HK values greater
than 0.5 (64.6% vs. 61.8%). When the percentage of grids with HK
values greater than 0.3 is examined, CMORPH-3h V1 overrides
TMPA-3B42RT V7. For PERSIANN-3h, 35.4% (31.6%) of all grids
hold HK values between 0.3 (0.2) and 0.5 (0.3), whereas a majority
(53.2%) of MWSEP-3h V2 grids hold HK values between 0.3 and
0.5.

We then tested the regional effect of rainfall on the variation in
rainfall threshold establishment by assessing the relationship be-
tween rainfall threshold parameters α, β and the mean annual
precipitation (MAP) in grids. The MAP over the period of 2007–
2014 of each 5° × 5° grid was calculated based on original SPEs with

0.25°/0.1° resolution and we analyzed the linear relationships
between logα, β, and MAP (Fig. 9). Variations in α can be well
fitted by MAP variations and α increases with MAP. The relation-
ship between β and MAP is not significant with a p value greater
than 0.1, and β decreases with MAP for TMPA-3B42RT V7 and
CMORPH-3h V1 but increases for PERSIANN-3h and MWSEP-3h
V2, i.e., variations in β are far more complex than variations in
MAP. Further detection should include more geological and cli-
matic factors. This analysis proves that the regional differentiation
of rainfall thresholds can be partly represented by variations in
precipitation.

Discussions

Rainfall thresholds
Caine (1980) proposed the first global rainfall threshold for shal-
low landslides and debris flows. Following this pioneering work,

Table 3 Parameters and skill scores of the global ED thresholds for rainfall-induced landslide occurrence based on the best-performing frequentist thresholds for each
satellite-based rainfall dataset

Rainfall datasets β α TP FN FP TN POD POFD HK

TMPA-3B42RT V7 0.56 3.47 3627 1232 508,553 249,717 0.75 0.33 0.42

CMORPH-3h V1 0.52 2.57 3989 1056 1,406,439 792,613 0.79 0.36 0.43

PERSIANN-3h 0.77 0.23 3408 263 293,853 1,111,286 0.93 0.79 0.14

MSWEP-3h V2 0.70 0.99 3386 1390 1,594,784 1,334,173 0.71 0.46 0.25

Fig. 6 HK curves of different types of landslides for a TMPA-3B42RT V7, b CMORPH-3h V1, c PERSIANN-3h, and d MSWEP-3h V2 rainfall products
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Table 4 Threshold parameters and skill scores for different types of landslides based on the best-performing frequentist thresholds. The landslide types are the same as
those in Table 2

Rainfall datasets Landslide type Exceedance probability β α POD POFD HK

TMPA-3B42RT V7 2 0.31 0.53 3.03 0.71 0.33 0.38

3 0.36 0.72 1.67 0.68 0.22 0.45

4 0.32 0.60 3.00 0.73 0.29 0.43

5 0.26 0.60 2.58 0.76 0.33 0.43

CMORPH-3h V1 2 0.34 0.58 2.32 0.68 0.26 0.43

3 0.36 0.63 1.61 0.64 0.24 0.41

4 0.30 0.58 2.47 0.73 0.26 0.47

5 0.36 0.49 4.35 0.69 0.21 0.48

PERSIANN-3h 2 0.08 0.65 0.29 0.93 0.78 0.15

3 0.17 0.58 0.64 0.83 0.60 0.23

4 0.05 0.61 0.34 0.97 0.77 0.20

5 0.11 0.65 0.37 0.88 0.75 0.14

MSWEP-3h V2 2 0.27 0.66 0.97 0.74 0.45 0.29

3 0.42 0.86 0.53 0.67 0.36 0.31

4 0.09 0.60 0.77 0.92 0.58 0.35

5 0.10 0.61 0.75 0.92 0.59 0.33

Fig. 7 Rainfall thresholds of different landslide types for a TMPA-3B42RT V7, b CMORPH-3h V1, c PERSIANN-3h, and d MSWEP-3h V2 rainfall products based on the best-
performing frequentist thresholds
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Fig. 8 HK values based on the best-performing frequentist thresholds in 5° × 5° grids of latitude and longitude for a TMPA-3B42RT V7, b CMORPH-3h V1, c PERSIANN-3h,
and d MSWEP-3h V2 rainfall products
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more global thresholds for shallow landslides and debris flows
were published (Guzzetti et al. 2008) and a global rainfall thresh-
old based on TMPA was prepared by Hong et al. (2006). We
compared the rainfall thresholds proposed in our study with
existing global rainfall thresholds (Fig. 10). Our rainfall thresholds
are lower than existing rainfall thresholds except for the rainfall
threshold proposed by Guzzetti et al. (2008). The high existing

rainfall thresholds were established with rain-gauged data, where-
as rainfall thresholds in this study and Hong et al. (2006) were
results of satellite-based rainfall data. Brunetti et al. (2018) con-
cluded that satellite data underestimate rainfall with respect to
ground observations, which can explain the lower rainfall thresh-
olds. Our results corroborate this finding. Using rainfall thresholds
for TMPA as a reference, our thresholds are lower than that

Fig. 9 Linear relationships between the parameters of the best-performing frequentist thresholds and mean annual precipitation (MAP) based on values in the 5° × 5°
grids of latitude and longitude (in Figs. 2 and 8) for TMPA-3B42RT V7 (a, b), CMORPH-3h V1 (c, d), PERSIANN-3h (e, f), and MSWEP-3h V2 (g, h) rainfall products. Here, TG
represents the number of scattered points
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proposed by Hong et al. (2006), perhaps because that the latter was
established with a small landslide dataset, just like the different
results in studies by Caine (1980) and Guzzetti et al. (2008). In
summary, our work can be an equivalent to the published global
rainfall thresholds.

Regional effect
Landslide occurrence is a combined effect of preparatory vari-
ables and triggering factors, both of which exhibit obvious
variations (Dai et al. 2002; Corominas et al. 2014). As the area
changes, factors that initiate landslides differ and therefore the
pattern of landslide occurrence varies. It is evident that the
spatial occurrence of landslide is heterogeneous and USA, the
Caribbean Island, the Andes Mountain, UK, the European Alps,
East Africa, Iran and most of South Asia, East Asia and South-
east Asia are areas of high landslide incidence (Fig. 1;
Kirschbaum et al. 2015). Landslide density also varies from 10
to 297 per 5° × 5° latitude and longitude grid (Fig. 2). High
mountain areas such as the Alps, Andes, and Himalayas are
prone to landslides, partly owing to fundamentally non-stable
geological and geomorphological factors (e.g., Dahal and
Hasegawa 2008). Slope stability in North America, South Amer-
ica, East Asia, South Asia, and Southeast Asia is strongly influ-
enced and determined by climatic conditions (Froude and
Petley 2018). The spatial distribution of HK values in our anal-
ysis of each 5° × 5° grid is a consequence of the regional effect
on landslide occurrence (Fig. 8). We found that variations of
rainfall threshold parameters can be fitted by variations in MAP
to some extent (Fig. 9). We also compared our evaluation
results with those obtained by Brunetti et al. (2018) in Italy, in
which the optimal HK values are 0.41, 0.43, and 0.31 for TMPA,
CMORPH, and PERSIANN data. HK values of two 5° × 5° grids

corresponding with Italy in this study are shown in Figure 11.
The optimal HK values differ due to the differences in landslide
inventory data and methods. However, the conclusions are the
same: SPEs work for detecting the landslide occurrences and
CMORPH performs the best whereas PERSIANN holds a worst
performance among the three common rainfall datasets
investigated.

Limitations and potentials
Our evaluation shows that the performances of SPEs vary by
product, landslide type, and region. Excellent performance of
TMPA-3B42RT V7 and CMORPH-3h V1 data can be attributed to
their detailed and precise rainfall estimates; however, the rea-
sons for poor performances of PERSIANN-3h and MSWEP-3h
V2 products are diverse. There are intrinsic limitations to link
landslide events and their rainfall conditions. Uncertainties of
landslide and rainfall information may lead to some landslide
events failing to link with their responsible rainfall events
(Table 2). Biases and false coverages of landslide occurrence
time and location cannot be excluded completely (Chleborad
et al. 2006; Froude and Petley 2018). Data availability varies with
regions owing to different monitoring capabilities, thus leading
to underestimation of landslide occurrences in some areas.
There are also large systematic errors and random errors for
all SPE data over large regions (Sun et al. 2018).

Another limitation in this study is its reliance on empirical
rainfall thresholds to determine the occurrence of landslides.
ED thresholds captured the linear relationship of cumulated
event rainfall and rainfall duration (Fig. 4). Although rainfall
is the main trigger of landslides examined here, interaction
between rainfall and terrestrial systems—including factors such
as slope, elevation, lithology, and land cover—is also

Fig. 10 Rainfall thresholds proposed in this study for landslide types: a all types, b mudslide, c debris flow, d rock fall, and e complex compared to the existing global
rainfall threshold
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responsible for the initiation of landslides (e.g., Arnone et al.
2011; Pisano et al. 2017; Reichenbach et al. 2018). HK values are
greatly low in western North America, western Asia, and parts
of Oceania, suggesting the contribution of factors other than
precipitations in these areas. The changing world facilitates
environmental and geographic forces that weaken slope stability
and exposes more people and buildings under threat (Gariano
and Guzzetti 2016; UNISDR 2017), thus greatly raising the risk of
landslide disasters in the future. Links between SPEs, other
environmental factors and rainfall-induced landslides should
be detected in further evaluations, especially in changing
scenarios.

This work will promote further evaluation of existing global
landslide hazard algorithms based on SPEs and their application in
LEWSs. Kirschbaum and Stanley (2018) developed a global land-
slide model, whose validation was limited for lack of a global
database of non-landslide points. We used NLREs as a substitute
for non-landslide points, yielding POD and POFD for evaluation.
The reconstruction of NLREs also has a potential to advance other
statistical methods such as machine-learning algorithms in the
evaluation procedure.

Conclusions
Satellite-based rainfall data hold promise in advancing real-time
global landslide warnings. However, few previous studies have

compared the performances of various satellite-based rainfall
datasets or addressed worldwide evaluations. In this study, four
popular andwidely used satellite-based rainfall products—TMPA-
3B42RT V7, CMORPH-3h V1, PERSIANN-3h, and MSWEP-3h
V2—were assessed and compared based on rainfall thresholds of
landslide occurrence.

We found significant differences between LREs and NLREs,
suggesting that satellite-based rainfall data are suitable for
extracting rainfall conditions corresponding to landslides and
useful for global landslide modeling. The HK skill score was
employed for comparative evaluation of different satellite-based
rainfall data. CMORPH-3h V1 performs the best with the highest
HK values, followed by TMPA-3B42RT V7, MSWEP-3h V2, and
PERSIANN-3h. Further investigation indicated that thresholds of
specific landslide types perform equally as well or better than
those considering all landslide types; moreover, high variations
exist across the 5° × 5° latitude and longitude grid regions
examined.

This study shows that satellite-based rainfall data are help-
ful for global landslide detecting, though the performances of
these data vary by product, landslide type, and region. Further
efforts are required to link satellite-based rainfall data with
landslide observations and other environmental factors to de-
tect trends and variations in rainfall-triggered landslides in a
changing world.

Fig. 11 HK values in Italian regions in 5° × 5° grids of latitude and longitude for a TMPA-3B42RT V7, b CMORPH-3h V1, c PERSIANN-3h, and d MSWEP-3h V2 rainfall
products
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Appendix
The definition of distributed dry periods were mainly determined
by the monthly soil water balance (MSWB) model and detailed
methodology can be found in Melillo et al. (2018). Here we just
gave the information of the input data for dry period calculation
(in Appendix Table 5).
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