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Rainfall threshold for landslide activity in Dazhou,
southwest China

Abstract Dazhou is one of the landslide-prone areas in southwest
China. Since rainfall is the primary factor responsible for slope
instability in this region, empirical rainfall thresholds may be
effective for landslide warning. Thresholds using the intraday
rainfall and the effective antecedent rainfall up to 7 days prior to
landslide occurrence have been defined for this area. The study
region was divided into 6 alert zones. For each zone, the daily
rainfall and landslide data in the monsoon season during the
period of 2003–2010 were analyzed, and the logistic regression
method was employed to fit the dataset and provide diverse
probability thresholds. Subsequently, the optimal threshold was
identified by receiver operating characteristic (ROC) analysis. Fur-
thermore, two classes of criteria and the associated indicators were
used to determine the three rainfall thresholds for the warning
model with four classes of alert (i.e., no warning, moderate warn-
ing, high warning, and very high warning). Finally, these thresh-
olds were validated with dataset for the period 2011–2015. It
suggests that the optimal threshold derived from ROC analysis,
with the probability ranging from 4 to 10%, is suitable for issuing
moderate warning, while the probability corresponding to the
thresholds for high warning and very high warning varies in the
ranges 30–55% and 75–95%, respectively. Performance of these
thresholds in the period 2011–2015 is comparable to that in the
period 2003–2010, indicating the robustness of them and the
potential for practical use.
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Introduction
Landslides extensively occur in the mountainous regions world-
wide and have induced numerous casualties and property losses.
In the areas susceptible to landslides, it is a cost-efficient tool to
establish landslide early warning systems for hazard mitigation
(Glade and Nadim 2014). Rainfall thresholds have been commonly
employed in existing warning systems (Keefer et al. 1987; Aleotti
2004; Baum and Godt 2010; Segoni et al. 2015). This is mainly
attributed to the significant roles of rainfall in facilitating slope
instability: increasing the soil moisture, reducing the matric suc-
tion, and raising the pore water pressure (Chung et al. 2017).
Additionally, the availability of weather forecast makes the predic-
tion of potential landslide activity possible (Vallet et al. 2016).

Two types of rainfall threshold models have been used for
landslide warning: physically based models and empirical models
(Guzzetti et al. 2007). The first type of models are developed by
simulating the hydrological process within the soil mass and
analyzing the stability of the slopes (Wu et al. 2015; Kanjanakul
et al. 2016). They can provide the specific time and location of
potential landslides. However, it is difficult to get the hydrological
and geotechnical parameters required to run these models on a
regional scale. Thus, physically based models tend to be applied in
smaller areas (Posner and Georgakakos 2015; Bezak et al. 2016).

Empirical models define the rainfall conditions for landslide ini-
tiation in a region by analyzing historical landslide events and the
associated rainfall data. Without considering underlying condi-
tions like geomorphology, land use, and lithology, these models
cannot give the exact location of possible landslides. Nonetheless,
they can be used in combination with landslide susceptibility
zonation techniques to help the associated agencies to assess
landslide risks (Segoni et al. 2015).

To define rainfall thresholds, the following parameters have
been commonly employed to characterize the rainfall conditions:
(i) rainfall intensity (I) (Guzzetti et al. 2008; Mathew et al. 2014;
Segoni et al. 2014; Ma et al. 2015; Giannecchini et al. 2016; Rosi et al.
2016); (ii) rainfall duration (D), which is usually linked to I; (iii)
accumulated event rainfall (E) (Vennari et al. 2014; Gariano et al.
2015; Segoni et al. 2015; Lainas et al. 2016; Melillo et al. 2016; Rossi
et al. 2017); and (iv) antecedent rainfall calculated for various time
periods (Sepúlveda and Padilla 2008; Kanungo and Sharma 2014;
Ma et al. 2014; Elias 2016). The I and E parameters can be normal-
ized by mean annual precipitation or rainy-day-normal to concern
the effect of climate conditions. The determination of which rain-
fall parameters are adopted is affected by the landslide and rainfall
data available. For instance, the application of I and D requires
rainfall measurements recorded at hourly or smaller time steps.
Moreover, researchers might tend to use their preferable parame-
ters. For example, some researchers adopt the I–D threshold, while
others employ the E–D threshold, although these two types are
interconvertible.

In general, it is impossible to divide the rainfall conditions into
a 100% landslide field and a 100% non-landslide field. Therefore,
two methods have been proposed to define rainfall thresholds
(Lagomarsino et al. 2015). In the first method, the threshold is
taken as the lower boundary of rainfall conditions that have
triggered landslides (Bui et al. 2013; Lainas et al. 2016). Thus, it
represents the minimum rainfall needed to initiate a landslide and
is conservative in operational use for the great number of false
alarms (Peres and Cancelliere 2014). The second approach iden-
tifies the threshold by a trade-off between the maximization of
correct forecasts and the minimization of incorrect forecasts
(Staley et al. 2013; Giannecchini et al. 2016). Statistical techniques,
such as the Bayesian approach and the logistic regression analysis,
are usually employed to derive thresholds for different exceedance
probability levels or for diverse possibilities of landslide occur-
rence. The best-performing threshold is finally defined using con-
tingency tables, receiver operating characteristic (ROC) analysis,
and the related skill scores.

This study aims to define the rainfall threshold for landslide
activity in Dazhou, which is a landslide-prone area in southwest
China whereas little attention has been paid to the regional rainfall
threshold. Concerning the relevant role of the antecedent rainfall
in landslide triggering, we use this parameter in combination with
the intraday rainfall to represent the rainfall condition. Initially,
the rainfall and landslide data are systematically analyzed with
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logistic regression. Then, we obtain the optimal threshold by ROC
analysis. Furthermore, the thresholds for different warning levels
are derived following a procedure for performance evaluation of
models with multiple warning levels. Finally, the thresholds are
validated with additional data from the study region.

Study area and materials

Environmental setting of the study area
Dazhou is located in the northeast of Sichuan Province, southwest
China (Fig. 1), and extends for an area of 16,591 km2. It consists of 7
county-level units: Wanyuan, Xuanhan, Dachuan, Tongchuan,
Kaijiang, Qu, and Dazhu, with a total population of 5.6 million.

Lying in the zone where the Daba Mountain and the Sichuan
Basin intersect, the terrain elevation of Dazhou decreases from
2399 m in the north to 250 m in the south (Fig. 1). The north part of
the region is featured by mountainous landforms, where the rela-
tive relief usually goes above 1000 m. The middle and the south
parts are dominated by low mountains and hills, with the relative
relief varying from 700 to 1000 m and flatlands scattering in the
valleys. In general, mountains are the primary landforms in the
study area and account for 70.7%. Hills and flatlands account for
28.1% and 1.2%, respectively (Tang et al. 2010). Dazhou is located
in the composite part of the Daba Mountain and the East Sichuan
arc-like fold belts, where fractures and folds are well developed.
Mudstone, shale, sandstone, and limestone formed in Triassic,
Jurassic, or Cretaceous are distributed across the study area. Qua-
ternary overburdens have been developed on some slopes from

mudstone and shale due to weathering, with the depth fluctuating
between 3 and 9 m (Xiang 2015).

Climate in this area is typically subtropical, humid, and mon-
soon-affected. The mean annual temperature varies from 14.7 to
17.6 °C, with the south part warmer than the north. The mean
annual precipitation changes between 1076 and 1270 mm, with the
north slightly wetter than the south. The annual precipitation
fluctuates greatly from 1 year to another. Moreover, precipitation
concentrates in the monsoon season, namely, April–October. Geo-
logical disasters have widely occurred in this region due to the
steep terrain, broken rock mass, and strong rainfall events during
the monsoon season. A total of 1814 potential geohazard sites,
which might bring damages to 102,828 inhabitants, have been
identified (Liu et al. 2014).

Landslide and rainfall data
Landslide data used in this study were collected by the Sichuan
Provincial Environmental Monitoring Center from 2003 to 2015.
The database consists of the main information on a total of 1843
landslides: occurrence date, geographical location, landslide scale,
and damage induced. Altogether, these landslides caused 28
deaths, 5 people missing, 66 injured, and a direct economic loss
of 409 million RMB. Four landslides were eliminated in our re-
search because the exact dates of their occurrences were not
known. In recent years, the study area has undergone rapid in-
dustrialization and urbanization. Human activities such as
roadbuilding and mining have increased the risk of landslide
hazards. However, among the 372 landslides recorded with trigger

Fig. 1 The geographical location and terrain elevation of Dazhou. Names of the 7 county-level units are also shown
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information, only 3 were induced by human activities and the
others were triggered by rainfall. Considering the low proportion
of human-induced landslides, it is assumed that all the remaining
slope failures without recorded triggering factors were initiated by
rainfall. Therefore, a total of 1836 landslides are available, with the
locations shown in Fig. 2. In terms of landslide scale, the category
of individual landslides rather than the exact volume is contained
in the database. It shows that landslides pertaining to small-sized
(< 105 m3), medium-sized (105–106 m3), large-sized (106–107 m3),
and super-large-sized type (> 107 m3) account for 79.0%, 16.0%,
4.5%, and 0.5%, respectively. Distribution of each type of land-
slides in different administrative units is listed in Table 1. Land-
slide typology (e.g., shallow landslides, deep-seated landslides,
etc.) is not listed in the database and thus was not considered in
the present study.

Daily rainfall data measured by 6 rain gauges were employed for
threshold analysis. Figure 2 depicts the locations of these gauges. The
mean annual precipitation in the 2003–2015 period is 1294mm, with the
temporal distribution summarized in Fig. 3. Due to the high proportion
of rainfall accumulated in the monsoon season (88.9%), almost all
landslides were triggered in this period with only six exceptions. The
number of landslides triggered in July is 1053 (accounts for 57.4%) and is
much higher than the number for the other months. This is primarily
attributed to the great amount of rainfall in July (accounts for 17.6%).
Moreover, extreme rainstorms might lead to a soaring number of slope
failures. An example can be found in mid-July 2010, when the recorded
accumulated event rainfall was 449 mm in Wanyuan and 194 mm in

Xuanhan and it induced a total of 480 landslides in these two regions. In
operational regional early warning systems, alerts are commonly issued
based on administrative units. Concerning the distribution of rain
gauges (Fig. 2), Tongchuan and Dachuan were combined into one alert
zone (AZ), while each of the other 5 county-level administrative regions
was taken as an independent alert zone. For simplicity, these alert zones
are labeled AZ1 through AZ6, as illustrated in Fig. 2. The corresponding
rain gauge situated in each alert zone was taken as the reference gauge.

The dataset was divided into two subsets: a calibration set
including 1426 landslides triggered during the 2003–2010 period,
and a validation set covering 410 landslides initiated over the 2011–
2015 period. The effects of the 12 May 2008 Wenchuan earthquake
should be mentioned. The earthquake has greatly impacted the
rainfall thresholds for geohazards in the stricken zones thereafter
(Yu et al. 2014). To evaluate the influence of the earthquake on
rainfall threshold in Dazhou, spatial and temporal distribution of
landslides before and after the earthquake was analyzed. On the
one hand, the study area was divided into two parts by the
equidistance line which is 250 km from the main fault of the
earthquake (Fig. 2). A total of 978 landslides were reported during
the 2008–2015 period, and 51.6% of them were located in the west
part. This proportion is close to that during the period 2003–2007
(50.8%). On the other hand, inter-annual variation in precipitation
and landslide occurrence was investigated (Fig. 3b). Considering
that the numerous landslides in 2010 were mainly triggered by the
extraordinary storm event in Wanyuan and Xuanhan detailed
above, there is no evidence that the study area has become more

Fig. 2 Distribution of the landslides triggered during the period of 2003–2015 in Dazhou and locations of the rain gauges used in this study. Gray lines are boundaries of
the 6 alert zones (AZ1–AZ6), while the bold black line is an equidistance line (250 km) from the main fault in the 12 May 2008 Wenchuan earthquake
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susceptible to landslides after the earthquake. In addition, no co-
seismic landslides were reported in Dazhou for the lower seismic
intensity (VI). Therefore, rainfall threshold for landslide occur-
rence in the study area was considered to be unchanged after the
earthquake in this research.

Methodology

Rainfall parameters
The antecedent rainfall can impact slope stability by changing soil
moisture content and correspondingly affecting the geotechnical
parameters. Thus, it was taken as one parameter for threshold
definition, denoted by Ra. Another parameter is the intraday
rainfall (R0), which is usually the direct predisposing factor for
slope failure. Moisture preserved in the soil mass will decline due
to the evapotranspiration and discharge processes. Therefore, the
effective antecedent rainfall rather than the accumulated anteced-
ent rainfall was employed. Following Bruce and Clark (1966), it is
written as:

Ra ¼ ∑
n

i¼1
kiRi ð1Þ

where Ri is daily rainfall measured the ith day prior to landslide
occurrence, n is the number of days considered, and k is the decay
factor.

The value for the decay factor is affected by multiple fac-
tors, such as the evaporation capacity, the vegetation fraction,
and the hydrological characteristics of the regolith. Different
values ranging from 0.72 to 0.86 have been proposed by inves-
tigators, whereas the value 0.84 is used most extensively
(Zhuang et al. 2014). Although this value was derived from
the hydrological data measured in Ottawa (Bruce and Clark
1966), satisfactory performance was obtained when it was used
in the rainfall threshold analysis for landslide warning in New
Zealand (Crozier and Eyles 1980). We also employed k = 0.84 in
the present study.

In terms of the number of days considered for computing Ra,
values proposed in literature extend from 3 to 120, while values
smaller than 30 are more commonly employed (Kanungo and
Sharma 2014; Elias 2016). In some researches, Ra calculated for
different time spans are plotted versus the intraday rainfall or the
accumulated event rainfall, and the time span using which the
rainfall conditions with landslide occurrence are more easily dis-
criminated is finally adopted (Bui et al. 2013; Mathew et al. 2014).
Therefore, we used different time periods varying between 3 and
30 days to compute Ra. We found that significant linear
relationships exist among various Ra values. Figure 4 exhibits the
slope and the determination coefficient when the Ra values com-
puted for diverse periods are linearly correlated with that derived
for 30 days. The slope is 0.90 when n is equal to 7, indicating that
the corresponding rainfall is representative. It consists with the
finding of Zhuang et al. (2014) in Xi’an, China, that the influence of

Table 1 Landslide distribution in terms of their sizes in different administrative units

Unit Small Medium Large Super-large Total

Wanyuan 532 70 10 4 616

Xuanhan 227 97 42 2 368

Dachuan 389 34 11 1 435

Tongchuan 58 5 3 2 68

Kaijiang 39 31 5 0 75

Qu 138 52 10 0 200

Dazhu 67 5 2 0 74

Fig. 3 Distribution of precipitation and landslide occurrence during the year (a) and during the 2003–2015 period (b) in Dazhou
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a rainfall event on soil moisture becomes negligible after 7 days. As
a consequence, we used n = 7 in this research.

Logistic regression
Logistic regression has been widely used to discriminate rainfall
conditions with landslide occurrence from those without slope
failures (Glade et al. 2000; Chang et al. 2008; Frattini et al. 2009;
Mathew et al. 2014; Giannecchini et al. 2016). In this approach,
probability of landslide occurrence (p) is expressed as a sigmoid
function of the linear combination of rainfall parameters:

ln
p
1−p

� �
¼ α1R0 þ α2Ra þ α0 ð2Þ

where αi is the regression coefficient.
For each alert zone, rainy days (with R0 ≥ 0.1 mm) during

April–October in the period of 2003–2010 were classified into
two groups: landslide days (LDs) and non-landslide days (NLDs).
Logistic regression was carried out using rainfall parameters asso-
ciated with the two groups of days, and the coefficients in Eq. (2)
were derived correspondingly.

ROC analysis
ROC analysis is an effective tool to evaluate the performance of
classification models. It works on the basis of a contingency table,
which expresses the four possible outcomes when a thresholdmodel is
applied. A true positive (TP) means that the rainfall condition
exceeded the threshold and at least one landslide occurred. A false
positive (FP) represents an instance that the rainfall condition
exceeded the threshold but no landslides were recorded. An (Ra, R0)
data point located below the threshold is counted as true negative (TN)
if no landslides were observed; otherwise, it is considered false nega-
tive (FN). In an early warning system, false positives and false nega-
tives are false alarms and missed alarms, respectively.

Using the number of the four classes of outcomes, the following
skill scores can be computed:

& Probability of detection (POD) measures the proportion of land-
slide days that are correctively forecasted: POD= TP/(TP+ FN);

& Probability of false detection (POFD) measures the proportion
of non-landslide days which are erroneously predicted:
POFD = FP/(FP + TN);

& Probability of false alarm (POFA) is the ratio between the
number of false alarms and the total number of forecasts:
POFA = FP/(TP + FP);

& Hanssen and Kuipers (1965) skill score (HK) evaluates the
accuracy for the instances with and without landslides and is
calculated as the difference between POD and POFD: HK =
POD – POFD.

In the ROC space (Fig. 5), each data point represents the
prediction capability of a rainfall threshold. Given thresholds
for different probabilities of landslide occurrence, an ROC curve
will be derived. It represents the forecasting ability of the logis-
tic regression model, the performance of which can be evaluated
using the area under curve (AUC). The diagonal line from the
lower left corner to the upper right corner in the ROC graph
represents the strategy of random guessing a class, and the
corresponding AUC value is equal to 0.5. The upper left corner
of the ROC graph (the black dot in Fig. 5) represents the best
classification, i.e., POD = 1 and POFD = 0. The shorter the dis-
tance between the data point and the best classification, the
better the performance of the corresponding threshold. To get
the best-performing threshold, the index Λ defined by Gariano
et al. (2015) was employed, which is expressed as a linear
combination of HK, POFA, and the Euclidean distance δ from
the perfect classification:

Λ ¼ λ1⋅HK−λ2⋅POFA−λ3⋅δ ð3Þ

where λ1, λ2, and λ3 are weight coefficients of individual skill
scores, and λ1 + λ2 + λ3 = 1. In our study, the same weight was

Fig. 4 The slope and determination coefficient when the effective antecedent rainfall computed for different periods is linearly correlated with that derived from a 30-day
period
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given to the three skill scores, i.e., λ1 = λ2 = λ3 = 1/3. The combina-
tion of the scores that maximizes Λ represents the best compro-
mise between maximizing correct predictions and minimizing
false predictions.

Performance evaluation of the model with multiple warning levels
For a given region, not only the probability of landslide occurrence
but also the magnitude of the possible hazard, in terms of the
number, the scar area, the volume, or the density, increases when

Fig. 5 ROC space with a hypothetical curve. The black dot represents the best classification, while the diagonal line (in green) represents the strategy of random guessing
a class

Fig. 6 Alert classification (a) and grade of accuracy (b) criteria to assess the performance of a warning model with four classes of alert (Piciullo et al. 2017)
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the rainfall event becomes heavier (Gao et al. 2018). Consequently,
a model with multiple warning levels considering landslide mag-
nitude might be of greater value for landslide warning. In this
study, both landslide number and the category of landslide size
were used to evaluate the hazard magnitude and four classes of
landslide events were specified following Piciullo et al. (2017): no
landslides (no), small event (1–2 small-sized landslides, S), inter-
mediate event (3–9 small-sized landslides or ≥ 1 medium-sized
landslide, I), and large event (≥ 10 small and medium-sized land-
slides or ≥ 1 large and super-large-sized landslide, L). Correspond-
ingly, four levels of warning may be issued: no warning (WL0),
moderate warning (WL1), high warning (WL2), and very high
warning (WL3), and three rainfall thresholds, denoted as RT1,
RT2, and RT3, are required.

Calvello and Piciullo (2016) proposed a method to evaluate
the performance of models providing multiple warning levels,
which was further modified by Piciullo et al. (2017) and
applied in Campania, Italy. It was also employed in the
present research. In this method, two criteria are employed
to evaluate the performance of the warning model. One is the
“alert classification” criterion using a classification scheme
developed from a two-by-two confusion matrix, as shown in
Fig. 6a. Correct predictions (CP) are given to the situations
that the two lowest levels of warning were issued and the two
smallest landslide events occurred or the opposite situations.
True negatives (TN) represent no warning and no landslide
occurrence. Both false alerts (FA) and missed alerts (MA) are
erroneous forecasts. The other criterion is the “grade of ac-
curacy” criterion, which uses four color codes to represent the
accuracy of the predictions: green (no error, Gre), yellow
(minor error, Yel), red (significant error, Red), and purple
(severe error, Pur), as depicted in Fig. 6b.

Using these criteria, Calvello and Piciullo (2016) defined 14
performance indicators. Eight of them have been adopted by
Piciullo et al. (2017). Concerning the functional relationships

between different indicators, only four indicators used by
Piciullo et al. (2017) were employed in our study, as listed
in Table 2. Rainfall thresholds RT1, RT2, and RT3 can be
defined for the warning model based on these indicators.

Results and discussions

Results of logistic regression
Table 3 summarizes the number of landslide days (LDs) and
non-landslide days (NLDs) for each alert zone (AZ) during the
period 2003–2010. The landslide incidence is highest in AZ3
(10%) while it is lowest in AZ4–AZ6 (<5%). Rainfall conditions
associated with the LDs and NLDs are plotted in the (R0, Ra)
space in Fig. 7, represented by the red and the green points,
respectively. The values of R0 are mainly in the range 0 ≤ R0 ≤
150 mm, and the Ra values are mostly in the range 0 ≤ Ra ≤
200 mm. The red points and the green ones overlap in a large
part of the graph. To be more specific, no landslides were
recorded in some days with relatively large R0 or Ra values,
while some landslides were triggered when the R0 and Ra values
were relatively small. This is probably caused by the spatial
heterogeneity in rainfall. Only one rain gauge, commonly locat-
ed in the river valley, is available in each AZ. Rainfall in the
mountainous and the hilly regions might be significantly differ-
ent from that in the vicinity of the gauge. In other words,
precipitation data employed are occasionally incapable to rep-
resent rainfall conditions at the landslide locations. Neverthe-
less, Fig. 7 exhibits the trend that landslide incidence increases
with the increase in R0 and Ra, suggesting the potential of using
these data for rainfall threshold determination.

Table 3 also lists the regression coefficients in Eq. (2), which
were derived using the Statistical Product and Service Solutions
software. Eq. (2) can be rewritten as:

R0 þ βRa ¼ R pð Þ
β ¼ α2

α1
;R pð Þ ¼ 1

α1
ln

p
1−p

� �
−α0

� � ð4Þ

which means that the iso-probability rainfall condition can be
represented by a straight line with a slope of –β and a y-
intercept of R(p) in the R0–Ra space. Figure 7 depicts the R0–Ra

relationships for the 10%, 50%, and 90% probability levels. The
iso-probability lines have the slopes −0.83 ≤ – β ≤ − 0.51, indicat-
ing that the intraday rainfall prevails over the effective antecedent
rainfall in landslide initiation. The value of β can reflect the

Table 2 Indicators used for evaluating the performance of a model with multiple
levels of alert (Piciullo et al. 2017)

Indicator Symbol Formula

Efficiency index Ieff CP/(CP +MA + FA)

Hit rate HRL CP/(CP +MA)

Predictive power PPW CP/(CP + FA)

Probability of serious
mistakes

PSM Pur/(CP +MA + FA)

Table 3 Regression coefficients of the logistic regression model

Alert zone Number of LDs Number of NLDs α0 α1 α2 β pL pH

AZ1 34 687 − 5.131 0.031 0.025 0.804 0.6% 89.0%

AZ2 59 686 − 4.518 0.041 0.034 0.828 1.9% 85.6%

AZ3 71 621 − 3.875 0.043 0.026 0.595 2.6% 94.8%

AZ4 23 711 − 5.297 0.050 0.025 0.507 0.7% 71.2%

AZ5 28 709 − 4.874 0.032 0.027 0.849 1.2% 71.3%

AZ6 26 712 − 5.400 0.049 0.033 0.684 1.1% 80.0%
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relative significance of antecedent rainfall. In cooler zones or in
areas where the permeability of soil is lower, soil water brought by
antecedent rainfall can be maintained for a longer period and β
would be higher.

Following Eq. (4), the probability of landslide occurrence was
computed for each data point in Fig. 7. Theoretically, the proba-
bility corresponding to the lower limit of rainfall conditions asso-
ciated with LDs (pL) should be equal to 0%, and that

Fig. 7 The intraday rainfall versus effective antecedent rainfall conditions for landslide days (red dots) and non-landslide days (gray dots) and the 10% (solid line), 50%
(dashed line), and 90% (dotted line) probability thresholds derived from logistic regression for each alert zone using the calibration dataset

Fig. 8 The relationship between probability of landslide occurrence (p) and normalized combined daily rainfall (NRc) calculated with the calibration dataset. The gray
points represent data obtained by simple statistics, and the black curve was derived from Eq. (7). The maximum NRc value associated with the non-landslide days and the
corresponding theoretical probability (100%) is also shown (the black square)
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corresponding to the upper limit of rainfall conditions associated
with NLDs (pH) should equal 100%. However, the calculated value
for pH is significantly different from the theoretical one in the

study region except AZ3 (Table 3). In terms of pL, the calculated
value approximates the theoretical one. To investigate the reason
for the difference, we compared the probability derived from

Fig. 9 The ROC curve for each alert zone

Table 4 Skill scores corresponding to different probability thresholds for AZ1

Probability
threshold

Classification of the results Skill scores
TP FP TN FN POD POFD POFA HK δ Λ

1% 33 377 310 1 0.971 0.549 0.920 0.422 0.550 − 0.349

2% 30 184 503 4 0.882 0.268 0.860 0.615 0.293 − 0.179

3% 28 120 567 6 0.824 0.175 0.811 0.649 0.248 − 0.137

4% 28 87 600 6 0.824 0.127 0.757 0.697 0.217 − 0.092

5% 28 69 618 6 0.824 0.100 0.711 0.723 0.203 − 0.064

6% 27 59 628 7 0.794 0.086 0.686 0.708 0.223 − 0.067

7% 27 54 633 7 0.794 0.079 0.667 0.716 0.220 − 0.057

8% 25 48 639 9 0.735 0.070 0.658 0.665 0.274 − 0.089

9% 24 41 646 10 0.706 0.060 0.631 0.646 0.300 − 0.095

10% 22 38 649 12 0.647 0.055 0.633 0.592 0.357 −0.133

20% 20 17 670 14 0.588 0.025 0.459 0.563 0.413 − 0.103

30% 19 11 676 15 0.559 0.016 0.367 0.543 0.441 − 0.088

40% 13 8 679 21 0.382 0.012 0.381 0.371 0.618 − 0.209

50% 10 6 681 24 0.294 0.009 0.375 0.285 0.706 − 0.265

60% 8 5 682 26 0.235 0.007 0.385 0.228 0.765 − 0.307

70% 7 4 683 27 0.206 0.006 0.364 0.200 0.794 − 0.319

80% 6 1 686 28 0.176 0.001 0.143 0.175 0.824 − 0.264

90% 4 0 687 30 0.118 0.000 0.000 0.118 0.882 − 0.255

Best scores are shown in italics
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logistic regression with landslide incidence computed by simple
statistics. Initially, we defined the combined daily rainfall (Rc) as a
linear combination of R0 and Ra:

Rc ¼ R0 þ βRa ð5Þ

To facilitate the analysis, Rc was then normalized by the max-
imum value calculated for the corresponding AZ (Rc,max):

NRc ¼ Rc=Rc;max ð6Þ

in which NRc is called normalized combined daily rainfall.
For each AZ, landslide incidence for different rainfall con-

ditions was computed using the following procedure: (i) the
variable NRc was computed for each rainy day; (ii) a series of
intervals were defined for NRc, with the lower limit beginning
from 0 and increasing by 0.01 step by step, the length being
0.01, 0.02, 0.05, and 0.1, respectively, when the lower limit lies in
the ranges 0–0.1, 0.1–0.2, 0.2–0.4, and 0.4–1.0, and the upper
limit lower than the maximum NRc associated with NLDs; (iii)
for each interval, landslide incidence was computed as the ratio
between the number of LDs and the number of rainy days, and
the corresponding value of NRc was represented by the average
of NRc values for the rainy days. The reason for the usage of
changeable interval lengths is that the number of rainy days
decreases with the increase in NRc.

The landslide incidence and NRc data obtained from the pro-
cedure above were finally compared with the logistic regression
model:

NRc⋅Rc;max ¼ 1
α1

ln
p
1−p

� �
−α0

� �
ð7Þ

which is a combination of Eqs. (4)–(6), as shown in Fig. 8. The
maximum NRc value associated with NLDs and the corre-
sponding theoretical probability (100%) is also exhibited in
Fig. 8. It suggests that the relationship expressed as Eq. (7) is
generally consistent with the statistical data, whereas they
agree with each other much better for the smaller NRc (or p)
values than for the larger values. This probably results from
two factors. Firstly, there are a very small number of rainy
days available for larger NRc values, leading to a significant
fluctuation in the corresponding statistical landslide incidence.
Additionally, the number of NLDs is one order of magnitude
larger than that of LDs, and thus the rainfall data associated
with NLDs exerted a more important influence on the deter-
mination of the regression coefficients summarized in Table 3.
This might also explain why the computed value of pH is
closest to the theoretical value for the alert zone having the
greatest number of LDs (AZ3).

Determination of the optimal rainfall threshold
Despite the uncertainty associated with logistic regression as
discussed above, it is still potential to employ this method to
define the rainfall threshold, because in this research the threshold
was determined by ROC analysis rather than using a specific
probability level. The 4 contingencies (TP, FP, TN, and FN) and Ta
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related skill scores (POD, POFD, POFA, HK, and δ) were computed
for diverse probability thresholds. The ROC curves are shown in
Fig. 9. The AUC values change between 0.839 and 0.907 and lie
within the 95% confidence intervals, indicating that the prediction
capability of the logistic regression model is acceptable.

Taking AZ1 for instance, the skill scores for different probability
thresholds are listed in Table 4. The number of true positives (TP)
is maximized at the 1% probability threshold, and it is the same for
the POD skill score. However, there are a great number of false
alarms (FP), leading to high values for the POFD and POFA skill
scores (0.549 and 0.920, respectively). When the threshold in-
creases, both POFD and POFA decrease for reduced false alarms
and get the minimum value (0) at the 90% probability threshold.
Nonetheless, POD is dramatically low (0.118) in this case owing to
the existence of numerous missed alarms (FN). In terms of the HK
skill score, it measures the difference between POD and POFD and
is mathematically

ffiffiffi
2

p
times the perpendicular distance between

the (POFD, POD) data point and the diagonal line representing
random guess (the green line in Fig. 5). Therefore, along the ROC
curve, the point associated with the maximum value of HK is
farthest to the diagonal line. Concerning the convex feature of
the ROC curve (Fig. 9), the point having the maximum distance to
the diagonal line is usually closest to the perfect classification (the
upper left corner of the ROC graph). Consequently, the HK skill
score and the Euclidean distance δ reach their optimal values at

approximate rainfall thresholds (p = 5%). As a linear combination
of HK, δ, and POFA, the Λ index is maximized at a slightly higher
threshold (p = 7%), which was finally selected as the optimal
threshold.

Table 5 summarizes the optimal rainfall threshold and the
corresponding skill scores for each alert zone. The best perfor-
mance is obtained at the probability levels 4 % ≤ p ≤ 10%. The
corresponding POD skill score lies in the range 0.65 ≤ POD ≤ 0.79,
which is close to the values reported in literature (Staley et al. 2013;
Giannecchini et al. 2016). Considering that more than one land-
slide was recorded in some landslide days, the proportion of
landslides that were triggered by rainfall conditions exceeding
the optimal threshold is higher than the value of POD and varies
between 0.71 and 0.95. Although the POFA skill score has been
concerned to determine the optimal threshold, it still has a rela-
tively high value (0.67 ≤ POFA ≤ 0.84), especially in comparison
with POFD (0.07 ≤ POFD ≤ 0.18). This most likely results from the
larger number of NLDs than that of LDs.

Rainfall thresholds for different warning levels
Table 6 lists the number of the three classes of events with different
magnitudes in each AZ during the 2003–2010 period. It suggests
that about half of the landslide events are small, which on average
occur 1 to 5 times a year, while intermediate events and large
events account for 32.4% and 18.7%, respectively. The distribution
of the triggering rainfall for each class of events is shown in Fig. 10.
Despite the significant variation in most groups of rainfall data, in
terms of the median and the third quartile, the triggering rainfall
generally increases with landslide magnitude. However, there are
two exceptions. One is the median triggering rainfall for interme-
diate landslide events is lower than that for small events in AZ4.
The other is the triggering rainfall for the unique large landslide
event is smaller than that for most small and intermediate events.
Inspection of the data indicates that these exceptions are probably
attributed to two factors: (i) the relatively poor representativeness
of the rainfall data in AZ4 and AZ6, and (ii) the incompleteness in
landslide records. Undoubtedly, these problems also exist in the
data associated with the other AZs. Nevertheless, they are not as

Table 6 The number of the three classes of landslide events with different mag-
nitudes during the 2003–2010 period

Alert zone Small Intermediate Large

AZ1 11 13 10

AZ2 31 15 13

AZ3 36 23 12

AZ4 11 9 3

AZ5 13 9 6

AZ6 16 9 1

Fig. 10 Comparison of the triggering rainfall for each class of landslide events during the 2003–2010 period (S, small event; I, intermediate event; L, large event)
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severe as the case in AZ4 and AZ6 and have not influenced the
positive relationship between landslide magnitude and triggering
rainfall.

To define the three thresholds (RT1, RT2, and RT3) for the four
warning levels, sensitivity of the four performance indicators (Ieff,
HRL, PPW, PSM) to each threshold was analyzed. Taking AZ1 for exam-
ple, the value of the indicators was computed for different probability
combinations. The results are shown in Table 7. The number of correct
predictions (CP) increases with the increase inRT1, while the number of
true negatives (TN) exhibits an opposite trend. The change in RT1 has
no influence on the number of false alarms (FA) and missed alarms
(MA). Correspondingly, the maximum value for Ieff, HRL, and PPW is
obtained at the smallest RT1 (p= 1%). In terms of the Pur indicator, it is
also optimized at the 1% probability threshold for RT1. It seems that the
smaller the probability for RT1, the better the model performance.
However, further analysis reveals that the variation in all the four
indicators is simply induced by the variation in the number of CPwhile
RT2 and RT3 remain unchanged. Comparison between the two classes
of criteria illustrated in Fig. 6 manifests that landslide events pertaining
to CP come from two sources: events with no prediction error but with
landslide activity (Gre –TN) and events withminor error (Yel). In other
words, amathematical relationship exists among the number of CP,Yel,
Gre, and TN: CP=Yel+ (Gre – TN). When the probability for RT1
decreases from 10 to 1%, the number of (Gre –TN) rises from 10 to
16, while the number of Yel grows from 44 to 377, suggesting that the
increase in the number ofCP is primarily induced by the increase in the
number of the events with minor prediction error. That is to say, if the
1% probability threshold is used for RT1 in the operational early
warning system, a great number of WL1 would be issued for the days
without landslide occurrence, and the reliability of the systemwould be
affected. Concerning this issue, the optimal threshold determined by
ROC analysis was finally chosen asRT1, i.e., p= 7%. Compared with the
1%probability threshold, the proportion of the events classified asYel in
those pertaining to CP decreases from 0.96 to 0.81.

In the aspect of the RT2 threshold, when it becomes larger, fewer
events are classified as FAwhile a greater number ofMA are generated.
Since the number of TN keeps constant, the number of CP is just
related to the total number of incorrect predictions (FA+MA). The
number of Pur increases marginally with the increase in RT2. Corre-
spondingly, the Ieff, HRL, PPW, and PSM indicators change in different
ways when RT2 is altered and arrive at their optimal values at different
probability thresholds: p= 30%, 40%, and 80% for Ieff, p= 30% for
HRL, p= 80% for PPW, and p ≤ 40% for PSM. In regard to RT3, the
number of CP, FA, and MA is insensitive to this threshold, while the
number of Pur decreases drastically when RT3 increases. Therefore, a
high threshold (p= 90%) is required to minimize PSM. The determina-
tion of RT2 still remains a problem. Inspection of Table 7 indicates that
the number of Pur remains at the minimum when RT2 varies in a
relatively wide range (p= 10 – 40%), in which the optimal value of
FA+MA is 18 and it remains the smallest when more thresholds are
considered. As a consequence, the optimal RT2 threshold can be
identified as the one which primarily minimizes the occurrences with
severe error (Pur) and then generates the smallest possible incorrect
predictions (FA+MA). If more than one threshold is selected following
this criterion, the lowest one, namely themost conservative one, will be
finally utilized. For instance, although the 30% and 40% probability
thresholds provide equivalent values for Pur and for FA +MA
(Table 7), the lower threshold generates less missed alarms and more
false alarms and was ultimately selected for RT2. Ta
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Fig. 11 The intraday rainfall versus effective antecedent rainfall conditions for the four classes of landslide events during the 2003–2010 period and the three thresholds
for the warning model. The gray, yellow, orange, and red dots correspond to no landslides, small events, intermediate events, and large events, respectively. The solid,
dashed, and dotted lines represent the RT1, RT2, and RT3 thresholds, respectively

Table 9 Performance of the rainfall thresholds for landslide occurrence for the period 2011–2015

Alert zone Number of days Classification of the results Skill scores
Rainy day LD TP FP TN FN POD POFD POFA HK

AZ1 476 17 13 36 423 4 0.765 0.078 0.735 0.686

AZ2 475 14 14 63 398 0 1.000 0.137 0.818 0.863

AZ3 480 49 35 70 361 14 0.714 0.162 0.667 0.552

AZ4 479 2 2 68 409 0 1.000 0.143 0.971 0.857

AZ5 500 15 11 66 419 4 0.733 0.136 0.857 0.597

AZ6 513 2 2 49 462 0 1.000 0.096 0.961 0.904

Fig. 12 The intraday rainfall versus effective antecedent rainfall conditions for the four classes of landslide events during the period 2011–2015 and the three thresholds
for the warning model. The gray, yellow, orange, and red dots correspond to no landslides, small events, intermediate events, and large events, respectively. The solid,
dashed, and dotted lines represent the RT1, RT2, and RT3 thresholds, respectively
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To obtain the optimal RT2 and RT3 thresholds for each alert
zone, more probability combinations were employed. Using the
probability for RT2 and RT3 varying in the range 20 % ≤ p ≤ 90%
and 35 % ≤ p ≤ 95%, respectively, with an interval of 5%, a total of
117 combinations were considered. The optimal combination was
identified following the criteria discussed above and is listed in
Table 8. For AZ1 and AZ5, the values of Pur and FA +MA are
minimized at the selected probability combination, while for the
other AZs the value of FA +MA is the second smallest among the
117 combinations. Inspection of Table 8 shows that the optimal
probability for RT1, RT2, and RT3 lies within the ranges 4 % ≤ p ≤
10%, 30 % ≤ p ≤ 55%, and 75 % ≤ p ≤ 95%, respectively, which co-
incidently is approximate to the probability thresholds used for
four warning levels in literature (p = 10%, 50%, and 90%,
respectively)(Zhuang et al. 2014; Huang et al. 2015). The thresholds
are also illustrated in the R0–Ra space (Fig. 11).

Validation of the rainfall thresholds
To validate the thresholds, landslide and rainfall data during the
monsoon season of the period 2011–2015 were analyzed. Table 9
lists the number of rainy days and LDs in each zone. Using the
thresholds summarized in Table 5, the four contingencies and
related skill scores were computed, as shown in Table 9. Compar-
ison with skill scores derived from the calibration dataset, values
of POD are generally higher for the validation dataset while values
of POFD are just slightly different. Consequently, the HK skill
score becomes higher. Nevertheless, POFA is also higher for most
zones, especially for AZ4 and AZ6, where only 2 days were record-
ed with landslide occurrence during the 5-year period. Investiga-
tion of the rainfall data reveals that the average daily precipitation
for rainy days in the monsoon season of the period 2011–2015
(11.9 mm) is lower than that for the period 2003–2010 (12.6 mm).
Therefore, the proportion of LDs has decreased. However, the
decrease is much more drastic in AZ2, AZ4, and AZ6 than in the
other zones, which means that the landslide records are probably
severely incomplete in these zones because the local governments
have put more effort into geohazard mitigation and a large portion
of landslides were not recorded considering that no damage was
caused, leading to higher POFA values. As a result, using skill
scores from the remaining zones to evaluate performance of the
thresholds is more reliable, which shows that the skill scores
derived from the validation dataset are comparable to that derived
from the calibration dataset, with POD, POFD, and POFA changing
in the ranges 0.71–0.77, 0.08–0.16, and 0.67–0.86, respectively.

The validation dataset from AZ1, AZ3, and AZ5 were further
used to evaluate the RT1, RT2, and RT3 thresholds, as illustrated in
Fig. 12. Table 10 summarizes the classification of the results and
corresponding performance indicators. Comparison between Ta-
ble 8 and Table 10 shows that although the Ieff and PPW indicators
slightly decrease for AZ1 in the period 2011–2015, there is not much
difference between the prediction performance for the same zone
in the two periods, indicating the robustness of the thresholds and
the potential of them for practical use.

Conclusions
In this study, daily rainfall data from 6 gauges and landslide data
including 1836 records in Dazhou during the period of 2003–2015
were systematically analyzed. The study region was divided into
six alert zones. For each zone, the rainfall threshold for landslideTa

bl
e
10

Pe
rfo
rm
an
ce

of
th
e
ra
in
fa
ll
th
re
sh
ol
ds

fo
rd

iff
er
en
tw

ar
ni
ng

le
ve
ls
fo
rt
he

pe
rio
d
20
11
–2
01
5

Al
er
tz
on
e

Nu
m
be
ro

fe
ve
nt
s

Cl
as
sif
ica
tio
n
of
th
e
re
su
lts

Pe
rfo
rm
an
ce

in
di
ca
to
rs

S
I

L
T
N

C
P

FA
M
A

G
re

Ye
l

R
ed

Pu
r

I e
ff

H
R
L

PP
W

P S
M

AZ
1

9
8

0
42
3

39
10

4
42
9

33
14

0
0.
74

0.
91

0.
80

0.
00
0

AZ
3

27
16

6
36
1

10
1

6
12

37
9

83
16

2
0.
85

0.
89

0.
94

0.
01
7

AZ
5

12
2

1
41
9

77
2

2
42
4

72
3

1
0.
95

0.
97

0.
97

0.
01
2

75Landslides 17 & (2020)



activity was defined using logistic regression, ROC analysis, and a
procedure for performance evaluation of models with multiple
warning levels with dataset for the period 2003–2010, and was
further validated with dataset for the period 2011–2015. The fol-
lowing conclusions can be drawn:

1. The probability of landslide occurrence computed by logistic re-
gression was compared with the value counted by simple statistics
for various rainfall conditions. The difference between the two
values might be relatively large when the probability is high.
Therefore, it is highly suggested that the rainfall threshold be
defined using a rigorousmethodology such as ROC analysis rather
than using a predetermined probability level.

2. Diverse threshold combinations were used to evaluate perfor-
mance of the model with four warning levels, and the best-
performing combination was determined. Performance of the
threshold for the validation dataset is comparable to that for the
calibration dataset, and the efficiency index varies in the range
0.74 ≤ Ieff ≤ 0.95. Considering the large geographical area of each
alert zone, rainfall data measured by the unique gauge is insuffi-
cient to represent rainfall conditions in the whole zone. Nonethe-
less, performance of the warning model is acceptable. This is
probably because rainfall parameters used in this study are asso-
ciated with a longer period (8 days) of rainfall data, in which case
the representativeness of the gauge might be better than the case
that event rainfall data are used. Hence, the procedure for thresh-
old determination employed in this research is expected to be
applicable to other poorly gauged areas.>

Many factors, such as geology, topography, and vegetation, also
play important roles in slope stability. It is impossible to predict
possible landslide activities merely using rainfall data. Conse-
quently, it should be emphasized that the rainfall threshold should
be used in combination with landslide susceptibility zonation
techniques, in which the other factors are considered, in opera-
tional regional warning systems.
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