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A SPH two-layer depth-integrated model
for landslide-generated waves in reservoirs: application
to Halaowo in Jinsha River (China)

Abstract In this work, a two-layer depth-integrated smoothed
particle hydrodynamics (SPH) model is applied to investigate the
effects of landslide propagation on the impulsive waves generated
when entering a water body. In order to deal with the open
boundary in practical engineering problems, an absorbing bound-
ary method, based on Riemann invariants which can be applied to
arbitrary geometries, is implemented. In order to examine the
accuracy of the proposed formulation, the model is tested against
both available laboratory tests and numerical examples from the
literature. Then, it is adopted to model the characteristics of the
impulse waves generated by the Halaowo landslide in the Jinsha
River, China. The results provide a technical basis for the emer-
gency plan to the Halaowo landslide and benefit the disaster
prevention policy, which helps mitigating future hazards in similar
reservoir areas.

Keywords Landslides . Landslide-induced waves . SPH . Two-
layer depth-integrated models

Introduction
Landslides cause grave losses of life and property every year
around the world. Some of those landslides can enter reservoirs
and generate large water waves. Because of their catastrophic
consequences, landslide-generated waves (LGWs) have been con-
sidered to be one of the most important secondary hazards in-
duced by landslides (Petley 2010). According to Yavari-Ramshe
and Ataie-Ashtiani (2016), because of the energy trap, flood po-
tential of LGW hazards is particularly hazardous in a restricted
water body like a reservoir.

As it happened in the Vajont reservoir, Italy, in 1963 (Quecedo
et al. 2004a, b), the impulsive waves with significant wave ampli-
tude could overtop a dam, flood downstream areas, and cause
important damages to both lives and properties in reservoir re-
gions. Therefore, due to the high frequency and great destructive
consequences of impulsive waves in reservoir areas (Dai et al.
2004; Gabl et al. 2015; Huang et al. 2009; Miyagi et al. 2011; Wang
et al. 2016), it is of paramount importance to evaluate the LGW
risk to design effective mitigation measures.

During past decades, many researchers have studied the mech-
anism of LGW hazard. The numerous research methods that have
been employed to assess the risk of LGWs can be classified into
four general categories: laboratory model tests, analytical solu-
tions, empirical relationships, and numerical simulations.

In order to investigate the relation between the landslide
properties (i.e., impact velocity, volume, density, geometry,
etc.) and wave characteristics (i.e., wave amplitude, wave height,
period, etc.), many experiments have been performed. Labora-
tory tests regarding LGWs started with Noda (1970) who carried
out a laboratory study for both horizontal and vertical subaerial

landslides with a solid block and summarized four patterns for
landslide-generated waves as (i) non-linear oscillatory, (ii) tran-
sition, (iii) solitary like, and (iv) dissipative transient bores. A
laboratory study using steel boxes as slide masses was conduct-
ed by Kamphuis and Bowering (1970). They concluded that the
most significant factors affecting the generated waves are the
slide volume and the Froude number at the impact. Huber and
Hager (1997) modeled granular mass sliding into a water tank
and found that the wave run-up mainly depends on a non-
dimensional landslide volume. Walder et al. (2003) investigated
LGWs in a regular flume, focusing on wave properties in the
near field. From their scaling analysis, the near-field wave prop-
erties are mainly controlled by the non-dimensional landslide
volume per unit width, the non-dimensional submerged time of
motion, and the non-dimensional vertical impact speed.
Carvalho and Carmo (2007) carried out a laboratory study to
investigate the generation and propagation of LGWs and their
impact on downstream water banks. In their study, a series of
waves were generated by fallings of calcareous blocks and the
wave heights were measured by five gauges. The experimental
data show that the maximum positive wave amplitude has a
strong dependence on the mass (volume) of the sliding mass
and the initial water level. Furthermore, a wide range of labo-
ratory tests for impulsive waves caused by both rigid and de-
formable slide masses was performed by Ataie-Ashtiani and
Nik-Khah (2008) in a rectangular flume (2.5 m wide, 1.8 m deep,
and 25 m long). As a result, an empirical equation for the
impulse wave amplitude and the period was proposed. The
experimental models presented by Huang et al. (2014) involved
two common types of slopes in the Three Gorges Reservoir: a
rigid rock falling into the water and a granular cluster sliding
into the water. Based on 74 different experiments, Huang et al.
(2014) developed two dimensionless equations for the estima-
tion of the primary wave maximum amplitude which were
then successfully verified for both two failure types. In gen-
eral, laboratory experiments provide a first approximation to
study the general behavior of both landslides and generated
waves. This technique is considered to be a powerful tool for
investigating LGWs; although, due to the drawbacks of prep-
aration time and economical cost, laboratory model tests are
limited to simple considerations rather than practical cases
where complex topography and different material parameters
need to be considered.

Besides the experiments, empirical equations based on either
field data or numerical tests are intensively applied for estimating
LGW properties. Based on a catalog of LGW events, Oppikofer
et al. (2018) developed semi-empirical relationships which link
wave run-up with distance from landslide impact and landslide
volume. According to the proposed equation, run-up decreases
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with distance obeying a power law. Ataie-Ashtiani and Najafi-Jilani
(2006) applied a higher order Boussinesq model to study the
sensitivity of the amplitude of impulsive waves to the landslide
geometry and kinematics. They proposed a simple engineering
estimation method which can facilitate the prediction of the gen-
erated wave amplitude in reservoir areas. The available analytical
solutions are usually based on some simplifying assumptions
(Noda 1970; Renzi and Sammarco 2016; Sammarco and Renzi
2008). Therefore, those methods are not able to cope with the
wave generation process where complex geometries and material
characteristics are involved.

In numerical simulation of LGWs, mathematical formula-
tions play a fundamental role. According to their complexity
and accuracy, mathematical formulations can be classified into
four types as (i) shallow water equations (SWEs), (ii)
Boussinesq-type equations (BWEs), (iii) potential flow equa-
tions (PFEs), and (iv) full Navier–Stokes equations (NSEs)
(Yavari-Ramshe and Ataie-Ashtiani 2016). NSEs have a full
dispersion and strong coupling between different phases by
utilizing an appropriate surface tracking technique. Neverthe-
less, the computer cost dramatically grows when considering
full dispersive equations such that their application is generally
restricted (Wanget al. 2016; Xie et al. 2014). BWEs and PFEs
provide a good balance between computer cost and accuracy
while most of the existing models consider rigid landslides or
treat the sliding mass as a moving boundary. In practical
problems, the application of SWEs results in a reasonable
compromise between accuracy and computational cost. There-
fore, even though other formulations can cover more complex
aspects in LGWs, SWEs are still widely adopted by researchers
and engineers. To take into account the slide propagation
pattern and deformations, two-layer flow models have been
extensively used by researchers and engineers (Bouchut et al.
2008; Liu et al. 2018; Ma et al. 2015; Macías et al. 2015; Majd
and Sanders 2014; Pastor et al. 2009a, b; Yavari-Ramshe and
Ataie-Ashtiani 2015).

Two-layer models generally consist of (i) a layer of water and
(ii) a layer of deformable mass entering the water body which lays
below the water. SWEs are solved in both layers interacting
through their interface. The landslide is generally described as a
fluidized mass.

Various alternative numerical models have been proposed to
solve the related mathematical formulations over the past
years. Particularly, because of being Lagrangian and Bmesh-
free,^ SPH is considered to be one of the most appropriate
methods for surface tracking. As a consequence, it has been
extensively used by a large number of researchers to reproduce
the process of LGWs (Ataie-Ashtiani and Jilani 2007; Gotoh
and Sakai 2006; Heller et al. 2016; Monaghan and Kos 1999;
Panizzo and Dalrymple 2005; Pastor et al. 2009a, b; Tatiana
Capone et al. 2010).

The application of SPH for LGWs started with the pioneering
work of Monaghan and Kos (2000) who utilized SPH to follow
the formation of solitary waves and compared their results with
the experiment. The possibility of extending the SPH technique
to more general configurations was also discussed in their work.
With the advancing of the SPH technique, more improved
methods have been introduced: Ataie-Ashtiani and Shobeyri
(2008) applied an incompressible SPH (I-SPH) method to

simulate a submerged rigid wedge sliding along an inclined
surface. The results were in a good agreement with the experi-
mental data. Gomez-Gesteira et al. (2012) applied the open-
source SPH code SPHysics to simulate the impact of a three-
dimensional (3D) rock sliding into a reservoir. The results pro-
vided information on the movement of the block and the gen-
erated waves with time.

The SPH approach was also used by Viroulet et al. (2013) to
conduct two numerical experiments including a vertical sinking
box and a two-dimensional (2D) wedge sliding down an inclined
plane. Their results agreed reasonably well with a two-phase finite-
volume model. More recently, Wang et al. (2016) conducted a
prototype-scaled experiment to take into account the topography
effect. A 3-D SPH numerical simulation corresponding to the
physical model was then implemented to investigate the details
of impulsive waves, such as wave amplitude, wave run-up, and
wave arrival time.

Although, 3D SPH models have been widely and successfully
applied to analyze the LGW problems, some drawbacks still
exist. The major one is the heavy computational cost for a real-
scale problem. Therefore, the applications are usually either
restricted to a reduced region of interest or involve simplified
assumptions regarding the interaction of the different phases
or the properties of the sliding materials, i.e., considering a
rigid mass.

It is important to notice that in large-scale problems, it is
necessary to apply boundary conditions of absorbing and pre-
scribed incoming wave types. Details about such boundary treat-
ment methods along with depth-integrated models can be seen in
the work of Lastiwka et al. (2005), Peraire et al. (1986), Quecedo
et al. (2004a, b), and Vacondio et al. (2012).

In the present study, the two-layer SPH model proposed by
Pastor et al. (2009b) is improved by implementing an absorb-
ing boundary condition and then tested against two available
cases: (i) a numerical test conducted by Bouchut, et al. (2008)
and (ii) an experiment performed by Fritz et al. (2001) for the
LGW event of Lituya Bay, Alaska. Then, the extended model is
applied to predict impulse waves generated by the Halaowo
landslide, in China, in order to help designing effective pro-
tection plans.

The paper is organized as follow: In the BTwo-later model^
section, the SPH model is described. The rheological models are
introduced in the BRheological models^ section. Then, the BAn
absorbing boundary condition for deep-integrated SPH models^
section is devoted to present the absorbing boundary conditions
implemented in the model. In the BProposed benchmarks for
assessing model accuracy^ section, a series of numerical tests are
performed and analyzed, in order to provide insight on the model
predicting capabilities, including the boundary conditions. Finally,
the validated model is utilized to predict the LGWs in the
Xiangjiaba Reservoir, China.

Two-layer model

Mathematical model
The purpose of this section is to present the two-layer, depth-
integrated model which will be used to model waves generated
by landslides. We will start with the case of a single fluid, where the
balance equations are given by:
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(a) Balance of mass

dρ
dt

þ ρ div v ¼ 0 ð1Þ

(b) Balance of linear momentum

ρ
dv
dt

¼ div σþ ρb ð2Þ

where ρ is the density, vthe velocity, σ the total stresses, and b the
body forces (gravity).

These equations can be complemented with a suitable rheolog-
ical law linking displacements (or velocities) to strains (or rate of
strains) as well as boundary and initial conditions.

Since a large amount of computer memory and high computa-
tional effort are required to solve real 3D problems, in practical
engineering, depth-integrated models have been used extensively
by many researchers because they present an excellent compro-
mise between computational cost and accuracy.

Depth-integrated models have been used to model landslide
propagation since the 1D Lagrangian model proposed by Sav-
age and Hutter (1991). Since then, it has been extended to more
general conditions by Gray et al. (1999), Hutter and Koch
(1991), and Hutter et al. (1993) and has been employed by

many researchers including Laigle and Coussot (1997),
McDougall and Hungr (2004), Pastor et al. (2009a, b), Pastor
et al. (2002), Pastor et al. (2017), Pudasaini and Hutter (2007),
and Quecedo et al. (2004b). It is worth mentioning the text-
book by Pudasaini and Hutter (2007) where the limitations of
the depth-integrated models are presented and discussed.

The balance of mass and momentum equations can be inte-
grated along x3 using the reference system given in Fig. 1. In this
system, Z denotes the elevation of the bottom surface, h the
flowing depth, and v the averaged flow velocity, along x1 and x2,
the over bar referring to depth integration.

We will define the Bquasi-material derivative^ as:

d
dt

¼ ∂
∂t

þ v j
∂
∂xj

j ¼ 1; 2 ð3Þ

Depth-integrated models are based on Leibniz’s rule:

∫ba
∂
∂s

F r; sð Þdr ¼ ∂
∂s

∫ba F r; sð Þdr−F b; sð Þ ∂b
∂s

þ F a; sð Þ ∂a
∂s

ð4Þ

The depth-integrated equations for both fluidized solid and
water can be derived in the same way as a single fluid. Considering
the situation sketched in Fig. 3, the balance equations of the sliding
mass and the water can be integrated from Z to Z + hs, and Z + hs
to Z + hs + hw, respectively. As indicated by Pastor et al. (2009b),
the equations turn out to be:

v
h

Fig. 1 Reference system, coordinates and notation
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(a) balance of mass

dhs
dt

þ hs
∂vi

sð Þ

∂xi
¼ 0;

dhw
dt

þ hw
∂vi

wð Þ

∂xi
¼ 0 ð5Þ

(b) balance of momentum

hw
d v

wð Þ

dt
¼ grad

1
2
g3b3h

2
w

� �
þ g3hwgrad Z þ hsð Þ þ 1

ρw
τw=si ð6Þ

hs
d v

sð Þ

dt
¼ grad

1
2
g3h

2
s

� �
þ g3hsgradZ−

1
ρs

τw=si

þ 1
ρw

τB−
ρw
ρs
g3hsgradhw

ð7Þ

where d/dt is the Bquasi material derivative^ defined in Eq. (3),
h is depth, v the depth-averaged velocity, Zthe elevation of
terrain, ρ the density, g3 the gravity force along axis X3, τBthe
friction between soil and basal surface, and τi the interface
friction. Super indices(s) and (w) refers to soil and water,
respectively. Please note that the terms describing the interac-
tion between layers are

solid→water interaction : −g3hwgrad Z þ hsð Þ þ 1
ρw

τw=si

water→solid interaction : −
ρw
ρs
g3hsgradhw−

1
ρs

τw=si

ð8Þ

In the proposed model, we have neglected both mass
exchanges and the friction at the solid-water interface; Fig. 2
illustrates the different interactions taking place in the model.
In this figure, I, J, and K represent the number of the SPH
particles. The support domain of the kernel W is defined by
the positive integer k usually taken as 2 and the smoothing
length h.

Moreover, we have used the super indices B, A, and O which
correspond to the bottom, the interface between soil and water
and the free surface, as depicted in Fig. 3.

Numerical model
The balance equations introduced in the previous section have
been discretized using the SPH technique, where continuum me-
dia is represented by a set of particles. Therefore, any physical
variable can be approximated by the surrounding values. Regard-
ing the development of the method, it was proposed by Lucy (1977)
for astrophysical problems and then exported to other research
areas like hydrodynamics (Monaghan and Kos 1999; Vacondio
et al. 2013), avalanche propagation (Manzanal et al. 2016;
McDougall and Hungr 2004; Rodriguez-Paz and Bonet 2005),
and flow through porous media (Zhu and Fox 2001).

khI
J

K

Fig. 2 Interactions of the soil and water particles in the SPH model

Fig. 3 Landslide entering a reservoir
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SPH is based on the identity

ϕ xð Þ ¼ ∫
Ω
ϕ x0ð Þδ x0−xð Þdx0 ð9Þ

where δ(x ' − x) is the Dirac’s delta function centered atx.
The delta function can be approximated by a weighting func-

tion W(x, h ) fulfilling

lim
h→0

W x0−x; hÞ ¼ δ xð Þð ð10Þ

where h is a parameter describing its decay.
The function ϕ(x) is approximated by

〈ϕ xð Þ〉 ¼ ∫
Ω
ϕ x0ð ÞW x0−x; hÞdx0ð ð11Þ

In the framework of SPH formulations, several kernels have
been proposed in the past. Here, we will use the cubic spline kernel
proposed by Monaghan and Gingold (1983) and Monaghan (1985).

Concerning the integral representation of the derivatives in
SPH, they are given by:

ϕ′; ; x;ð Þ� � ¼ ∫
Ω
ϕ0 x0ÞW x0−x; hÞdx0ðð ð12Þ

from where, and taking into account that the kernel has compact
support, it results in:

〈ϕ0 xð Þ〉 ¼ − ∫
Ω
ϕ x0ÞW 0 x0−x; hÞdx0ðð ð13Þ

Differential operators of interest like the gradient of a scalar
function, the divergence of a vector-valued function and the di-
vergence of a tensor-valued function, are approximated as:

gradϕ xð Þh i ¼ −∫Ωϕ x0ð Þ 1
h
W 0 x

0−x
r

dΩ with r ¼ jx0−xj

div u xð Þh i ¼ −∫Ωu x0ð Þgrad WdΩ ¼ −∫Ω
1
h
W 0 u x0ð Þ: x0−xð Þ

r
dΩ

div σ xð Þh i ¼ −∫Ωσ:grad WdΩ ¼ −∫Ω
1
h
W 0 σ: x

0−xð Þ
r

dΩ

ð14Þ

where ϕ(x) is a scalar function, u(x) a vector-valued function, σ(x)
a tensor-valued function, Ω an open bounded domain, W the
kernel function, and h the smoothing length.

We will introduce a set of particles or nodes labeled with
indexes K = 1...N. Of course, the level of approximation will depend
on how these nodes are spaced in the domain. Therefore, as usual,
those zones with large gradients require larger number of nodes.

Considering the approximation of a function, as the informa-
tion concerning the function is only available at the set of N nodes,
the integral could be evaluated by using a numerical integration
technique:

ϕI ¼ ϕ xIð Þh ih ¼ ∑
N

J¼1
ϕ xJð ÞW xJ−xI ; hð ÞΩ J ð15Þ

where we have used the sub-index Bh^ to denote the discrete
approximation. The weights of the integration formula are ΩJ =
mJ/ρJ, with ΩJ, mJ, and ρJ being the volume, mass, and densities
associated with node J.

If we consider that the kernel function has local support, i.e., it is
zero when the sum extends only to the set ofNh points, we can write:

ϕI ¼ ϕ xIð Þh ih ¼ ∑
Nh

J¼1
ϕ xJð ÞW xJ−xI ; hð ÞΩ J ð16Þ

which is the approximation in SPH. In the case we choose the
function ϕ to represent the density, we will obtain:

ρI ¼ ∑
Nh

J¼1
ρ JWIJ

mJ

ρ J
¼ ∑

n

J¼1
WIJ mJ ð17Þ

with WI J ¼ W xJ−xI ; hð Þ
If the 2D area associated to a node I is ΩI, we will introduce a

fictitious volume mI with dimensions L3associated with this node:

mI ¼ ΩIhI ð18Þ

From here, we can discretize the balance of mass Eq. (5) which
is exactly the same for both soil and water as:

Fig. 4 Absorbing boundary condition along arbitrary geometries
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dhI
dt

¼ −hI ∑
J

mJ

h J
vTIJ :gradWIJ ð19Þ

where we have introduced vIJ = vI − vJ.
Next, we will consider the balance of momentum Eqs. (6) and

(7) for both layers. They are those obtained for the single-phase
fluid except for the additional terms which are given for the water
and fluidized soil, respectively. Hence, the SPH discretized equa-
tions consist of two parts, the common part and the correction
terms.

The common part is:

d
dt

vI ¼ −∑
J
mJ

pI þ pJ

hIhJ
gradWIJ þ 1

ρ
∑
J
mJ

σI þ σ J

hIh J
gradWIJ þ b þ 1

ρhI
jNBjtBI

ð20Þ
or

d
dt

vI ¼ −∑
J
mJ

pI
h2I

þ pJ

h2J

 !
gradWIJ

þ 1
ρ
∑
J
mJ

σI

h2I
þ σ J

h2J

 !
gradWIJ þ bþ 1

ρhI
jNBjtBI ð21Þ

a b

c d

e f

Fig. 5 Time histories of the water surface and landslide predicted by the present model compared with the values from Bouchut et al. (2008)
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which applies for both water and fluidized soil. The correction
terms are:

(a) For water

þ 1
ρw

τw=si þ b3hw
∂hs
∂xi

waterð Þ ð22Þ

(b) For soil

þ 1
ρs

τ s=wi þ b3
ρw
ρs
hs

∂hw
∂xi

fluidized soilð Þ ð23Þ

Rheological models
After integrating the balance of mass and momentum equa-
tions, the vertical structure of the flow and internal stresses
result on boundary terms which characterize shear stresses on
both the interfaces (top and bottom) for each layer should be
described.

During the computations, at a given time step, the height of the
flow and the averaged velocities for both layers are known. In
order to retrieve the shear stress, the most common approach is
assuming that the current basal stress is the same as that in an
infinite landslide (where the main assumptions are steady flow, no
variations along the velocity direction, and the velocity only de-
pends on the X3 coordinate).

Basal shear stresses can then be obtained for a variety of 3D
rheological models incorporating friction, viscosity, and cohesion.

For instance, in a viscous frictional fluid, where viscosity is
quadratic, the basal shear stress is given by:

τb ¼ σ
0
3tanφþ 25

4
μCF

v
2

h2
ð24Þ

where σ
0
3 is the effective vertical stress at the bottom, and μCF the

quadratic viscosity.
For cohesive-viscous materials, Bingham model includes two

material parameters, the yield stress below which the material does
not flow, and the viscosity. The expression for the Bingham model
is written as:

τ ¼ τy þ μ
∂v1
∂x3

� �
ð25Þ

where τy is cohesion and μ is viscosity. Concerning the bottom
friction, it can be related to the depth-averaged velocity using the
following expression:

v ¼ τbh
6μ

1−
τy
τb

� �2

2þ τy
τb

� �
ð26Þ

In order to obtain the basal shear stress, the roots of this third-
order polynomial have to be obtained at every material node and
time step. A possible approximation was proposed by Pastor et al.
(2004). It consists of obtaining the root of the second-order poly-
nomial which is the best approximation in the Chebyshev polyno-
mials of the third-order one. It consists on obtaining the best
second-order polynomial approximating a third-order one.

There are some other effective factors which are not considered
in this study including landslide permeability to water, landslide-
water interfacial friction, and also landslide-bottom frictional
interactions.

An absorbing boundary condition for depth-integrated SPH models
As mentioned in the previous section, absorbing boundary condi-
tions have been frequently applied to depth-integrated problems
(Lastiwka et al. 2005; Peraire et al. 1986; Quecedo et al. 2004b). The
method we apply here is based on the concepts of characteristic
lines and Riemann invariants, and is described in detail by
Vacondio et al. (2012).

Table 1 Comparison of present results with the results of Bouchut et al. (2008)

Simulation Bouchut et al. (2008) Relative error (%)

Runout distance (m) 4.46 4.18 6.70

Max. wave height at 3.0 s (m) 0.441 0.439 0.45

a b

Fig. 6 a, b Simplified geometry (from Fritz (2001)) and the numerical model of the Gilbert Inlet in Lituya Bay, Alaska
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The initial step to impose the boundary conditions depends on
the Froude number:

F ¼ jvjffiffiffiffiffi
gh

p ð27Þ

When the Froude number is higher than 1, and the fluid is
exiting the domain, both the height and the averaged velocity of
the outflow particles will be set equal to the inner domain
quantities.

In the case of subcritical flow, only one condition of either
velocity or height value is prescribed and the remaining will be
determined by using the Riemann invariants:

R 1ð Þ ¼ 2
ffiffiffiffiffi
gh

p
þ v

R 2ð Þ ¼ 2
ffiffiffiffiffi
gh

p
−v

ð28Þ

a b

c d

e f

Fig. 7 Evolution of the Lituya landslide simulated by the presented model

Table 2 Comparison between experimental and computed results in the Lituya landslide

Experiments Computed Relative error (%)

Slide veloc. at impact (m/s) 110 85 22.73

Maximum wave height > 200 200 –

Time for max. wave height (s) 11 27 145.45

Max. wave height at the location
x = 885 m (m)

152 120 21.05

Run-up height (m) 524 430 17.94
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characterizing the waves leaving and entering the domain.
In order to describe the boundary condition explained above,

we will start with the definition of the influenced zone based on
boundary particles.

As shown in Fig. 4, when a particle enters the active zone which
is defined by boundary particles and their influence length, it will
be marked as an active particle in the SPH code, and the absorbing
boundary conditions algorithm will be applied as follows:

(i) First of all, we obtain values of the unknowns at time n + 1
without applying any boundary condition, obtaining the
Bstar^ values hnþ1

* and vnþ1
* . Then, we obtain the incoming

and outgoing Riemann invariants as

R 1ð Þ
* ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ghnþ1

*

q
þ v

nþ1

*

R 2ð Þ
* ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ghnþ1

*

q
−v

nþ1

*

ð29Þ

(ii) At time n + 1, we assume that the new Riemann invariants
will be such that:

& The outgoing Riemann invariant will be the same obtained
in the Bstar^ state.

& The incoming Riemann invariant will be that of the still
water at infinity, where the undisturbed water level is
denoted hnþ1

* .

Therefore, we can write

R 1ð Þ
nþ1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ghnþ1

q
þ v

nþ1
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ghnþ1

*

q
þ v

nþ1

*

R 2ð Þ
nþ1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ghnþ1

q
−v

nþ1
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ghnþ1

∞

q ð30Þ

from where we obtain immediately the values of water height and
velocity at time n + 1 as

hnþ1 ¼ 1
16g

2
ffiffiffiffiffiffiffiffiffiffiffi
ghnþ1

*

q
þ 2

ffiffiffiffiffiffiffiffi
gh∞

p
−v

nþ1

*

� �2

v
nþ1

¼ 1
2

2
ffiffiffiffiffiffiffiffi
gh∞

p
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Fig. 8 Distribution of the landslide and water particles when the impulse wave reaches the maximum run-up (t = 38.3 s)

Fig. 9 The initial situations of two cases and the location of the monitoring point
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For instance, if an activated particle has an initial state of
hnþ1
* ¼ 1:2 m, vnþ1

* ¼ 1 m=s and the height at infinity is set as
hnþ1
∞ ¼ 1 m. Therefore, the averaged velocity and height at time

n + 1 can be obtained by employing Eq. (31) which results in
hnþ1
* ¼ 0:94 m, vnþ1 ¼ 0:5 m=s.
Accordingly, the absorbing boundary condition is based

on Riemann invariants which characterize magnitudes
exiting or entering the domain, respectively. The magnitudes of
averaged velocity and height are firstly obtained at time n + 1 without
any boundary treatment. Then, the Riemann invariants of the out-
going wave are estimated using these values. Finally, with the velocity
assumption for the reflected wave, it is possible to obtain the velocity
and height of all active particles at the next time step.

Proposed benchmarks for assessing model accuracy
This section is devoted to assessing the proposed model’s accuracy
using some benchmark tests available in the literature.

First, we will consider the test described by Bouchut et al.
(2008) where a landslide impinges a water body. The second
benchmark is the Lituya Bay impulse wave generated by a land-
slide, which was modeled in the laboratory (Fritz 2001; Fritz et al.
2009). In order to verify the quality of the proposed boundary

algorithm, we use a modified geometry of Lituya Bay, by replacing
the opposite slope by an absorbing boundary.

Landslide impinging a lake
This numerical test is devoted to simulating the waves caused
by a subaerial landslide slipping into the water. The final
deposit configuration is described and compared with the
existing result from Bouchut et al. (2008). In this case, both
the physical model and the coefficients are adopted from
Bouchut et al. (2008) where the simulation is implemented
in a 10-m long rectangular channel. The basal elevation of
this test is defined as:

b xð Þ ¼ 1−
x
5
; if 0≤x≤5;

0; otherwise:

(
ð32Þ

The initial conditions set for both soil and water are as follows:

hs xð Þ ¼ 0:7−b xð Þð Þ=cos2θ; if 1:5≤x≤2:5;
0; otherwise:

	
ð33Þ

a b

c d

Fig. 10 Comparison of the evolution of landslide and water surface between case A and case B

Fig. 11 Time histories of the water surface fluctuations at the monitoring point in case A and B, respectively
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And

hw xð Þ ¼ 0:4−b xð Þð Þ=cos2θ; if 3≤x≤5;
0:4; otherwise:

	
ð34Þ

The computation domain is depicted in Fig. 5a. It is
modeled using 300 soil particles with a spacing of 0.0033 m
and 350 particles of water with a spacing of 0.02 m. The
boundary condition on the right border is considered absorb-
ing and modeled using the boundary condition proposed in
the previous section.

Besides, other parameters like the ratio of densities r (the
ratio of the density of water and soil) are set to be 0.2 and
the frictional angle δ0 is adopted as 10°, while the angle of the
plane is 11.31°. This setup can ensure the sliding mass will
slide down and deposit over the flat part of the bottom.

Figure 5 presents a sequence of the landslide impact com-
pared with the results of Bouchut et al. (2008). Since the
slope angle is higher than the frictional angle, the granular
mass is unstable and starts to move from the stationary state
(see Fig. 5(a)). At about 0.5 s, the front of the landslide
contacts the water body and a shock is induced by the impact
of the sliding mass. From here, with the interaction between
the water, the landslide, and the bottom surface, the landslide
material gradually comes to a stop at the toe of the slope (see
Fig. 5b–e). Concerning the impulsive wave, it propagates to-
ward the open boundary after generation. As it can be ob-
served in Fig. 5d, when the wave reaches the open boundary,
no conspicuous oscillations appear which means the absorb-
ing boundary prevents the appearance of spurious reflected
waves on the boundary. The final steady-state situation for
both of the deposited material and the free surface of the lake
is shown in Fig. 5 (f). It can be observed that the results
obtained from the proposed model are consistent with the
results of Bouchut et al. (2008) with minor differences. The
maximum runout distance and the maximum wave height 3 s
after the impact between the present numerical results and
the results of Bouchut et al. (2008) are compared in Table 1.

Fig. 12 The location of Xiangjiaba Hydropower Station and Halaowo Slope

Km
0 1 2

Absorbing boundary 

 yradnuob gnibrosbA

Fig. 13 Terrain of Xiangjiaba Reservoir area with the location of the Halaowo
landslide, absorbing boundaries and monitoring points
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As it can be observed in Table 1, the maximum water wave
heights for numerical and experimental results at t = 3.0 s are
in a good agreement with a relative error of less than 1%. The
predicted value of maximum landslide runout distance is
about 6.7% larger than the experimental value. Additionally,
the edge of the deposit mass in the work of Bouchut et al.
(2008) seems to be steeper than the current results. This
phenomenon can be interpreted as the smoothing effect of
SPH at the boundaries of the considering domain. Special
treatments like normalization may help to handle such non-
continuum regions.

Lituya impulse wave event
In 1958, an earthquake-triggered subaerial landslide with an
estimated volume of 30.6 million m3 slid into the Gilbert Inlet
located at the head of Lituya Bay, Alaska. The landslide and
the generated impact wave have been described by Fritz
(2001) and Fritz et al. (2009). According to the in-situ evi-
dence, the wave ran up to an elevation of 524 m at the
opposite slope in the Gilbert Inlet. This giant wave is consid-
ered to be the highest wave run-up in recorded history.
Therefore, it has received attention from many researchers,

e.g., Mao et al. (2017), Pastor et al. (2009b), and Quecedo
et al. (2004a). Among them, the physical model built by Fritz
et al. (2009) has been frequently selected as a benchmark to
check the performance of the numerical procedures in the
simulation of impulsive waves.

Figure 6 a illustrates the simplified inlet model employed
by Fritz et al. (2001). The model was reproduced in a rectan-
gular prismatic channel with a scale of 1:675. The landslide
mass was modeled by an artificial granular material with a
bulk density of 1.61 t/m 3and a porosity of 39%. According to
Fritz et al. (2009), the dynamic basal friction angle was
chosen as 24°. It is also worth noting that the lateral spread-
ing of the generated wave was assumed to be small by con-
sidering the topographic layout of the Gilbert Inlet.
Consequently, the wave run-up heights were approximated
by a two-dimensional physical model in Fritz’s experiment.

In our simulation (see Fig. 6b), the entire boundary is consid-
ered an impermeable wall, the sliding mass and the water are
modeled by 300 and 400 particles, respectively.

Figure 7 presents the evolution of the impulsive waves gen-
erated by the landslide in Gilbert according to the proposed
model. As we can observe in Fig. 7a, part of the landslide mass

Fig. 14 Water and soil particles over the topography model (blue for water and gray for soil)
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a  0 s.
b  20 s.

c  40 s. d  80 s.

e 150 s. f  200 s.

Fig. 15 Model predictions for the propagation of the Halaowo landslide (includes wave heights and the landslide particles)
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has entered the water at t = 10s, and the wave has been gener-
ated at the near field. Subsequently, at t = 20s, the landslide and
the waves arrive at the opposite bank and start to move uphill
(Fig. 7b). After the water wave reaches the maximum run-up, it
starts moving backwards which causes the oscillations of the
water body (Fig. 7c–e). Finally, the landslide mass stops sliding
along the bottom and eventually deposits. The stationary state
is presented in Fig. 7f. Also, it should be noted that in some
parts of the sequence, the water layer has a sharp edge, for
instance, parts (c), (d), and (e). The reason is that plotting of
the results was done by transferring information from the SPH
particles to a temporal mesh used in the postprocessor.

The numerical results are compared with experimental data of
Fritz (2009) in Table 2. The comparison includes slide velocity at
impact, maximum wave height, time for maximum wave, etc. As it
can be observed from the table, the maximum wave heights,
maximum wave run-up, and wave velocity are underestimated
by the numerical model while the occurrence time of the maxi-
mum wave is overestimated. In the test, the wave height includes
the air cavity which is generated by the fast impinging of the
landslide to water. However, in the proposed depth-integrated
model, the influence of the air is assumed to be small and
neglected. By employing an analogous two-layer model to simulate
tsunami waves, Ma et al. (2015) found the wave heights were
overestimated by the presented model compared with the measure

results in a three-dimensional LGWexperiment. They summarized
three possible reasons to explain the overprediction, one of these
reasons is that the formation of air cavity during landslide impact
is not captured. As the air intrusion reduces the water energy and
perhaps its velocity and height, the neglect of air could result in
greater wave heights. Regarding the Lituya case, the impact veloc-
ity of the landslides mass (about 110 m/s) is much higher than the
test performed by Ma et al. (2015) which is about 4.54 m/s. There-
fore, the formation of the generated waves in Lituya is mainly
controlled by the brunt of the landslides. As stated in the theoret-
ical part of the two-layer model, the generated waves are
undervalued due to the neglect of landslide-water interfacial fric-
tion in the depth-integrated framework of this study. Consequent-
ly, the underestimation of the impact effect probably results in
lower wave heights when the impact velocity is relatively high,
even though the neglect of air could overestimate the calculated
values of LGW heights. Figure 8 presents the spatial distribution of
the SPH particles when the maximum wave run-up occurs.

Furthermore, in order to explore the presented boundary
method, an artificial boundary is applied to substitute the
right-hand slope in the case of Lituya, see Fig. 9, case A.
There, the reference case is obtained by replacing the opposite
slope with a horizontal plane (case B). Therefore, the results
from these two scenarios should be consistent if the proposed
boundary method works effectively. In both cases, the

Fig. 16 Time history of the water surface at the cross-section 1 (including point L-1, C-1, and R-1)

Fig. 17 Time history of the water surface at the cross-section 2 (including point L0, C0, and R0)
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parameters are the same as the previous simulation except the
frictional angle which has been increased to 31° for the pur-
pose of avoiding the influence of the sliding mass hitting the
new boundary.

Figure 10 provides the sequence of the water surfaces and the
landslide deformations in both cases.

The time history of the water surface fluctuations at the mon-
itoring points estimated by the model, including both with and
without applying absorbing boundary conditions, is presented in
Fig. 11. Since they are in a good agreement, it can be said that the
presented boundary algorithm is able to reproduce open bound-
aries in real cases.

A case study: Halaowo landslide and its generated waves
In this section, the proposed two-layer model is applied to simu-
late a potential landslide case and its impulse waves. The simula-
tion includes the whole process of a landslide-generated wave
event.

The Xiangjiaba hydropower station is a significant compo-
nent of the Chinese mega-project Bthe west to east electricity
transmission project.^ It is also the last large-scale hydropower
station in the lower reaches of the Jinsha River, southwestern
China, as shown in Fig. 12. The hydropower project considers
the water level to be located between two limiting values, 370 m
and 380 m. The total reservoir capacity is 5.153 billion m3 with
an active reservoir capacity of 0.09 billion m3. By cooperating
with other hydroelectric projects, the Xiangjiaba hydropower

station plays a key role in the regulation of the cascade power
stations on the Jinshan River. Once the water level of the
impounded water started to increase, seepage through the
slope-affected pore water pressures decreased its stability and
caused its failure. In the banks of the mainstream and the main
tributaries of the reservoir area, more than 47 potential land-
slides and 37 collapsed deposits have been detected. Halaowo
slope (over 7 × 106 m3) is one of the unstable slopes, located
18 km upstream of Xiangjiaba hydropower station (Fig. 12).
Once the landslide is triggered and impacts the river, the im-
pulsive waves generated will seriously threaten the dam body,
shoreline properties, and lives.

The topographic map of the Halaowo slope and the river
channel are depicted in Fig. 13. As it can be observed, the
slope is located at a bend of the Jinsha River. The computa-
tional domain for the simulations is also shown in Fig. 13.
Inside the computational domain, eleven gauging points are
selected to explore the generated wave characteristics. In ad-
dition, the aforementioned absorbing boundary is employed at
the two borders of the water.

Figure 14 shows the details of the established model including
the terrain mesh and SPH particles for soil and water, respectively.
According to the geological report and the study from Mao et al.
(2017), the landslide mass is assumed to be a Bingham-type fluid
with a yield stress τy = 1 kPa and a viscosity μ = 50 Pa. s.

The numerical simulations extend up to 220 s. According
to the initial state (see Fig. 15a), a part of the sliding mass is

Fig. 18 Time history of the water surface at the cross-section 3 (including point L1, C1, andR1)

Fig. 19 Time history of the water surface points close to computational borders (including point C-2, C2)
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under the water, and therefore, the investigated event could
be classified as a semi-submerged landslide (SSL). After 20 s,
a large portion of the landslide mass has moved into the
water and started to propagate along both the original siding
and the channel directions. Subsequently, at 40 s, the land-
slide reaches the opposite slope and gradually stops, which
means the primary kinetic energy of the landslide has been
transferred to the water.

Eleven gauging points are selected to describe the behavior of
the impulsive waves. The evolution of the water surface at those
points is depicted in Figs. 16, 17, 18, and 19. It can be observed that
most of them have a waveform which is composed of two major
wave crests followed by a gradual decay.

Figure 19 shows the time history of the water surfaces at
points C-2 (2.3 km away from the landslide source) and C2
(2.2 km away from the landslide source). As these points are
close to the boundary and no significant oscillations appear, it
suggests that the proposed boundary method is working well
and can be utilized in real LGW cases. The wave amplitudes
of sections 1, 2, and 3 are also presented in Figs. 16, 17, and
18, respectively. We can see in the graphs how the wave
amplitudes of section 1 are relatively greater than those in
section 3. Both sections 1 and 3 are located at approximately
the same distance of 1.15 km from the landslide location.
Although, the expansion of the river in section 1 can acceler-
ate the energy dissipation of the waves. Besides, the dominant
direction of the sliding slope is toward section 1 resulting in a
larger wave height in this section than section 3.

According to the numerical simulations, the maximum
wave height in the stream channel is 34 m and occurs at
the control point located near the landslide trigger zone (see
Fig. 20). Along the opposite shoreline with respect to the
slope, the maximum run-up reaches a height of 42.75 m. After
the landslide impacts into the water body, the impulsive
waves start to propagate in the waterway and their amplitudes
drop gradually. In order to investigate the wave run-up on the
opposite slope, cross-section 2 (location can be seen in Fig.
13) is chosen along the sliding direction where the maximum
wave run-up appears. The interactions between the water
surface fluctuations and the landslide deformations on the
typical section at several time steps have been plotted in
Fig. 21.

Conclusions
In this study, a two-layer depth-integrated SPH model is applied
to reproduce the whole process of landslide-induced waves. For
the purpose of dealing with complex topography in practical
events, which extend to large regions, an absorbing boundary
condition has been implemented in the proposed numerical
model. The model is validated by simulating two benchmark
problems, including a numerical test available in the literature
and the LGW experiment for the Lituya Bay impulsive waves
event.

For the Lituya Bay case, the landslide-generated waves are also
modeled for a modified Lituya basin which allows verification of
the open boundary condition.

hmax (m)

Fig. 20 Distribution of the maximum height of waves (m)
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After validation, the model is applied to simulate the potential
impulsive waves generated by Halaowo landslide in the Jinsha
river area, China. The simultaneous interactions between the water
body and the landslide are investigated, which also demonstrate
the ability of the proposed model in dealing with impulsive wave
hazards in reservoir areas. Moreover, the comprehensive results
including the maximum wave amplitude, wave run-up on the
opposite slope, and wave arrival time show that the model can

be used to predict the potential hazard and mitigate future impul-
sive wave disasters in the reservoir areas.
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