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Using Sentinel-2 time series to detect slope movement
before the Jinsha River landslide

Abstract Detecting slope movement before landslides occur in
mountain regions is crucial for disaster reduction. In October
2018, a gigantic landslide occurred on the Jinsha River, causing
dammed-lake breach flood 500 km downstream. In this work,
we used 25 Sentinel-2 images from November 2015 to August
2018 to explore the capability of this high temporal resolution
optical images in detecting slope movement before the Jinsha
River landslide. Normalized difference vegetation index
(NDVI) was calculated to composite temporal profiles using
all Sentinel-2 images. With this NDVI time series, unsupervised
K-means classifier was applied to initially classify the study
area and find the best thresholds for automatically extracting
landslide scars in the image series. These extracted landslide
scars were validated using interpreted results from two high
spatial resolution images of similar dates in 2015 (user’s accu-
racy 89.7%, producer’s accuracy 83.6%) and 2018 (user’s accu-
racy 90.8%, producer’s accuracy 74.9%). After validation,
extracted landslide scars of different years were counted and
displayed in an RGB composite image to highlight slope move-
ment. In addition, monotonous decrease/increase of NDVI was
also observed, indicating continuous expansion of landslide
scarps and movement of landslide head along the slope on
the landslide surface. This work demonstrated the capability of
Sentinel-2 time series images to capture slope movement with
short revisit time at low cost. By incorporating other environ-
mental information (such as elevation), this proposed method
has the potential to consistently map pre-landslide slope move-
ments over a large region.

Keywords Pre-landslide . Slope movement detection . Sentinel-
2 . Optical remote sensing

Introduction
On 10 October 2018, a massive landslide occurred on the right
bank of the Jinsha River, forming a dammed lake with the volume
of ~ 2 × 108 m3 (Fan et al. 2019). Despite this landslide is located in
a remote and sparsely populated region, its impact is profound.
Uprising water inundated upstream Boluo town in the Tibet Au-
tonomous Region and subsequent flood released from the dam
caused millions of dollar loss in downstream area as far as 500 km
away (Xinhua 2018a).

Such major landslides could also occur in other mountain
regions of the world, which could have either direct or indirect
consequences on human society (Fan et al. 2017; Igwe 2018).
Luckily, there always seems to be a slope movement before their
sudden failure (Wasowski and Bovenga 2014). Therefore, detecting
pre-landslide slope movement is crucially important for disaster
mitigation.

Previous works on detecting slope movement before land-
slides have mostly been focused on SAR techniques (Intrieri
et al. 2018; Lu et al. 2012; Tomás et al. 2016) and high spatial

resolution optical remote sensing (Lacroix et al. 2015; Stumpf
et al. 2017). Although SAR techniques have the capability to
detect millimeter scale surface deformation, they are effective
for minor slope displacements and are often affected by unfa-
vorable conditions, such as dense vegetation and steep topog-
raphy (Intrieri et al. 2018; Wasowski and Bovenga 2014; Wright
2002). Unfortunately, many catastrophic landslides occur in
vegetation-covered remote areas with very rough topography,
and applying SAR techniques to investigate potential pre-
landslide slope movement in a large region have been difficult
(Wasowski and Bovenga 2014). Other works monitoring slope
displacement on landslide surface use very high spatial resolu-
tion images (Lacroix et al. 2015; Stumpf et al. 2017). These
images require strict co-registrations and rely on non-
vegetation ground features to track slope movement. In addi-
tion, they cover a limited area and are very expensive to use for
frequent observation in large regions.

Detecting pre-landslide slope displacement using openly ac-
cessible, moderate to high spatial resolution optical satellite
images such as Landsat and Sentinel-2 datasets has been less
studied. These datasets have short regular observation intervals
for the same location. Sentinel-2 is a European Space Agency
satellite constellation to monitor the land environment on the
earth’s surface. It has two identical polar-orbiting satellites:
Sentinel-2A and 2B. Sentinel-2A was launched on 23 June 2015
and Sentinel-2B was launched on 7 March 2017. Both Sentinel-2
satellites have a spatial resolution of 10 m in near-infrared, red,
green, and blue bands. The Sentinel-2 constellation has a revisit
time of 5-day at the Equator and is freely distributed to the
public. An advantage of these optical remote sensing image is
that it has more spectral information and is very sensitive to
capture vegetation disturbance caused by landslide activity
(Yang et al. 2013). Recently, the study of Sentinel-2 in natural
hazards (such as fault detection, floods, wildfire) has been
commenced (Notti et al. 2018; Sanchez et al. 2018; Elhag and
Alshamsi 2019), but its potential use in regional landslide haz-
ard studies has been less explored (Lacroix et al. 2018). In one
recent work, Lacroix et al. (2018) used Cosi-Corr technique with
Sentinel-2 images to detect precursors before a landslide occurs
in the French Alps. The Cosi-Corr technique compares two
images to produce ground deformation. It requires both images
to have a short temporal interval to be correlated, and large
displacements occur between both images (Leprince et al. 2007).
Uncertainties increase significantly with the increase of tempo-
ral interval, and the Cosi-Corr method have problems in detect-
ing slow movement over long periods.

In this work, we aim to develop a simple but effective method
to use time series of all available Sentinel-2 images to detect slope
movement over a long term. We took the Jinsha River landslide as
an example to attract attention from the landslide community to
fully exploit this lately available Sentinel-2 data.
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Study area
On 10 October 2018, a major landslide occurred on the west bank
of the Jinsha River (31°4′58B N, 98°42’19^ E, 3300 m a.s.l., Fig. 1).
This section of the Jinsha River is a natural boundary between
Sichuan Province and the Tibet Autonomous Region. The eleva-
tion of the landslide crown is 3700 m and the Minjiang River at the
landslide foot is 2900 m. Initiated on the west bank, landslide
materials rushed downslope and blocked the Jinsha River twice.
Interpretation of post-landslide Sentinel-2 images (Fig. 2) indi-
cates that the deposited materials on the opposite east slope of
the river reached an elevation of 3000 m. The volume of the Jinsha
River landslide was estimated to be ~ 2.4 × 107 m3 and it formed a
dammed lake of ~ 2 × 108 m3 (Fan et al. 2019). Rising water inun-
dated Boluo town 15 km upstream, and the subsequent dam
breached flood destroyed downstream houses as far as Lijiang city
in Yunnan Province, which is 500 km away (Xinhua 2018a).

The total area of the studied region is 5.88 km2 as shown in Fig. 2. It
is located in the upper stream of the Yangtze River (also known as the
Jinsha River in this section). The study area is tectonically active and is
a transition zone from the Tibetan plateau (mean elevation > 4000m)
to the Sichuan Basin (mean elevation ~ 500 m). Valleys are deeply
incised by large rivers. Tension cracks on the slope are clearly visible in
a Google Earth image in March 2011. The triggering reason for the
landslide in October 2018 is unknown, and there is no report on the
direct cause of this landslide at the moment. It is clear that this
landslide is a progressive one and probably existed for a few decades
(Xu et al. 2018). This area has a few earthquakes since 2000 (Fig. 1b,
data source: USGS), but no earthquake was recorded since 2016.

Earthquake should not be responsible for the final failure of the
landslide.

This study area has a monsoon climate and the annual precipita-
tion is 641.2 mm (30 years’ average from 1989 to 2018) and > 75%
precipitation occur between June and September each year (Fig. 3a).
Probably influenced by precipitation, the slope moves down gradually
for a few decades before its complete failure (Xu et al. 2018). By the
time the landslide occurred, accumulated precipitation in 2018 of the
study area reached 718 mm, significantly higher than previous years
(2015–2017, Fig. 3b). Although this amount of precipitation is not the
highest in history (Fig. 3c), considering the progressive movement of
slope this amount of precipitation could bemore effective in leading to
the final failure of the slope on 10 October 2018.

Although roads can be seen on the landslide surface from
historical Google Earth images, this region is sparsely populated
and human activity is unlikely the reason for the failure of this
landslide. Except for a few sections of roads on the top of the
landslide, there are no signs of human undercutting or other
interventions. In addition, local geological conditions may also
contribute to this landslide. The landslide head is composed of
fractured serpentine rock bordering with gneiss beneath. It is
reported that an active fault cut through the ridge of the slope
(Xu et al. 2018). It is possible that this deeply incised slope was
initially undermined by historical tectonic activities. Since then,
strains were accumulated with multi-year precipitation and the
crown deformed with tension cracks enlarged year by year. Near
the critical moment, shear stress was overwhelmed with more
accumulated precipitation in 2018 than in previous years.

Fig. 1 Location and topography of the study area. This study area is in east Tibetan Plateau (a). There are some historical earthquakes with MW > 4.0 since 2000 (b). The
nearest meteorological station is 18 km away from the landslide (c)
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Data
The Sentinel-2 constellation have much higher spatial resolu-
tion (10 m multi-spectral) and more frequent revisit interval
(5-day) than previously openly accessed data (such as the 16-
day interval 30-m Landsat images) in the world. Launched
recently, the Sentinel-2 time series data used in this area has
long and irregular time intervals. In this work, we
downloaded 25 images of Sentinel-2 Level-1C products from
November 13, 2015 to August 9, 2018. Of these Sentinel-2
images, there are three images in 2005, five images in 2016,
eleven in 2017 and six in 2018 (Table 1). At this level, these
multi-temporal images were registered better than 0.3 pixels
(Gascon et al. 2017). These images cover an area of 5.88 km2

(1.76 km × 3.34 km), totally include the landslide and are
cloud free at least for the landslide surface. To validate
Sentinel-2 results, a 2 m resolution Ziyuan-3 image on 13
November 2015 and a 1 m resolution Gaofen-2 image on 28
February 2018 were used.

Method
This work used time series optical images of Sentinel-2 to detect
slope movement before a major landslide occur. To detect slope
movement, three procedures were implemented. Firstly, NDVI
time series was composed and unsupervised classification was
applied to classify potential landslide scars. Secondly, NDVI
thresholds were determined to extract landslide scars for all
Sentinel-2 images. Detected landslide scars from two Sentinel-2
images were validated using results interpreted from higher spatial
resolution images. Finally, slope movement was analyzed using
detected landslide scars and NDVI time series.

Classify NDVI time series
Normalized Difference Vegetation Index (NDVI) is commonly
used in optical images to map landslide inventories (Yang et al.
2017; Zhang et al. 2018). By using NDVI in landslide interpretation,
the influence of shadows in mountain region can be minimized

Fig. 2 Sentinel-2 images and photos of the landslide. False color composite images before (on 4 August 2017) (a) and after (2 November 2018) the landslide (b). In map
(b) are two directions the photos of 1 and 2 were taken. Online source: photo 1 (Xinhua 2018b) and photo 2 (Baidu 2018)
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Fig. 3 Monthly average precipitation (1989–2018) of the nearest meteorological station (a), accumulated daily precipitation in 2015–2018 (b), and 30 years’ annual
precipitation from 1989 to 2018 (c)
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(Fiorucci et al. 2018). For all Sentinel-2 images in this work, we
calculated the NDVI,

NDVI ¼ ρnir−ρred
ρnir þ ρred

; ð1Þ

where, ρnir, ρred are reflectance of the near infrared and red bands.
Then, these NDVI images were stacked to form NDVI time series
with 25 layers in a chronological order using the Layer Stack
module in ENVI software version 5.1.

Unsupervised K-means classification method in ENVI was used
to classify the Sentinel-2 derived NDVI time series. Before
performing the K-means classifier, the number of classes must be
assigned. During classification, pixels cluster into this assigned
number of classes in the 25-dimension feature space (25 images)
by minimizing intra-class feature distances and maximizing inter-
classes distances (Zhu and Helmer 2018). Because we only use the
K-means unsupervised classifier to get a preliminary classification
map, default parameters in the ENVI K-means module were used
to perform the classification (e.g., class number is set to five).

Extract and validate landslide scars
In this work, landslide scars are defined as bare soil/rocks exposed
by slope movement before the landslide occurred. They can be
slope fissures or lose deposits released from the damaged slope,
which is different from surrounding vegetation. Based on the K-
means classification results, the class with potential landslide scars
was selected. For every NDVI image, mean NDVI was calculated
by averaging NDVI values in that class of potential landslide scars.
The mean NDVIs were used as thresholds to extract landslide scars
in each image.

To validate detected landslide scars, we collected two high
spatial resolution images that temporally match the Sentinel-2
images. The first one is a 2 m resolution Ziyuan-3 image taken
on 13 November 2015, and the second is a 1 m Gaofen-2 image
taken on 28 February 2018. Landslide scars on Ziyuan-3 and

Gaofen-2 images were manually interpreted with the assistance
of higher resolution images in Google Earth and are used as
reference maps to validate automatically extracted landslide scars
in Sentinel-2 images. Landslide scars in two Sentinel-2 images on
13 November 2015 and on 11 April 2018 were validated because they
have the least date difference with those higher resolution images
(Ziyuan-3 and Gaofen-2).

Detect slope movement
To detect slope movement, we analyzed both landslide scars and
NDVI time series. Using the landslide scar thresholds, we extract-
ed landslide scars on every Sentinel-2 image. We grouped landslide
scar images into three periods: 2015–2016, 2017, and 2018 and
counted the times of every pixel detected as landslide scar in that
period. The counts were normalized to the range of 0~1 divided by
their total image number in their corresponding periods. Then, we
get three images of the scar count percentage and displayed the
three images in an RGB composite to illustrate slope movement.

Based on the RGB composite, NDVI time series on the landslide
was further analyzed. To use vegetation dynamics to indicate slope
movement before the landslide occurred, only maximum NDVI in
these 25 images larger than 0.3 were considered and a rule was set:

if max NDVI2016ð Þ > max NDVI2017ð Þ > max NDVI2018ð Þ ð2Þ

or max NDVI2016ð Þ < max NDVI2017ð Þ < max NDVI2018ð Þ ð3Þ

then; NDVIchange ¼ max NDVI2016ð Þ−max NDVI2018ð Þ ð4Þ

where, NDVI2016, NDVI2017, and NDVI2018 are NDVI values of a
specific pixel in 2016, 2017, and 2018. By using Eqs. (2–4), the
difference in annual maximum NDVI between 2016 and 2018 was
calculated for pixels with monotonous decrease/increase changes.

Table 1 List of Sentinel-2 images used in this work (asterisks in brackets indicate clouds in the image)

Seasons 2018 2017 2016 2015 Date buffer

Spring 16 Jan

26 Jan

11 Apr(*) 5 Feb

5 Jun 16 May 11 May 24

Summer 10 Jun

25 Jun(*) 15 Jul

25 Jul 30 Jul(*) 30 Jul(*) 5

9 Aug(*) 4 Aug

Winter 24 Aug

8 Sep(*)

18 Oct 7 Nov 13 Nov 16

28 Oct 7 Dec 23 Nov

27 Dec 23 Dec
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For example, monotonous decrease in annual maximum NDVI in
Eq. (3) can be used to indicate depressed slope vegetation by
continuous landslide scarp expansion, whereas monotonous in-
crease in Eq. (4) can be used to show landslide head with vegeta-
tion moves downslope, replacing non-vegetation landslide toes at
the given location.

We also quantified NDVI changes in spring, summer, and
winter seasons to indicate slope movement of different times.
The rules were similar but we only considered NDVI series that
are not landslide scars using extracted thresholds. Monotonous
NDVI changes in 11 May 2016, 16 May 2017, and 5 July 2018 were
calculated to indicate slope movement in springs of 2016–2018.
The maximum date difference in these three images is 24 days
(date buffer in Table 1). Monotonous NDVI changes in 30 July 2016,
30 July 2017, and 25 July 2018 were calculated to indicate slope
movement in summers of 2016–2018 with date buffer of 5 days, and
NDVI changes in 13 November 2015, 7 November 2016, and 28
October 2017 were calculated for winters of 2015–2017 (date buffer
of 16 days).

Results

NDVI time series classification
Although class number was set to five in the K-means unsuper-
vised classification model, the classification image around the
landslide has three major classes: consistent bare land surface with
no vegetation (Class 1, red pixels in Fig. 4), circumambient class
(Class 2, green pixels in Fig. 4), and consistent vegetation class
(Class 3, blue pixels in Fig. 4). Class 1 has consisted of ground
features with consistently no vegetation cover, including landslide
scars (shown as upper major scarp and lower toes in Fig. 4), roads,
and the Jinsha River. In this class, roads and river are linear
features, whereas landslide scars are irregular and located on the
same slope. Class 3 is ground features with consistent vegetation

cover. Class 3 on the landslide has two part: the upper part is the
unbroken landslide head and the lower part is the intact slope
below the landslide toe. Bordered by Class 1 and Class 3, Class 2 is
a transition zone between these two classes, possibly denoting
unstable vegetation signals in this zone. Using sub-meter high
spatial resolution from Google Earth, we found Class 4 and Class
5 are probably open and closed canopy evergreen coniferous
forests, respectively. Therefore, these two classes are discarded
for further analysis.

Landslide scar extraction and validation
From unsupervised classification, we can see that Class 1 are
landslide scars of consistently no vegetation. To automatically
extract bare landslide scars in each Sentinel-2 image, NDVI thresh-
olds were determined by using the mean NDVI of Class 1 in each
image. Figure 5 shows thresholds for the 25 Sentinel-2 images used
in this work in chronological order. From this result, we can see
that NDVI of the landslide scars remains in low values in the study
period (< 0.3). Both seasonality and thin clouds can influence
NDVI values on the landslide scars. NDVI values are higher in
summer and lower in winter. This is because the spatial resolution
of Sentinel-2 image is 10 m, and pixels at the landslide scar may be
mixed by neighboring vegetation. It is also possible that herba-
ceous vegetation may grow in summer seasons during transient
stable periods. By visually examining Sentinel-2 images, we found
the high NDVI thresholds on 8 September 2017 and 30 July 2016
were caused by thin clouds on the landslide scar.

By comparison, we found the spatial patterns of the reference,
and the detected scars are very similar (Fig. 6a, b). Careful exam-
ination reveals that there are larger omission errors than commis-
sion errors (Fig. 6 and Table 2). This means that the Sentinel-2
images perform well in identifying landslide scars (89.7% in 2015
and 90.8% in 2018) but at the cost of missing some true ones
(missed 16.4% in 2015 and 25.1% in 2018). Although the spatial

Fig. 4 K-means unsupervised classification of the NDVI time series surrounding the Jinsha landslide
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resolution of Gaofen-2 image (1 m) in 2018 is better than the
Ziyuan-3 image (2 m) in 2015, the producer’s accuracies in 2015
(83.6%) are much higher than that of 2018 (74.9%). This is because
the Sentinel-2 image in 2015 have the same date with the Ziyuan-3
image, whereas the date difference between the 2018 Sentinel-2 (11
April) and Gaofen-2 (28 February) images are 42 days. It is possi-
ble that the landslide surface experienced some changes during
that time. Compared with the result in 2015, larger omission errors
occurred in the extracted result of 2018. These omissions mainly
occur on the uppermost part of the landslide, whereas the bound-
ary of the lower part is accurate. It is likely that those undetected
part is not active at that moment, highlighting sensitivity of the
sensors onboard Sentinel-2 in detecting vegetation signals.

Slope movement indicated by landslide scar counts
To display slope movement, we made an RGB composite image by
putting the scar count percentage of 2018 in the red channel, the
resulting image of 2017 in green and 2015–2016 in blue channel

(Fig. 7). Because this RGB composite is composed in the order of
2018 to 2015 in the RGB channels, warm colors (e.g., red) indicate
increasing counts of labeled landslide scar for the pixel from 2015
to 2018. In contrast, cold colors (e.g., blue) indicate decreasing
counts of landslide scars from 2015 to 2018. Warm colors in the
RGB composite image mean the landslide scar in 2018 are newly
emerged features and cold colors mean the previously existed
landslide scar disappeared. White colored pixels indicate pixels
persistently labeled as landslide scars (notice that water can be
easily excluded). Gray-colored pixels are never labeled as landslide
scar in all periods.

From the RGB composite image, we can see colors on the
landslide are distinctly different from the surrounding ground
features. To analyze slope movement, we delineated two profiles,
P1 and P2, along the slope from the mountain range to the Jinsha
River valley. Along P1, there are warm color pixels on the lower
boundary of the upper major scarp and cold color pixels on the
upper boundary of the lower toes. This indicates that the lower

0.12

0.11 0.10

0.14

0.29

0.12

0.08
0.06

0.080.08

0.08

0.13

0.20

0.23

0.210.22

0.26

0.17

0.16

0.07

0.14

0.13

0.19

0.22

0.24

0.00

0.20

0.40

IVDN

2016 2017 2018

Thin clouds on scars

2015

Fig. 5 Automatically determined NDVI thresholds to extract landslide scars for each Sentinel-2 image used in this work
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boundary of the upper major scarp enlarged and the upper bound-
ary of the landslide toes retreated. It is probably because the slope
between the upper major scarp and the lower toes slides down.

We also delineated another profile, P2, to analyze slope move-
ment. Compared with P1, both the red-colored pixels in the lower
boundary of the upper major scarp and blue colored pixels in the
upper boundary of the lower toes are fewer, indicating this part of
the slope has smaller slope displacements compared to P1. How-
ever, there are many red pixels in the lower boundary of the lower
toes. This may not be caused by slope displacement, but rather
caused by the release of debris from the broken of the slope,
indicating that the lower part of the slope is very active before
the landslide occurred.

Slope movement indicated by NDVI changes
We further analyzed NDVI time series for different colors shown
in the RGB composite image (Fig. 8). Pixels in white color (Fig. 7)
have consistently lower NDVI values compared with the other
types, and they are major scarps and toes of the landslide without
any vegetation throughout the study period. Point 1 in Fig. 7 have
cold blue color and its NDVI time series is displayed as the typical
increasing NDVI (Fig. 8). This kind of pixels has cold colors and is
mainly located on the upper boundary of the lower toes. Point 3 in
Fig. 8 have warm color, and its time series is displayed as typical
decreasing NDVI (Fig. 8). This type of pixels is at the lower
boundary of the upper major scarp and lower boundary of the

lower toes. Along the profile P1 (Fig. 7), red pixels at the lower part
of the upper major scarp and the blue pixels at the upper part of
the lower toes clearly indicate that the slope between them (i.e., the
landslide head) moved down. During this process, the landslide
head with intact vegetation moved downward replacing bare land-
slide toes and leading to NDVI decrease at the lower part of the
upper major scarp and NDVI increase at the upper part of the
lower toes. NDVIs of gray-colored pixels (point 2 in Fig. 7) be-
tween the lower toes and upper major scarp of the landslide is
stable, indicating the landslide head was intact as it moves down.

Based on NDVI time series, we analyzed inter-annual slope
movement before the landslide occurred. We calculated annual
maximum NDVI changes in 2016–2018 (Fig. 9a), NDVI changes in
springs (Fig. 9b), summers (Fig. 9c) of 2016–2018, and changes in
winters of 2015–2017 (Fig. 9d). From Fig. 9a, we can see that most
monotonous decrease of annual maximum NDVI (red pixels) is
found on the landslide surface. In particular, the signal of de-
pressed vegetation was detected at the lower part of the upper
major scarp (red pixels on black lines). There is also some
NDVI decrease around the lower toes (red pixels around white
lines). These NDVI decrease shows depressed vegetation signal
as the landslide head moves down along the slope. Similar
patterns on the landslide surface can be observed in the spring,
summer and winter seasons (Fig. 9b–d). Monotonous NDVI
increase can be found at the bottom of the landslide head
(blue pixels on white lines, particularly in Fig. 9a, b), indicating

Table 2 Accuracy of landslide scars mapped from two Sentinel-2 images

Correct (m2) Omission error (m2) Commission error (m2) User’s accuracy Producer’s accuracy

2015 179,119.7 35,128.7 20,623.6 89.7% 83.6%

2018 189,183.0 19,113.0 63,553.8 90.8% 74.9%

Fig. 7 RGB composite image of the landslide scar in three periods: 2015–2016, 2017, and 2018. Gray color has zero value in these three periods, and white color is
consistently labeled as landslide scar (The Jinsha River is also in white color but can be easily excluded). Points 1, 2, and 3 are the three selected pixels with their NDVI time
series analyzed in Fig. 8
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that the landslide head with intact vegetation cover moves
downward replacing bare landslide toes. There are also some
scattered pixels with monotonous increase/decrease of annual
NDVI on other parts of the landslide surface, which probably
indicates many fissures on the landslide head and their down-
slope movements.

There is some difference in NDVI decrease of different seasons
(red pixels in Fig. 9b–d). Similar patterns of inter-annual NDVI

decrease were observed in springs and summers (red pixels in Fig.
9b, c) and fewer pixels with NDVI decrease was found for winters
(red pixels in Fig. 9d). This result indicates that slope movement in
the period of 2016–2018 (spring and summer change) is more severe
than in 2015–2017, and significant slope displacement may occur
from November 2017 to July 2018, the last year the slope fails.

Monotonous NDVI increase is widely distributed in the study
area, the majority of which is located in vegetation consistent areas
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Fig. 8 Time series of three typical NDVI time series on the moving landslide surface. The typical decreasing NDVI pixel from the major scarp indicates the expansion of the
landslide’s main scarp. The typical increasing NDVI shows the downslope movement of the landslide body (These three time-series NDVI were derived from points in Fig. 7)
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Fig. 9 Annual maximum NDVI difference in 2016–2018 (a) and inter-annual NDVI difference for springs in 2016–2018 (b), summers in 2016–2018 (c), winters in 2015–
2017 (d). Take the annual maximum NDVI changes (a) as an example, positive values (red color) show continuous decrease of annual maximum NDVI in these 3 years
(2016–2018) and negative values (blue color) show continuous increase from 2016 to 2018. Polygons of the landslide scarps (black polygons) and toes (white polygons)
were extracted from Sentinel-2 image on 4 August 2017
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unrelated to scarps and toes of the landslide. This is probably
caused by clouds in some images (asterisk marked after date in
Table 1) and natural vegetation fluctuation in different dates of
images used for computation. For example, two out of three
images used to calculate summer NDVI changes in 2016–2018 have
clouds and the only summer image in 2016 has clouds, which
directly leads to abnormal changes for both summer and annual
maximum NDVI changes. In addition, there are 26 and 14 days’
difference for calculating spring and winter NDVI changes and
inter-annual vegetation conditions is probably different, which can
also explain monotonous NDVI increase on non-landslide slopes.

Discussion

Capability of using Sentinel-2 to detect slope movement
Sentinel-2 is a recently launched global coverage, high spatial
resolution (10 m in near-infrared, red, green, and blue bands),
short revisit interval (5-day at the Equator) dataset. Although
the spatial resolution of Sentinel-2 images is much coarser than
sub-meter high optical images, such as WorldView or QuickBird
images, it has much shorter revisit time and is cost-free. Despite
these advantages rivals all others, its potential use in regional
landslide hazard studies has been less explored (Lacroix et al.
2018). In this work, we proposed a method to use time series of
Sentinel-2 optical images to capture slope displacement from
November 2015 to August 2018 before the 10 October 2018 Jinsha
River landslide. We first detected scarps and toes of the land-
slide by unsupervised classification. Then, slope movement was
successfully detected before the landslide occur by examining
changes of landslide scars and vegetation signals (NDVI). Our
results were validated by using two high spatial resolution
images in November 2015 and February 2018. This work dem-
onstrated the potential of using Sentinel-2 time series data to
detect slope displacement before landslides occur in large
regions.

Compared with SAR technique, it is difficult for the 10 m
resolution Sentinel-2 images to estimate slope displacement at
a few centimeters. However, optical images such as Sentinel-2
have advantages to detect fast ground motions, which may
pose problems in SAR techniques (Stumpf et al. 2017). For
example, ground displacements of a few centimeters per day
could render incoherence in SAR images (Wright 2002) but
can be efficiently detected by our proposed method using
Sentinel-2 images. In addition, the proposed Sentinel-2 algo-
rithm is much easier than SAR techniques to detect slope
movement. Vegetation signals are considered as noise and
may lead to incoherence in SAR techniques, limiting their
use in vegetation covered region. In contrast, our method
uses changes in vegetation signal to detect slope displacement,
and it can provide an ideal supplementary for SAR techniques
over dense vegetation regions.

There is a lack of in situ measurements and sub-meter high
spatial resolution images to estimate uncertainties in this work.
Using two high spatial resolution images in 2015 and 2018, we
validated extracted landslide scars from Sentinel-2 images.
Omission errors in 2018 (25.1%) is likely caused by different
acquisition date of Gaofen-2 (28 February 2018) and Sentinel-2
images (11 April 2018). However, those omissions occur on
inactive parts of the landslide and extracted result of active

landslide parts are very accurate (e.g., lower boundary of the
upper major scarp and boundaries of lower toes in Fig. 6). This
result means that the proposed method is very sensitive to
active parts of the landslide, even the slope movement is minor.
This method may work well for slopes that caused vegetation to
depress by releasing lose materials but have minor displace-
ment. In addition, this method is easy to implement and sensi-
ble to slope movement for a large area. In this work, the
proposed method only aims to detect slope movement, dis-
placement estimation of the slope may be considered in future
work.

Influence of clouds and vegetation phenology
In this work, we selected Sentinel-2 images with no clouds on
the landslide surface. Clouds are major noises in optical remote
sensing images and could severely affect image quality. To
detect actual vegetation changes caused by landslides, pixels
contaminated by clouds should be removed. Although prelimi-
nary cloud mask has been developed for Sentinel-2 dataset, its
accuracy is still too low (Coluzzi et al. 2018). To monitor slope
displacement over large regions, time series of Sentinel-2 images
are needed, and reliable cloud masks are required. Therefore,
robust algorithms should be developed to accurately detect
clouds in Sentinel-2 images.

Another problem to use vegetation signals in optical im-
ages is the influence of vegetation phenology (Yang and Qi
2017), which is defined as the natural fluctuation of NDVI
values in different seasons of a year (Fig. 10). Influenced by
vegetation phenology, it is difficult to derive true NDVI
changes caused by landslides by comparing vegetation signals
of different seasons. To overcome phenology influence, we
used different thresholds to extract landslide scars in the
Sentinel-2 images and compared inter-annual vegetation sig-
nals (NDVI) of similar dates to derive slope movement. Be-
cause there are not enough Sentinel-2 observations in our
work, we used annual maximum NDVI values and images of
similar dates in three consecutive years to overcome the
influence of vegetation phenology. In the future, as the
Sentinel-2 platform operates regularly, dense and regular ob-
servations (5-day or less interval) would be possible to over-
come phenology influence.

Despite we tried to minimize the influence of clouds and
phenology in this work, some marked changes irrelevant to slope
movement were also detected. Take the spring result (Fig. 9b) as
an example, there are many marked changes colored blue, which
means NDVI in 2016 is significantly lower than the value in 2018.
This is because the image in 2016 was taken on 11 May, whereas
image in 2018 was on 5 June. Because of vegetation phenology,
vegetation in May–June experience dramatic increase in NDVI
(Fig. 10) and normally NDVI values in May should be lower than
that of June. The situation for the winter result (Fig. 9d) can also
be explained by inter-annual vegetation phenology.

The result of summer can be explained by cloud contamination
in Sentinel-2 images. From Sentinel-2 images (Fig. 11), we can see
that clouds exist in 2016 (white clouds and dark shadows, Fig. 11b)
and 2017 (little clouds, Fig. 11c). NDVI decrease (blue pixels) in
summer result can be attributed to cloud contamination in 2016.
Clouds and its shadows in 2016 image significantly lowered NDVI
values, leading to marked changes on the opposite banks.
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Other factors that may influence the result
This technique may be influenced by a few other factors, such as
landslide size, climate, and terrain conditions. Limited by the
10 m spatial resolution of Sentinel-2, landslide scars smaller than
a single 10 m × 10 m pixel cannot be detected. With this resolu-
tion, this technique is more efficient to monitor large landslides
of similar sizes. If vegetation disturbed by slope movement re-
covers quicker than the observation cycle, it would be difficult
for the technique to find slope movement. For example, in
regions persistently covered by heavy clouds, snow, or other
unfavorable conditions, valid observation intervals for the opti-
cal Sentinel-2 images would be much longer. If vegetation dis-
turbed by slope movement during two valid observations

recovered to pre-disturbance level, this technique could fail. It
is also possible that if the vegetation is much too dense (e.g.,
heavily forested terrains) that the signal of disturbed vegetation
by slope movement may be obscured. In such case, the technique
could not applicable. It is also possible that if the displacement is
very minor, the vegetation signal cannot be detected.

Although changes in vegetation species, land cover change,
long-term vegetation changing trends, and other factors may cause
signal changes in vegetation, their spatial and temporal patterns
are different to changes caused by pre-landslide slope movement.
Landslides are ground movements along the slope driven by
gravity and the process is unique. Vegetation changes caused by
slope movement are closely related to geomorphic features. For

Fig. 10 Multi-year (Nov. 2015–Aug. 2018) cloud-free NDVI time series of the BStable^ pixel in Fig. 8. Solid black line is the ordinary least square (OLS) regression line (Zhu
et al. 2014)

Fig. 11 Summer result of NDVI change (a), Sentinel-2 image on 30 July 2016 (b), on 30 July 2017 (c), and on 25 July 2018, respectively
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example, near the landslide crown, vegetation will get sparser
(decrease of NDVI), when tensions cracks get larger. As the slope
moves down, affected vegetation (not necessarily mortality)
should display changes related to this geomorphic process. They
are different in the flowing points: (1) pre-landslide features are
site-specific, vegetation disturbances are probably constrained on
a single slope, whereas other disturbances are widespread phe-
nomenon; (2) slope movement is controlled by topography, but
the other vegetation disturbance is not closely related to terrain
characteristics (Yang et al. 2017).

Despite this work did not estimate moving rate of the landslide
before failure, it has the potential to estimate slope movement by
decomposing sub-pixels. As more Sentinel-2 images become avail-
able in a single year, we can use dense observations to model
annual mathematical NDVI curves (as shown in Fig. 10). Based
on those NDVI models, it is possible to estimate sub-pixel slope
movement by decomposing Sentinel-2 pixels using all available
images of the year (Deng and Zhu 2018). Therefore, more efforts
are needed to fully exploit this time series optical data in detecting
slope displacement at a regional scale.

Conclusion
In this work, we explored the potential use of time series Sentinel-2
data in detecting slope movement before the occurrence of the
Jinsha River landslide in October 2018. Based on this dataset, we
developed a simple but effective method to detect slope movement
using changes of vegetation signals. This method is easy to per-
form and sensitive to vegetation changes caused by slope displace-
ment. Using the 10 m spatial resolution Sentinel-2 images, slope
movement in 2015–2018 was detected before the landslide oc-
curred. Different from SAR and very high-resolution optical tech-
niques, the proposed method favors rough mountain terrains
covered by vegetation.

By exploiting its high temporal resolution, slope displace-
ment was found more severe in the last year before the slope
fail (since November 2017). At full load, Sentinel-2 data have
high spatial and temporal resolution (10 m in near-infrared, red,
green, and blue bands, 5-day revisit interval at the Equator) and
is cost-free. In the future, with the platform continues working,
more data will be accumulated and time series of a year with 5-
day interval or high can be achieved. Well-registered optical
time-series images have the capability to detect pre-landslide
slope movement in large regions. This dataset should be fully
exploited in the landslide community, and we call for more use
of such time consistent, cost-free datasets in future for landslide
risk reduction studies.
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