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Reconstruction of the 1783 Scilla landslide, Italy:
numerical investigations on the flow-like behaviour
of landslides

Abstract This paper presents a mass flow model that includes
gravity force, material stresses, drag force and topography effects
solving a set of hyperbolic partial differential equations by using a
so-called depth-averaged technique. The model is non-linear and
general enough to tackle various problems of interest for geophysics
and environmental engineering, such as the dynamic evolution of
flow-like avalanches, the dam break problem (involving only water
flow) and the generation of tsunami waves by landslides. The model
is based on a Eulerian fluid solver, using a second-order central
scheme with a minmod-like limiter; is tested against a number of
typical benchmark cases, including analytical solutions and experi-
mental laboratory data; and also compared with other numerical
codes. Through this model, we study a historical tsunamigenic event
occurred in 1783 in Scilla, Italy, that resulted to be catastrophic with a
toll exceeding 1500 fatalities. The landslide is reconstructed by a
mixture debris flow, and results are compared with the observational
data and other numerical simulations.

Keywords Geophysical flowmodels . Numerical algorithm
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Introduction
The mass flows treated in this paper consist of rocks or poorly sorted
sediments and water, rapidly moving across a steep-slope region and
mainly driven by gravity force. It is a kind of natural hazard induced
by rainfalls, earthquakes and some other factors. Solid and fluid
forces act in concert and both vitally influence the motion of these
flows, contributing to their high mobility and unique destructive
power (Iverson 1997). They are one of the most catastrophic types
of natural hazards due to their extremely high velocity and impact
forces. To study and quantify the flow-like behaviour of geophysical
flows, governing equations are derived from the principles of mass
and momentum conservation, based on the framework of continu-
um mechanics. Significant advancements have occurred during the
last several decades, with development of more and more sophisti-
cated models. Single-phase dry granular avalanches (Savage and
Hutter 1989), single-phase debris flows (Chen 1988), two-fluid debris
flows (Pitman and Le 2005) and two-layer flows (Fernández-Nieto
et al. 2008; Meng et al. 2017) have given gradually more detailed
descriptions of the debris flows complexity.

On the basis of the work by Savage and Hutter (1989), most of
the current mass flow models use a set of depth-averaged non-
linear equations to describe their evolution including shock wave
formation. They play an increasingly important role in the risk
assessment of natural hazards, including floods, landslides, debris
flows and other ‘flow’ movements that can be described by a
shallow water-like model with different rheology laws (Hungr
and McDougall 2009). To obtain sufficiently accurate and stable
computations with shock capturing, various numerical schemes

have been developed, including Lagrangian or Eulerian tech-
niques, mesh-based or mesh-free (e.g. Mangeney et al. 2003;
Pastor et al. 2009; Savage and Hutter 1989; Tai et al. 2002).

In this paper, we present a mass-flow model based on a second-
order central difference scheme (NT) that was originally proposed by
Nessyahu and Tadmor (1990) and we apply it to study a catastrophic
historical landslide that occurred in Italy in 1783. To test the accuracy
and robustness of the code, numerical results are compared with
analytical solutions, which exist only for ideal cases, and with
experimental data. The analytical solutions we use as benchmark
cases are the solution of a typical dam break problem given by Stoker
(1957) and the solution for simplified granular flows provided by
Faccanoni and Mangeney (2013). The results of the 2D dam-break
problem we treat numerically are compared with published data
obtained by other numerical approaches, i.e. with results by
Fagherazzi et al. (2004) and by Ouyang et al. (2013). As for the
experimental data, we use data from a hydraulic laboratory experi-
ment performed by the EU CADAM (European Union Concerted
Action on Dam Break Modelling) where a dam-break over a trian-
gular hump was reproduced (e.g. Brufau et al. 2002; Liang and
Marche 2009; Liu et al. 2016; Mao et al. 2016). According to the
benchmark results, we can consider our code as totally validated
since it performs very well for all tested cases (including analytical
solutions and experiment data).

The catastrophic event we analyse in this paper is the
tsunamigenic landslide that occurred in 1783 in Scilla, southern
Italy, which6 is a very important case for the assessment of risk in
the Tyrrhenian Calabria and northern Sicily. It was already
investigated by Mazzanti and Bozzano (2011) and Zaniboni et al.
(2016). It is simulated here with our code, solving a modified flow-
like model proposed by Xia and Liang (2018) to treat complicated
topographies based on a global Cartesian coordinate system. Our
numerical investigations mainly focus on the dynamic evolution
and on the deposit region of the landslide. We test the perfor-
mance of a linear and a quadratic drag law and conclude that the
latter provides a better description of the deposit distribution.

Governing equations
Based on the conservation law of mass and momentum, different
numerical models have been developed over years (e.g. George
and Iverson 2011; Iverson and Denlinger 2001; Meng and Wang
2016; Pudasaini 2012; Savage and Hutter 1989), which can be given
the form of the classical SWEs (shallow water equations) and can
be expressed in vector notation as follows:

∂U!
∂t

þ ∂ F!
∂x

þ ∂G!
∂y

¼ S
! ð1Þ
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In the LHS of Eq. (1), U
!

is the vector of the conservative

variables and F
!

and G
!

represent down-slope and cross-slope
momentum flux respectively. Further, t, x and y denote time,
down-slope direction and cross-slope direction respectively. As

for the RHS, S
!

is the vector of the source terms. For a traditional

shallow water model, the conservative vector U
!

includes the
depth-averaged height h and the fluxes along x and y directions.

The momentum flux vectors F
!

and G
!

contain fluxes and gravity
effects. Basal topography and friction terms are included in the

source term S
!
. More details are explained by formulas in the next

sections.

Numerical scheme
Combining a first-order Lax–Friedrichs scheme (Lax 1954) with a
piecewise linear reconstruction, the central Nessyahu–Tadmor
(NT) scheme (Nessyahu and Tadmor 1990) we adopt here com-
putes the staggered cell averages at the interfacing break-points
and has the advantage of the simplicity of a Riemann-solver-free
approach. In this section, we explain the cell average and the linear
reconstruction techniques of the NT scheme that is written in a
conservative form to automatically satisfy the conservation prop-
erties of the original equations. Integrating the conservation law of
Eq. (1) on a cell in both space and time provides the full set of
discrete equations for the numerical code. A staggered grid algo-
rithm is adopted since it provides an automatic mechanism to
control spurious oscillations, which are further reduced by means
of a suitable flux limiter method. The scheme is a so-called shock
capturing scheme, solving the Eq. (1) on a fixed Cartesian grid
(Eulerian approach) and identifying the shocks by the regions with
large gradients. For more details, one can refer to Tai et al. (2002).

Cell average
In order to explain our numerical scheme better, we use a 1D case
first, where the governing equations take the following form:

ut x; tð Þ þ f x u x; tð Þð Þ ¼ s u x; tð Þð Þ ð2Þ

Here u is the conservative variable, f is the momentum flux
along x direction and s is the source term. Hereafter, the subscripts
t, x represent derivatives with respect to the time and x directions.
To solve this problem, the idea of cell average is applied on a
staggered grid.

Un
i ¼ 1

Δx
∫xiþ1

2
xi−12

u x; tnð Þdx;
Un

iþ 1
2
¼ 1

Δx
∫xiþ1

xi u x; tnð Þdx
ð3Þ

Here, U denotes cell-average values. The subscript i and the
superscript n represent at the ith node and at the current state
respectively. The center of the interval (xi − 1/2, xi + 1/2) is xi, and the
interval is named as cell Ii. Thus, the interval (xi, xi + 1) is naturally
denoted as cell Ii + 1/2. Taking the cell Ii as an example and inte-
grating the hyperbolic equations in time over the interval (tn, tn + 1)
and in space over the interval (xi−1

2
; xiþ1

2
), one obtains the follow-

ing:

∫xiþ
1
2

xi−12
∫t

nþ1

tn ut x; tð Þdxdt ¼
−∫xiþ1

2
xi− 12

∫t
nþ1

tn f x u x; tð Þð Þdxdt
þ∫xiþ

1
2

xi− 12
∫t

nþ1

tn s u x; tð Þð Þdxdt
ð4Þ

that can be easily written as follows:Z xiþ 1
2

xi− 12

u x; tnþ1ð Þdx ¼
Z xiþ1

2

xi−12

u x; tnð Þdx

−
Z tnþ1

tn
f u xiþ 1

2
; t

� �� �
− f u xi− 1

2
; t

� �� �� �
dt

þ
Z xiþ 1

2

xi− 12

Z tnþ1

tn
s u x; tð Þð Þdxdt

ð5Þ

The LHS and the first term of the RHS of the above equation
can be further manipulated by the cell average technique:

∫xiþ
1
2

xi−12
u x; tnþ1ð Þdx ¼ ΔxUnþ1

i

∫xiþ1
2

xi−12
u x; tnð Þdx ¼ Δx

2
Un

i− 1
4
þ Δx

2
Un

iþ 1
4

ð6Þ

As for the other terms in the RHS, they similarly can be
transformed to the following:Z tnþ1

tn
f ðuðxiþ 1

2
; tÞÞ− f ðuðxi− 1

2
; tÞÞ

� �
dt

¼ Δt f u
nþ 1

2
iþ 1

2

� �
− f u

nþ 1
2

i− 1
2

� �� � ð7Þ

∫xiþ1
2

xi−12
∫t

nþ1

tn s u x; tð Þð Þdxdt
¼ ΔtΔx

2
s U

nþ 1
2

iþ 1
4

� �
þ s U

nþ 1
2

i− 1
4

� �� � ð8Þ

where uni is used to denote u(xi, t
n).

By a piecewise linear approximation, we can assume the fol-
lowing:

Un
i� 1

4
¼ uni� 1

2
∓
Δx
4

uxð Þni� 1
2

ð9Þ

Further, the values at half-time step can be similarly predicted
by Taylor’s expansion and the original equation Eq. (2):

u
nþ 1

2
i� 1

2
¼ uni� 1

2
þ Δt

2
utð Þni� 1

2

¼ uni� 1
2
−
Δt
2

f x
� �n

i� 1
2
þ Δt

2
sð Þni� 1

2

ð10Þ

U
nþ 1

2
i� 1

4
¼ u

nþ 1
2

i� 1
2
∓
Δx
4

uxð Þnþ 1
2

i� 1
2

ð11Þ

Therefore the cell average values Unþ1
i can be obtained from the

original values at the previous time step at the nodes xi−1
2
; xiþ1

2

denoted as uni∓1
2
. Based on the present scheme, on integrating
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values in the intervals Ii + 1/2 and Ii, the values of the original nodes
can be updated after two time steps. Figure 1 explains the proce-
dure of the time advance process.

Flux limiter
To attenuate possible spurious oscillations in the numerical solu-
tion, a flux limiter method is applied to conduct the second-order
piecewise linear reconstructions. To satisfy the non-oscillatory
property, the cell average derivative is determined by a generalized
minmod-like limiter involving a parameter θ (Kurganov and
Tadmor 2000).

uxð Þni ¼ MM θ
uni −u

n
i−1

Δx
;
uniþ1−u

n
i−1

2Δx
; θ

uniþ1−u
n
i

Δx

� �
ð12Þ

where θ is a predefined parameter and 1 ≤ θ ≤ 2. MM denotes the
function of the minmod limiter expression. For the present flux
limiter involving three values, i.e. MM(z1, z2, z3):

minmod z1; z2; z3ð Þ ¼
min z1; z2; z3f g; if z1;2;3 > 0
max z1; z2; z3f g; if z1;2;3 < 0
0; otherwise:

8<
:

Stability condition
The CFL (Courant–Friedrichs–Lewy) stability condition is used to
ensure that the maximum phase velocity cmax is always smaller
than the speed associated with the grid, i.e. Δx/Δt, and gives the
expression of the adaptive time step for solving the governing
equations:

Δt≤k
Δx
cmax

ð13Þ

cmax ¼ max
∀i

jλ minð Þ
i j; jλ maxð Þ

i j
� �

ð14Þ

where λ minð Þ
i and λ maxð Þ

i are the minimum and maximum eigen-
values of the Jacobian matrix ∂ F!=∂U!

� �n

i
. The parameter k is

usually taken less than 1/0.5 for the NT scheme applied to 1D/2D
cases, and k = 0.475 for 2D simulations is suggested by the numer-
ical experiments conducted by Jiang and Tadmor ( 1998).

Extension to two-dimensional cases
With a 2D cell, the formulas given in the previous section have to
be adapted to cover both space directions. Each loop of calculation
is divided into two time steps. In the first time step, the values of
cell average, denoted as Unþ1

iþ1=2; jþ1=2 are updated from the original

nodal values, denoted as uni; j. In the second time step, the values of

cell average Unþ2
i; j are updated from the values unþ1

iþ1=2; jþ1=2 obtained

from the first time step. Thus, the values atthe original nodes are
updated every two time-steps calculations. Figure 2 illustrates this
procedure. The operation is carried out on a matrix with the same
size, which is friendly for programming.

Benchmarks

Classical ‘dam-break’ problem
The dam-break problem is a classical benchmark for shock-
capturing numerical schemes and has been widely used for mass
flow models validation. The analytical solution of this kind of
Saint-Venant equations is reviewed in Faccanoni and Mangeney
(2013). The governing equations can be given the following form:

U
!¼ h

hu

� 	
; F

!¼ hu
hu2 þ 1

2
gh2;

" #
; G

!¼ 0; S
!¼ 0 ð15Þ

where h is the height of water, g = 9.81 m/s2 is the gravity acceler-
ation, u is the x direction velocity. The initial condition is that the
water is still, and its level has an abrupt jump from the higher
constant value h1 to the lower constant value h2. We ran very many
experiments that all gave very satisfactory results. What we show
here refers to the same configuration treated by Louaked and
Hanich (1998), i.e. the initial upstream depth is set to h1 = 1.0 m
and the downstream depth is set as h2 = 10−6 m. The adopted fixed
space step is Δx = 0.01 m. The numerical and analytical solutions
for a specific time t = 0.1 s are compared in Fig. 3 to show that the
shock wave is well captured by the present method.

Another typical benchmark for mass flows is the debris mixture
flowing over a rough slope inclined at an angle α, described by the
following equations:

U
!¼ h

hu

� 	
; F

!¼ hu
hu2 þ 1

2
βxh

2;

" #
;

G
!¼ 0; S

!¼ 0
hgcosα tanα−tanδð Þ

� 	 ð16Þ

where βx = g cos α and δ are the basal friction angles. If lateral
Earth pressure is taken into consideration, we have βx = Kxg cos α,
where Kx is the lateral Earth pressure coefficient (Savage and
Hutter 1989) along the x direction. The model adopted hereafter
assumes that lateral Earth pressure coefficient is equal to 1. Here

Fig. 1 Stencil for 1D cases. Assume that the initial computational domain includes
three values uni−1, u

n
i and uniþ1, denoted as black-filled circles. With the

information at a ghost node uniþ2 shown as a black-filled rectangle,
the values of middle points unþ1

i−1=2, u
nþ1
iþ1=2 and unþ1

iþ3=2, marked as
unfilled circles can be obtained by thementioned strategy. Moreover,
with the values at another ghost node unþ1

i−3=2 marked as an unfilled
rectangle, the values at original domain are obtained at the next time
step, which are denoted as unþ2

i−1 , u
nþ2
i and unþ2

iþ1 . Therefore, the time
advance process of the conservative variable is achieved
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we use the initial configuration of the ‘dry bed’ test case (the
downstream water level h2 = 0.0 m) provided by Faccanoni and
Mangeney (2013), where α = 22∘, δ = 21∘ and the upstream water
level is h1 = 0.1446 m. The mesh density ofΔx = 0.01 m is used. The
results obtained from this numerical scheme at t = 0.5 s are seen in
Fig. 4.

Two-dimensional ‘dam-break’ problem
The geometry of this problem is first used by Fennema and Chaudhry
(1990) and has been widely adopted for testing numerical codes or new
approaches, such as by Fagherazzi et al. (2004), Ouyang et al. (2013)
and La Rocca et al. (2015). The computational domain is a 200-m-long
and 200-m-wide channel with a thin dam that is located at the position
of (x, y) = (100m, 0− 200m) along the y direction.Water depths of the
upstream and downstream regions are 10 m and 5 m respectively.
Assuming that a part of the dam, that is (x, y) = (100 m, 95− 170 m),
breaks instantaneously, the water upstream crashes into the reservoir
with lower water depth. The wall condition is enforced at the boundary
of the channel and at the non-breaking sector of the dam, where the

velocities normal to the wall are set to zero. Contour and height profiles
of water are given at t= 7.2s in Figs. 5 and 6. Using coarse grids with a
resolution of 2.5 m, the results obtained with the presenting scheme
agree well with the published results that can be found in Fagherazzi
et al. (2004) and in the other aforementioned papers.

Dam break over a triangular hump
The European project EU CADAM (European Union Concerted
Action on Dam Break Modelling) provides a laboratory experi-
ment for testing the capability of numerical schemes applied to a
practical case. The set-up is a 38 m long horizontal domain with a
dam located at x = 15.5 m. Seven gauges named G2, G4, G8, G10,
G11, G13 and G20, located at x = 17.5, 19.5, 23.5, 25.5, 26.5, 28.5 and
35.5 m, were set to measure the time history of the water depth.
The configuration is illustrated in Fig. 7.

In the numerical simulation, the node separation is set to Δx=
0.05 m and the Manning coefficient n = 0.0125 s/m1/3 is adopted
throughout the entire domain. On the left end, a rigid wall condition
is imposed, while on the right end, the condition is a free flow. The

Fig. 2 Stencil for 2D cases. The values at the original nodes uni; j are shown as orange points, and the region defined by orange solid lines is the
computational domain. By means of the mentioned numerical scheme, cell average values at Unþ1

iþ1=2; jþ1=2 (green nodes) can be obtained
with the help of ghost nodes for the first time step. Let values at the nodes be equal to the obtained cell average values, that is
unþ1
iþ1=2; jþ1=2 ¼ Unþ1

iþ1=2; jþ1=2. By one more time step, all the values at original nodes unþ2
i; j can be successfully updated (shown as blue nodes).

Naturally, the information of the displayed ghost nodes are used

Fig. 3 Comparison between numerical simulation and analytical solution of the dam break problem for t = 0.1 s
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duration of the computed time record is 90 s, according to the
experimental data handed over by Prof. Lanhao Zhao of the Hohai
University in China. After the sudden opening of the gate, the water in
the reservoir rushes out and inundates the downstream domain. The
water wave propagates along the domain over the basal topography.
Due to gravity and friction, the direction of watermotion changes with
time, causing several surges observed at gauges. In Fig. 8, it can be seen
that the laboratory test is reproduced by the current numerical scheme
with high accuracy and resolution. The prediction of arriving time and
water depth of the various water pulses nearly coincide, which is a
quite remarkable result.

Investigation of the 1783 Scilla landslide
The narrow Messina Strait, between the eastern tip of Scilly and
the southern end of Calabria, connecting the Tyrrhenian Sea to
the north with the Ionian Sea to the south, as shown in Fig. 9a, is
one of the most seismically active areas of southern Italy. Tec-
tonically, it is dominated by the development of the Siculo-
Calabrian Rift Zone and is the northernmost sector of the high
level seismic belt including the largest earthquakes that occurred
in southern Italy in the last four centuries, such as the 1693 SE
Sicily earthquakes, the 1783 Calabrian seismic sequence, the 1905
Monteleone earthquake and the Messina earthquake of 1908
(Catalano et al. 2008). The 1783 seismic crisis started with a
sequence of strong earthquakes from February to March, exceed-
ing magnitude Mw 7 (Rovida et al. 2011) and lasted for at least
3 years (1783–1785). It caused more than 30,000 casualties,
destroyed 200 localities (Porfido et al. 2011) and triggered a
further series of secondary disasters including numerous mass
failures, river dams with temporary lake formation and tsunamis.
The most catastrophic episode of this crisis in terms of death toll
was the Scilla tsunami event, which was generated by an
earthquake-induced landslide and that killed more than 1500
people on 6 February 1783. The landslide occurred south of the
coastal village of Scilla. The earthquake regarded as the trigger of
the landslide happened offshore in the Messina Strait and was a
Mw = 5.9 aftershock of a strong shock occurred the day before.
The mass failure took place about 30 min later, and a huge
tsunami generated by the landslide crashing into the sea was
observed soon after the mass collapse (Minasi 1785). Available
historical reports and studies provide the tsunami run-up heights
and inundation distances, as summarized in Graziani et al.
(2006). On the basis of recent field surveys of subaerial and
submarine scars, the total volume involved in the failure was
postulated to be 8 Mm3 and the deposit was estimated at 5–
6 Mm3 (Bozzano et al. 2006; Bozzano et al. 2011).

Previous studies of the Scilla event were carried out by Avolio
et al. (2009), Mazzanti and Bozzano (2011) and Zaniboni et al.
(2016). The Scilla landslide in the first two papers was simulated by
the cellular automata technique and by the DAN3D code (Hungr
and McDougall 2009). The last paper used a 1D Lagrangian block
model (Tinti et al. 1997). The reconstruction by Avolio et al. (2009)
merely provides the area of deposits. DAN3D is the developed
code that uses a Lagrangian numerical method to solve the afore-
mentioned depth-averaged governing equations and where a vari-
ety of basal rheological relationships, material entrainment and
other features can be included. The DAN3D simulations, where
underwater drag and friction were accounted through a turbulence
coefficient, revealed that the Scilla landslide accelerated to 45 m/s
after 20 s and decelerated to rest after 80 s. The DAN3D computed
deposits agree acceptably with the observed data, but the dynamic
evolution of the mass was not provided in the published papers. As
for the 1D Lagrangian block model, the total mass is discretized
into blocks that interact with each other. Forces including gravity,
friction, drag and block–block interaction act on blocks, which are
allowed to change shape, but not volume. The numerical investi-
gations by Zaniboni et al. (2016) provide reasonable results in both
landslide dynamics and tsunami generation. However, it is worth
noting that for the 1D block model the mass motion path has to be
predefined, which implies that the topography effects have to be
studied before applying the model.

In this section, the landslide is represented as a mixture flow, and
the motion is calculated by means of the present numerical approach.
We remark that we adopt a flowmodel that is capable of fully handling
topography and of computing the mass motion path. Two drag
models, obeying a linear and a quadratic law, are implemented to
investigate the time evolution of the mass. Consequently, two kinds of
landslide dynamics are obtained from the simulation. We anticipate
that the time history obtained by means of the linear drag assumption
provides amotionmechanism similar to that from the 1D blockmodel
(Zaniboni et al. 2016). A sketch of the Scilla landslide body and of the
deposit area is given in Fig. 9b.

Mixture model with topography modifications
To investigate the dynamic evolution of the Scilla landslide, a grain–
water mixture model with topography modification is used here. As
shown in ‘Classical ‘dam-break’ problem’, the mixture model can be
simply regarded as the extension of the shallow water equations, with
additional lateral pressure coefficient and friction terms. For more
technical details, such as the assumptions, simplification and depth-
average theory, one can refer to other works (Gray et al. 1999; Iverson

Fig. 4 Comparison between numerical simulation and analytical solution for a mixture flow over a rough inclined slope for t = 0.5 s
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and Denlinger 2001; Savage and Hutter 1989). Topography, that is the
driving factor for geophysical mass flows, can be treated in a Cartesian
coordinate system but also in a curvilinear coordinate system (Gray
et al. 1999). For the numerical application of shallow water models to
real cases, an additional topography-linked coordinate system (i.e.
Kelfoun and Druitt 2005) or more complicated Boussinesq-like
models (e.g. Castro-Orgaz et al. 2015; Denlinger and Iverson 2004)
are required for ensuring the accuracy and the stability of numerical
schemes. Here we use a global Cartesian coordinate system, using a
model (Xia and Liang 2018) that, considering vertical acceleration and
curvature effects, has been proven to be successful in both theoretical
studies and applications. The vector form of the equations is given as
follows:

U
!¼

h
hu
hv

2
4

3
5; F

!¼
hu

hu2 þ 1
2
gϕ−2h2

huv

2
4

3
5;

G
!¼

hv
huv

hv2 þ 1
2
gϕ−2h2

2
4

3
5; S

!¼ S
!

b þ S
!

f

ð17Þ

S
!

b ¼

0

−ahbx þ 1
2
gh2

∂ ϕ−2ð Þ
∂x

−ahby þ 1
2
gh2

∂ ϕ−2ð Þ
∂y

2
6664

3
7775;

S
!

f ¼
0

−
μahuϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2 þ ubx þ vby
� �2q −

μahvϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ ubx þ vby

� �2q �

2
64

ð18Þ

a ¼ ϕ−2 g þ v!
T
H
!

v!
� �

; v!¼ u; vð ÞT ;

H
!¼ bxx bxy

bxy byy

� 	
; ϕ ¼ b2x þ b2y þ 1

� �1=2 ð19Þ

Fig. 5 Contour plot of the break at t = 7.2 s. Resolution for the simulation is set to 2.5 m for both x and y directions

Fig. 6 Height profile of the water break t = 7.2 s
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where S
!

b is the basal topography term and S
!

f is the friction
term. The factor ϕ−2 merely related to basal topography is theo-
retically important for the governing equations considering com-
plex topography in a Cartesian coordinate system. The term
v!T

H
!

v! accounts for the effect of the centrifugal force. v! is the
velocity vector including velocity components along x and y di-
rections. μ is the basal friction coefficient, and b(x, y) is the basal
surface of the landslide. bx(y) and bxx, bxy, byy represent the first-
order and the second-order derivatives. In this case, we have
assumed that the lateral Earth pressure coefficients Kx and Ky

are equal to 1.

Buoyancy and drag force terms
In the study conducted by Mazzanti and Bozzano (2011), using the
DAN3D model, the motion of the mass underwater is computed by
applying a turbulence coefficient, which is rarely used in mass flow
models. In our simulation, the whole event is restricted to the
motion of the slide, and the complicated interactions between
mass and water are simplified as buoyancy and drag forces acting
on the mass itself. The effective gravity acceleration for the sub-
marine motion of the slide is reduced to (1 − γ)g, where γ is the
ratio between the fluid and debris densities, i.e. γ = ρf/ρs, with ρf =
1000 kg/m3 and ρs = 1700 kg/m3 adopted for the simulations. The
drag force is the effect of a rather complicated process difficult to
describe. In mass flow modeling, it can be expressed as a linear or
quadratic function of the relative mass–water velocity (Meng and

Wang 2016; Pudasaini 2012). However, the quantification of the
drag force coefficient is not easy and it is usually determined by
empirical formulas based on experiments data. Additionally, some
proposed models (i.e. Pudasaini 2012) involving several parame-
ters that are hard to evaluate, are scarcely adequate for practical
applications. Here, we focus on the performance of two different
drag force relationships. In our model the drag force is given as an
additional source term:

S
!¼ S

!
b þ S

!
f þ S

!
drag;

S
!

ldrag ¼
0

−Cdhu
−Cdhv

2
4

3
5; S

!
qdrag ¼

0
−Cdhu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
−Cdhv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

2
4

3
5 ð20Þ

where Cd is the drag force coefficient that has dimensions of
inverse time for linear model and dimensions of inverse length
for quadratic model. The drag force term is denoted as S

!
drag,

which is implemented as linear drag forces S
!

ldrag or quadratic
drag forces S

!
qdrag into the model. A constant drag coefficient is

used in the simulations, choosing Cd = 0.05 s−1 for linear drag and
the Cd = 0.015 m−1 for quadratic drag forces.

Dynamic evolution of the Scilla landslide
After the triggering, the falling mass moves over the basal topog-
raphy acted by driving and resisting forces and finally deposits at a

Fig. 7 Sketch of the set-up of the dam break experiment over a triangular hump

Fig. 8 Time histories of the water elevation at the seven gauges
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certain distance. The triggering mechanism of the landslide is not
contained in the model, and the mass is released without initial
velocity. To account for the dynamic evolution of the landslide, the
average velocity, calculated by the total momentum and total
height, is used to capture the overall dynamic state of the land-
slide. At each time step, the code detects the boundary of the
region that contains the mass material, so determining the com-
putational domain. The choice of friction coefficients depends on
the back analysis, according to the observed data (Zaniboni et al.
2016) and differentiates between subaerial and submarine sliding.
The notations of μSA and μSM are used to represent the basal
friction coefficient for subaerial sliding and submarine sliding

respectively. For the simulation adopting the linear drag model,
μSA = 0.25 and μSM = 0.05, while μSA = 0.25 and μSM = 0.03 are cho-
sen for the quadratic drag model.

The average velocity time histories shown in Fig. 10 clearly
provide two distinct dynamics obtained from two adopted differ-
ent drag functions. As for the linear-law case, one may observe
that the curve we obtain here is similar to the one computed by
Zaniboni et al. (2016) with their 1D block model, where they used
however a quadratic law for the drag. Indeed, in both cases, the
landslide experiences a rapid acceleration stage followed by a
slightly less rapid deceleration stage. The only difference is that
the velocity peak appears at slightly different times. The curve we
obtain for the quadratic law model however is quite different. The
acceleration phase is shorter, the peak velocity is much less (24 m/s
vs. circa 32 m/s) and the deceleration phase lasts several minutes,
much longer than for the linear drag case.

Propagation and deposition
The field surveys of subaerial and submarine scars reveal the
initial and final position of the landslide, while the heights of the
offshore deposits are not known from the literature. We present
the snapshots of the landslide height at different times in Figs. 11
and 12. The snapshots are shown at 10 s time intervals for the
linear drag model simulation, whereas different time intervals are
used for the quadratic drag model. As shown by the snapshots, the
mass moves along a reasonable direction, which validates the
goodness of the mixture-flow model with topographical modifica-
tions (Xia and Liang 2018).

Figure 11 is the set of snapshots regarding the linear drag model.
After the landslide front crashes into water, the rest of the mass
enters the sea and is affected by a relatively low resistance that
does not heavily impede the motion of the landslide. This dynamic
is depicted by the behaviour of the front body. In the first 30 s, the
main body concentrates on the middle and the rear of the land-
slide. Later, mainly as the effect of the drag force, the main mass

Fig. 9 a Geographical location of Scilla (red rectangle). Solid blue circles represent the 1783 seismic sequence with size increasing with earthquake magnitude. b Area of
the Scilla landslide (modified from Zaniboni et al. (2016))

Fig. 10 Time evolution of the mean velocity of the landslide. The dynamics
obtained from the linear drag model is quite similar to the motion depicted by
the 1D quadratic-drag block model (Zaniboni et al. 2016), with slightly different
accelerations. The landslide accelerates, reaching a peak value at 32 m/s and then
starts slowing down. Instead, the curve from the quadratic law provides a much
longer duration of the landslide motion. The landslide is strongly decelerated by
the water when it crashes into the sea with high velocity and then moves slowly to
the final still position. The peak velocity of the present simulations is smaller than
the value exceeding 40 m/s obtained by Mazzanti and Bozzano (2011), but the
deposit region is successfully reproduced by the model
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moves to the front and the middle, as can be seen in the snapshot
at t = 40 s. During the deceleration stage, most mass deposits

within the observed region (delimited by the dashed red line, see
the t = 70 s snapshot), and the motion is practically over after 90 s.

Fig. 11 Snapshots of the landslide mass taken at 10-s intervals (from t = 10 s to t = 90 s) obtained through the linear drag model. The observed landslide subaerial scar
area is bounded by a solid blue line, and the observed landslide deposit area is bounded by a dashed red line. The coastline is denoted by the black line. The movement
can be separated into two stages: the acceleration stage (t = 0–30 s) and the following deceleration stage. Easting and Northing are implemented as x and y directions in
the simulation
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Figure 12 displays the simulations concerning the quadratic
drag case. Impacted by a very large drag when the mass front
crashes into water, the landslide moves slowly and tightly during
the underwater propagation. In contrast to what is shown in
Fig. 11, the main mass concentrates on the front and the middle
of the body during the acceleration stage. The lateral spreading
behaviour shown in Fig. 11 is restricted in Fig. 12. After 160 s, the
main body arrives at the observed deposit region and then slowly
decelerates until it stops. Note that the deposit shapes resulting
from the two laws are similar, though reached at quite different
times (see the t = 90 s image of Fig. 11).

We observe that the deposits from our simulations are located
inside the region defined by the observed data, and therefore, we
can state that both kinds of simulations successfully reconstruct
the landslide event from the run-out perspective. The main

difference between the two simulations is that the landslide moves
more slowly and remains more concentrated at least during most
of the motion when the quadratic drag model is implemented,
while a linear drag accounts for a larger spreading.

Conclusions
A second-order central scheme with a general minmod-like limiter
has been proposed to solve the system of hyperbolic partial dif-
ferential equations that represent geophysical-flow like problems.
Several typical benchmarks used in mass flow simulations have
been carried out and compared against analytical solutions and
experimental data to validate the model. As regards both accuracy
and resolution, the scheme has been proven to perform very
adequately, which enabled us to apply it to cases of practical
geophysical and societal interest.

Fig. 12 Snapshots of the landslide mass (from t = 10 s to t = 300 s) obtained through the quadratic drag model. The blue line depicts the boundary of the initial region
of the landslide. The observed landslide deposit is bounded by a dashed redline with the black line denoting the coastline. The movement can be separated into three
stages: an acceleration stage and two deceleration phases. The mass is mainly driven by gravity forces in the first 15 s and then experiences a strong deceleration until 30s
and then a gradual slow down until the rest. Easting and Northing are implemented as x and y directions in the simulation
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In this paper, we have selected as an application the historical
catastrophic landslide occurred in Scilla, Calabria (South Italy) in
1783, already investigated through field surveys and other numer-
ical approaches. A mixture flow model, considering topography
modifications based on a global Cartesian coordinates (Xia and
Liang 2018), has been solved, providing a reasonable motion pattern
for the landslide. For the underwater motion, buoyancy forces and
drag forces have been taken into account, and the landslide dynam-
ics has been numerically investigated by two different drag models.
For the linear drag law, the computed landslide dynamic is similar to
the 1D block-model simulation carried out by Zaniboni et al. (2016),
describing a landslide that experiences a 30-s-long acceleration and a
60-s-long deceleration stage, reaching a peak velocity slightly larger
than 30 m/s. Instead, by using a quadratic drag model, the simulated
landslide dynamics is different since the landslide rapidly decelerates
when it crashes into the sea and thenmoves slowly until it stops. The
deposits of both numerical simulations locate at a reasonable region
compared with the observed data.

We remark that the accurate reconstruction of historical land-
slide events is a tough task, depending on factors including phys-
ical parameters, model assumptions, numerical methods and field
surveys. We showed that our mass flow model provides reasonable
results in good agreement with available observations. However,
more complicated mechanisms considering erosion, soil–water
interaction and various material-behaviour need to be figured
out in the future.
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