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Regional-scale landslide susceptibility modelling
in the Cordillera Blanca, Peru—a comparison
of different approaches

Abstract This study applied existing methods of landslide sus-
ceptibility modelling of the mountainous area of the Cordillera
Blanca (Peru), which is prone to landslides. In heterogeneous
regions as in the Cordillera Blanca, the performance of a physi-
cally based approach Stability Index Mapping (SINMAP) was
compared to empirical statistical models using logistic regression
and a landslide density model. All models were applied to three
different digital elevation models (DEMs): ASTER GDEM, SRTM
(both 30-m spatial resolution), and TanDEM-X (12-m spatial res-
olution). Obtained results were evaluated using the area under the
receiver operating characteristic curve (AUC) approach, once for
a landslide inventory which extends over the whole study area and
once using an inventory of a smaller area. The physically based
approach (AUCs between 0.567 and 0.625) performed worse than
the statistical models (AUCs from 0.672 to 0.759) over the large
area. Additionally, all models received higher performances with-
in the small area. This coincided with differences of the variability
of the DEM-derived characteristics (e.g. slope angle and curva-
ture) from the small to the large evaluation area. Using the smaller
evaluation area, all models received higher AUC values (0.743–
0.799), and the impact of the DEMs was less visible. The analysis of
the susceptibility showed that mainly the same slopes are consid-
ered as most or least susceptible by all models, but SINMAP is
classifying larger areas as unstable or stable. Overall, this study
showed that regional-scale landslide susceptibility modelling can
lead to reasonable results even in regions with scarce model input
data, but performances of different DEMs and models need to be
evaluated carefully.
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Introduction
The Cordillera Blanca in Peru (Fig. 1) has always been prone to
disastrous landslides or related events. Several disasters like the
two landslides at Nevado Huascarán (January 10, 1962 and May 31,
1970; Plafker et al. 1971; Vilímek et al. 2000; Evans et al. 2009) or
the glacial lake outburst flood of Palcacocha (1941) (Carey 2010)
with thousands of victims caused intense hazard and risk-related
research in this area (Lliboutry 1975; Lliboutry et al. 1977; Vilímek
et al. 2000, 2005; Hubbard et al. 2005; Klimeš and Vilímek 2011;
Somos-Valenzuela and Mckinney 2011; Huggel et al. 2012; Klimeš
2012; Schneider et al. 2014; Klimeš et al. 2016). This research is
usually concentrated on specific slopes or regions. An exception is
the work done by Villacorta et al. (2012) who established a land-
slide susceptibility map covering the whole country of Peru. Due
to the spatial resolution of their work of 100 m, most of the
Cordillera Blanca is just considered having high or very high

susceptibilities of landslides. Such spatially coarse information is
hardly applicable for the local population and administration, thus
more detailed studies possibly distinguishing different landslide
types are needed. The presented work investigates the susceptibil-
ity to shallow landslides of the Cordillera Blanca using, amongst
others, a physically based landslide model represented by infinite
slope stability calculation coupled with a less complex infiltration
model (Pack et al. 1998). Attempts with more complex, three-
dimensional models pointed out the necessity of detailed infor-
mation on spatial distribution of geotechnical parameters and
local infiltration processes (Mergili et al. 2014).

Physically based models like SINMAP, SHALSTAB, or Transient
Rainfall Infiltration and Grid-Based Regional Slope-Stability
(TRIGRS) (Crosta and Frattini 2003; Meisina and Scarabelli 2007;
Terhorst and Kreja 2009; Zizioli et al. 2013; Michel et al. 2014;
Pradhan and Kim 2015; Sarkar et al. 2016; Thiebes et al. 2016) or
empirical statistical models (Van Den Eeckhaut et al. 2006; Bai
et al. 2011; Felicísimo et al. 2012; He et al. 2012; Park et al. 2013) have
been applied in many different regions around the world. All the
mentioned studies used different additional information like geo-
logical, land-use, or soil maps to better describe occurrence con-
ditions of the studied landslides. Data availability largely
constrains the extent of the application of the models, which
would otherwise require extensive field work. Applications in
mountainous regions are often even more challenging, as the
landslide preparatory factors change abruptly in space (e.g. slope
dip or soil characteristics due to the different altitudinal belts (de
Castro Portes et al. 2016)) and available maps may lack important
details of their spatial distribution pattern. Therefore, the model
parametrisation on a regional scale always introduces uncer-
tainties which are very difficult to assess or even quantify limiting
the applicability of the final susceptibility maps (Guzzetti et al.
2006; Levermore et al. 2012).

To overcome this problem, this paper aims at elaborating how
landslide susceptibility models perform in areas without any ad-
ditional information to the ones given by a digital elevation model
(DEM), as the elevation information is increasingly more reliable
and available even in high mountains due to the variety of remote-
ly sensed data (Lacroix et al. 2015). To assess the influence of DEMs
and to possibly improve the models, three different DEMs are used
for this study. Two of them have a spatial resolution of 30 m
(ASTER GDEM and SRTM), and the third one, TanDEM-X, has a
spatial resolution of 12 m.

Comparisons of the effect of DEMs and models on landslide
assessment and mapping have been made using different physi-
cally based and statistical models (Havenith et al. 2006; Yilmaz
2009; Zizioli et al. 2013; Pradhan and Kim 2015; Sarma et al. 2015)
and DEMs. The comparison of the DEMs, though, mainly focused
on the effect of the DEM’s spatial resolution (Claessens et al. 2005;

Landslides 16 & (2019) 395

Technical Note



Legorreta Paulin et al. 2010; Fuchs et al. 2014; Arnone et al. 2016;
Schlögel et al. 2018). Comparisons of different DEMs of the same
or similar resolution are scarce. Existing studies showed that
comparing different models can significantly improve the results.
A general tendency if statistical or physically based models lead to
better results was not found. Concerning the DEMs, they indicated
that a higher resolution does not automatically lead to better
results, although such finding may not be generally valid (Mergili
et al. 2014). Most studies received the best model performance for
a spatial resolution around 10 or 20 m. A systematic comparison of
different DEMs of similar resolution using statistical and physical-
ly based models, however, is yet missing.

The main part of this paper is the comparison of the physically
based model SINMAP to a statistically based model using logistic
regression (LRM). As a third and a fourth model, two different
slope models have been established. One using the logistic regres-
sion considering only the slope angle as independent parameter,
and another one using landslide density per slope class, in order to
evaluate the added value of the parameters considered addition-
ally by SINMAP and LRM. These four models will be applied to the
three DEMs. The evaluation of these model runs will be done using
two different landslide inventories. One of the inventory includes
shallow landslides distributed over the whole study area, the other

one is restricted to a much smaller region (see Fig. 1). These two
inventories are used to avoid model uncertainties caused by the
highly variable conditions of the large study area. These efforts
should answer the following questions:

How do regional-scale landslide susceptibility models per-
form in areas with highly variable morphology and soil char-
acteristics that are typical for high mountain regions?
How much of the performance of a model can be explained
by considering only the slope angle?
What is the influence of the different used DEMs on the
performance of the models?

Study area
The Cordillera Blanca is situated in Áncash, Peru. Large parts of it
are considered in this study (see Fig. 1). The mountain range is
margined by the Rio Santa in the west. This river flows through
Huaraz on around 3000 m above sea level (m a.s.l.) and flows
down to 1400 m a.s.l. in the north of the study area. There are
several peaks on altitudes above 6000 m a.s.l., including Nevado
Huascarán, the highest mountain of Peru with 6768 m a.s.l. (ÖAV
2006). Therefore, big parts of the study area are glacierised or of its

Fig. 1 Study area and landslide inventories. Overview map from (Earth G 2015). The term SLI refers to Shallow Landslide Inventory, MLI to Marcará Landslide Inventory
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surface consist of bare rocks (1381 km2). The remaining area
(2861 km2) consists of many steep slopes which are on average
around 23° steep. The large interval of the elevations leads to the
above-mentioned variability of the soils. Some soils reach thick-
nesses of more than 2 m, whereas in the higher elevations, there
are no soils at all. Besides the soil thickness, the soil type varies a
lot as well. Different kinds of soils can be detected varying from
Folic or Haplic Umbrisols to Haplic Leptosols, Haplic Regosols, or
Endogleyic Fluvisols (de Castro Portes et al. 2016).

The climate is dominated by a dry and a wet season. During
the wet season from October to March, about 400 to 800 mm of
precipitation is recorded, generally increasing with elevation,
while during the dry season from April to September, only 100
to 200 mm of precipitation is observed. This combination of
steep topography, extreme precipitation, and other factors, such
as earthquakes, led to several landslides in the past (see Fig. 1).
Furthermore, this region is highly inhabited. Only the major
towns of Huaraz, Yungay, Caraz, and Carhuaz together, all
located in the Santa valley at the eastern foot of the Cordillera
Blanca, have around 300,000 inhabitants (Instituto Nacional de
Estadística e Informática 2015). These conditions make impera-
tive to address landslide susceptibility zoning in order to make
a first step toward increasing landslide resilience of the local
population.

Data and methods

Landslide inventories
High-resolution optical data like aerial photography or satellite
images have proven to be a useful tool for establishing landslide
inventories, in particular because such data is increasingly be-
coming freely available in a georeferenced format (He et al. 2012;
van Westen et al. 2012; Zizioli et al. 2013; Kritikos and Davies 2014;
Steger et al. 2015; Alejandrino et al. 2016; Pradhan and Mezaal
2017). Google Earth, for example, has been used a lot for this
purpose (England 2011; Guzzetti et al. 2012; Corominas et al.
2014; Fuchs et al. 2014; Posner and Georgakakos 2015; Sarkar
et al. 2016). Therefore, the Shallow Landslide Inventory (SLI)
was based on different Google Earth images recorded in August
2013, July 2014, April 2016, May 2016, and July 2017.

This landslide inventory is restricted to shallow landslides
(less than 2 m) as defined by Sidle and Ochiai (2006) which
corresponds to the kind of landslides modelled by SINMAP
(Pack et al. 1998). The inventory covers the entire study area.
We looked for one or several of the following recognition
features proposed by Rowbotham and Dudycha (1998): (i)
disrupted vegetation patterns, (ii) scars, or (iii) obviously
displaced blocks of unconsolidated material. Each landslide
was represented by a point located in its uppermost part. The
resulting inventory was then split into a calibration set for the
LRM (about 75% of the landslides) and a validation set (25% of
landslides) for all models. This is a slightly more equilibrated
ratio than the 80/20% used by Bai et al. (2011) and Van Den
Eeckhaut et al. (2006). By doing so, we ensured to still have
enough points for the validation. Hence, of the 254 landslides
which were found (see Fig. 1), 196 were used to calibrate the
statistical models and 58 were used as a validation set. The
calibration set was completed by 798 non-landslide points. For
data, where non-events are much more frequent than events as

it is the case for landslide occurrence, it is recommended to
reflect this as well in the calibration set, with up to five times
more non-event points (King and Zeng 2001; Van Den Eeckhaut
et al. 2006; Bai et al. 2011). For calculating the non-landslide
points, each of the mapped landslides of the inventory was
subtracted from the study area using a 5-m buffer zone around
its origin point. Within the resulting polygon, a random point
pattern was calculated for having 798 randomly distributed
points within the study area. The landslides of the Marcará
Landslide Inventory (see later) are not considered in this inven-
tory for having two exclusively distinct inventories.

The second inventory used for the evaluation was the Marcará
Landslide Inventory (MLI). This is an already existing landslide
inventory established for an ongoing study in the region around
Carhuaz and Marcará. It was prepared through the high-resolution
optical data available on Google Earth, in particular the images
from July 2016, and then it was validated with extensive fieldwork.
It includes all landslide types which could be identified in the field.
They were classified depending on their activity (judged only
based on visual characteristics like the landforms and vegetative
patterns), shape, and depth, divided into shallow (less than 2 m
according to Sidle and Ochiai (2006) also used for the SLI),
medium (2 to 10 m), and deep (more than 10 m). Of all landslides
included in this inventory, just the shallow ones were selected for
this work. Due to the field check of this inventory, we consider it to
be more complete than the Shallow Landslide Inventory. The
purpose of this second inventory is having a smaller, but more
homogeneous evaluation area. None of the 77 landslides of the
MLI (see Fig. 1) were used for the calibration of the models, but
they were used for their evaluation.

Digital elevation models
The four landslide susceptibility models were applied to large
parts of the Cordillera Blanca (see Fig. 1) using three different
DEMs: the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer Global DEM (ASTER GDEM) (NASA LP DAAC
2011), the Shuttle Radar Topography Mission (SRTM) DEM (ver-
sion 4) (USGS 2015), and TanDEM-X DEM (TDX). The last DEM
was produced in-house from TanDEM-X acquisitions performed
along ascending (24.01.2013) and descending (01.10.2013) orbits
with a posting of 0.0001 decimal degrees, corresponding to about
10 m. For TanDEM-X DEMs produced with the samemethodology
in the past over Mount Etna in Italy (Wegmüller et al. 2014) and
the Chomolhari region in Bhutan (Ambrosi et al. 2018), we found
in comparison to ground control points measured by means of
GPS mean differences of the elevations of 0.6 m and 3.6 m, re-
spectively, and standard deviations of 4.3 m and 2.8 m, respective-
ly. The first two DEMs have a spatial resolution of 30 m (Farr et al.
2007; Tachikawa et al. 2011), and the third one was resampled to
the 12-m resolution provided by TDX (Deutsches Zentrum für
Luft- und Raumfahrt e.V. 2009).

For having comparable results the DEMs were co-registered
using the co-registration method developed by Nuth and Kääb
(2011). This was applied with the SRTM DEM as master and the
ASTER GDEM as slave, as the used SRTM and TDX were
already co-registered. The study area was extracted from these
DEMs for the modelling, and after the model run, the glacier
and rock mask were applied, for not removing parts of the flow
accumulation areas in advance.
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SINMAP model
Stability Index Mapping (SINMAP) is a physically based slope
stability model developed and described by Pack et al. (1998). It
calculates for each grid cell of the map stability index (SI). The SI is
based on a dimensionless form of the infinite slope stability
model’s factor of safety (FS). For its calculation, some parameters
can be derived from the DEM. These are the slope angle, flow
direction, and the specific catchment area. The remaining param-
eters need to be set manually using available geotechnical data
(e.g. cohesion). As no further information was available of the soil
parameters and the variable soil characteristics are hardly
capturable anyway, the default values proposed by the authors
(Pack et al. 1998) were used here. Hence, the parameters were set
as follows: transmissivity/effective recharge = 2000 to 3000 m,
dimensionless cohesion = 0 to 0.25, internal friction angle = 30 to
45°, and soil density = 2000 kg/m3. The resulting map was then
classified into six categories from Bdefended slope zone^ (SI < 0)
to Bstable slope zone^ (SI > 1.5, Pack et al. 1998). Application of
these arbitrary parameters strongly limits the use of the model
results which should be considered only as general susceptibility
indicator and shall not be viewed as actual FS.

Multiple logistic regression model
Regressions are used to model a dependent variable with one or
more independent or explanatory variables. A linear regression
model assumes a straight-line relationship between the indepen-
dent and the dependent variable, except an error term (Ross 2010).
For many problems in Earth sciences, this is a reasonable model
(Yilmaz 2009).

For binary response data, though, where just the presence or
absence of a phenomenon is of interest, logistic regressions are
more often used (Lee and Sambath 2006). Especially in the case of
landslide susceptibility modelling, this is a frequently used ap-
proach (Lee 2004; Ayalew and Yamagishi 2005; Lee and Sambath
2006; Van Den Eeckhaut et al. 2006; Yilmaz 2009; Bai et al. 2011;
Felicísimo et al. 2012; Devkota et al. 2013; Park et al. 2013; Kavzoglu
et al. 2014). The aim of a logistic regression is to model the
probability of the occurrence of an event based on some indepen-
dent variables (Hilbe 2011). In the case of landslide modelling
popular independent variables are listed in Table 1.

For this study, only information which can be derived from a
DEM is used: elevation, slope, aspect, curvature, flow accumula-
tion, and distance to rivers (derived from flow accumulation).

To perform a logistic regression with these variables, a calibration
dataset is required. This dataset consists of event (1) as well as non-
event points (0). The calibration set was analysed using the glm
function of the stats package in R. The considered independent
parameters were combined in different ways to find the lowest AIC

(Akaike information criteria) and, hence, the best model (Hilbe
2011). In order to receive the lowest AIC, a regression model using
all parameters was compared to different regressionmodels with less
explanatory parameters. The resulting parameters which have a
significant influence on the model and lead to a lower AIC were then
used for the logistic regression using Eqs. 1 and 2:

P Y ¼ 1ð Þ ¼ μi ¼
1

1þ e−z
ð1Þ

z ¼ xiβ ¼ β0 þ x1β1 þ…þ xnβn ð2Þ

where μi = probability that a landslide occurs, β = calculated
weights for the explanatory variables, xi = explanatory variables,
and n = number of explanatory parameters (Hilbe 2011).

The final map of resulting landslide susceptibilities was classi-
fied into five classes using the natural breaks method.

Slope model
Within many slope stability models, including the ones used in
this study, the slope angle plays a crucial role for determining the
stability of slopes (Wu and Sidle 1995; Dietrich and Montgomery
1998; Pack et al. 1998; Baum et al. 2002; Lee et al. 2002; van Beek
et al. 2002; Haneberg 2004; GEO-SLOPE International Ltd. 2012;
Kavzoglu et al. 2014). Hence, as it is one of the main factors used, a
second logistic regression model was established, using the slope
angle as the only explanatory variable. It was trained using the
same training set as for the LRM above. This most simple model
was compared to SINMAP and LRM, to see how much the increas-
ing number of explanatory parameters improved the model per-
formance. The classification process was done identically to the
one of the LRM. Since this logistic regression slope model is very
similar to the LRM, further simplification was done using bivariate
statistics to define slope angle/landslide occurrence relationship.
This second slope model is based on the failure rate method
described in Jäger and Wieczorek (1994), but just uses the land-
slide densities. The slope maps were classified into classes of 5° (0–
5°, 5–10°, etc.) up to the final class which includes all areas with
slope angles > 50°. The landslide density was calculated by divid-
ing the number of landslides in the calibration set of the Shallow
Landslide Inventory, by the total area of the slope class.

Comparison
The model runs are using the DEMs and their derivatives as input
parameters. Potential differences of the performance of the model
runs could, therefore, relate to the variability of these character-
istics. Hence, these variabilities were compared between the DEMs
and the different study areas of the MLI and SLI using a t test for

Table 1 Common independent parameters for logistic regression modelling of landslide susceptibilities

Authors Independent variables

(Devkota et al. 2013) Slope, aspect, curvature, elevation, stream power index (SPI), TWI,
sediment transport index, land use map, lithology, distance from faults, rivers, and roads

(Yilmaz 2009) Geology, elevation, slope, aspect, SPI, TWI, distance from faults and drainage

(Kavzoglu et al. 2014) Slope, drainage density, elevation, TWI, slope length, land cover, distance to road, lithology, aspect

(He et al. 2012) Lithology, elevation, slope, aspect, distance to rivers, plan, and profile curvature
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point clouds within the two areas, MLI and SLI. For all the points, the
deviation from the mean was tested to check the variabilities of the
considered parameters. It was worked using a 1% significance level.

Since the SINMAP model works only on slope stabilities of soils
and weathered slope material, areas without any sediment cover
like glaciers and rocks were excluded from the analysis. This was
done by establishing a glacier and rock mask. At first, areas were
selected for slope angles steeper than 50° and elevations higher
than 5200 m a.s.l. The resulting polygons were manually complet-
ed and adjusted using Google Earth imagery.

Finally, there are 12 different realisations of four models; each
one established on the three DEMs. All these model runs were
evaluated with the validation sets extracted from two landslide
inventories. The process of the validation was done using the
Receiver Operating Characteristics (ROC) and the related area
under curve (AUC). These methods are useful tools for com-
paring models which do not have the same scales. A point
dataset with a similar amount of non-landslide cells and land-
slide cells which are distributed within the same area is re-
quired. The points of the non-landslide cells were again
calculated randomly within the area of the inventory. The cal-
culated value of the model at the given points was then evalu-
ated. This is done by calculating the true positive rate and the
false positive rate for different thresholds of the model. The
received values are then plotted against each other. The true
positive rate is the y-axis and the false positive rate the x-axis.

The points on the plot resemble a curve, and the bigger the area
below this curve, the better the model performance. The AUC
expresses the ratio between the area under the curve to the total
area of the plot (Fawcett 2006).

Furthermore, we made a comparison of the susceptibility clas-
ses. This is a similar method as Michel et al. (2014) used to evaluate
their results. The percentage of landslides which occurred in the
least susceptible classes was compared to the percentage of land-
slides occurring in the most susceptible classes. Additionally, the
classes were also spatially compared, to see if the same regions
were modelled as most/least susceptible.

Results
First, the different DEMs and the considered study areas were
compared. Three hundred eighty-five points distributed within
the small area (MLI) were compared to the same amount of points
distributed over the large area (SLI). A t test revealed that between
the DEMs, there is no significant difference considering the whole
study area. There was just a significant difference between the
ASTER GDEM and the TDX DEM within the MLI area for the
slope angle (p value = 0.00083).

The comparison of the variabilities between the study areas,
from the MLI to the SLI, showed statistically significant results for
the elevation within all DEMs (see Table 2). Furthermore, the
ASTER GDEM had statistically significant results for the variability
of the slope angle and the curvature between the two study areas.

Table 2 p values of the t tests comparing the morphologic variability of the MLI and the SLI. Both-sided just indicates differences of the means, whereas MLI less and MLI
greater test the assumption that the mean of the MLI is lower or higher. The significant results (< 1%) are italicized

Both-sided MLI less MLI greater

GDEM Slope 0.0007 0.9996 0.00035

Accumulation area 0.0225 0.01127 0.9887

Curvature 0.00089 0.9996 0.00045

Elevation 2.2E-16 1 2.2E-16

SRTM Slope 0.0578 0.9711 0.0289

Accumulation area 0.407 0.2035 0.7965

Curvature 0.03682 0.9816 0.01841

Elevation 2.2E-16 1 2.2E-16

TDX Slope 0.8691 0.5655 0.4345

Accumulation area 0.8959 0.5521 0.4479

Curvature 0.2738 0.1369 0.8631

Elevation 2.5E-04 0.9999 1.2E-04

Table 3 Summary of the used weights for the logistic regression models. The first columns are the parameters of the LRM, the last two are the ones of the slope model.
“–” means that this parameter was not used for the considered DEM. The parameter aspect and flow accumulation had no significant impact on the model for no DEM and
are, therefore, not in the table

Intercept Elevation Slope angle Curvature Distance to river Intercept Slope angle

GDEM − 0.283 7.15E-05 9.14E-03 3.41E-02 – − 0.036 9.59E-03

SRTM − 0.308 7.26E-05 9.66E-03 – – − 0.058 10.27E-03

TDX − 0.311 7.58E-05 10E-03 – − 4.1179 − 0.077 10.8E-03
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For all these statistically significant results, the one-sided t test
showed that the assumption that the variabilities within the MLI is
bigger can be rejected.

The results of the SINMAP model using the different DEMs had
no SI values below 0. Hence, the SINMAP class Bdefended slope
zone^ was not used. Concerning the LRM the lowest AIC was
achieved with different parameters for each DEM. The used explan-
atory parameters and their weights for the LRM and the slope model
are summarised in Table 3. The maps were classified using the
threshold values shown in Table 4, except the landslide density
model which did not need further classification. The values used
for the classes of this last model are provided on Fig. 2. The resulting
susceptibility maps for the SRTM DEM are shown on Fig. 3.

In a next step, the evaluation using the AUC/ROC method was
performed for all realisations (see Table 5, Fig. 4. The physically
based SINMAP approach seems to be problematic for modelling
slope stabilities over the entire study area as it does not perform
well using the SLI (see Table 5). Especially the result obtained with

the ASTER GDEM is close to a random prediction of landslides.
This could be due to the used default literature geotechnical
parameters of the model. Therefore, the SINMAP susceptibility
maps can only be used as a general reference and do not indicate
the real stability conditions of the study area. Within the smaller
area (MLI), on the other hand, it performs much better. The
statistical models (LRM, slope model, and landslide density mod-
el) receive as well higher AUC values for the smaller area and have
the lowest AUC values over the entire study area using the ASTER
GDEM. But all statistical models obtained better results than
SINMAP considering the entire study area. The results using the
LRM have generally the best performances. It receives AUC values
between 0.684 and 0.759 over the large study area. Within the
smaller study area, it even received AUC values which vary from
0.768 to 0.799. Similar values were received for the slope model,
which obtained AUC values between 0.672 and 0.742 for SLI and
0.767 to 0.783 for MLI. The two slope models (the logistic regres-
sion and density model) performed very similarly, except for the

Table 4 List of the used threshold values for the classification. The class names are the ones proposed for the SINMAP model (Pack et al. 1998), starting with the least
susceptible class

LRM Stable slope zone Moderately
stable slope zone

Quasi-stable
slope zone

Lower threshold
slope zone

Upper threshold
slope zone

GDEM < 0.517 0.545 0.571 0.599 1

SRTM < 0.512 0.539 0.564 0.593 1

TDX < 0.510 0.537 0.563 0.593 1

Slope model

GDEM < 0.520 0.542 0.563 0.587 1

RTM < 0.517 0.540 0.564 0.593 1

TDX < 0.514 0.539 0.563 0.591 1

SINMAP > 1.5 1.25 1 0.5 0

Fig. 2 Used values for the classes of the landslide density model
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TDX, where the landslide density model performed was worse
over the SLI area, but better over the whole area. The landslide
density also reached the highest AUC from all applied models for

the MLI (TDX) area. For the further analysis, the focus is laid on
the first slope model using logistic regression, as it can be easier
compared to the other models, since it is established similar to the

Fig. 3 Results for three different landslide susceptibility models using SRTM data

Table 5 Results of the AUC calculations for all the model runs

Model SLI MLI

SINMAP

GDEM 0.567 0.749

SRTM 0.605 0.743

TDX 0.625 0.744

LRM

GDEM 0.684 0.799

SRTM 0.759 0.768

TDX 0.746 0.78

Slope model

GDEM 0.672 0.767

SRTM 0.742 0.764

TDX 0.719 0.783

Slope model II (landslide density)

GDEM 0.687 0.757

SRTM 0.74 0.751

TDX 0.674 0.804

Fig. 4 ROC plot for the results of the regression model. The evaluation using the
Shallow Landslide Inventory (SLI) is displayed as a solid line, the one of the Marcará
Landslide Inventory (MLI) as dotted line. Cf. Table 5
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LRM. For all models, it is noticeable that the AUC values of the
different DEMs are much closer to each other for the evaluation
with the MLI.

The portion of the landslides used for the model validation (58
and 77 cases for the SLI and MLI, respectively) within each sus-
ceptibility class can be considered as a measure of the success of
the model to predict the distribution of landslides unknown dur-
ing its preparation. The portion of landslides captured by themost
susceptible classes shows correct spatial prediction, while land-
slides which fall into the least susceptible class may be considered
as an error of the models. The most susceptible class of all models
has a rather small extent (e.g. up to 7% of the pixels of the entire
study area). The landslides occurring in this class are less than a
quarter for all the model runs. A much higher ratio of correctly
modelled landslides can be obtained by considering the two most
susceptible classes together. These two classes together extend,
depending on the used model and DEM, over 18.29 to 42.76% of
the whole area. The percentage of landslides included in these
most susceptible classes varies from 43.1 to 77.6%.

Discussion
A possible explanation of the different model performances
using the different DEMs and the landslide inventories could
be the variability of the DEM-derived characteristics (see
Table 2). These results show that the variability of the elevation
is significantly different between the MLI and SLI for all DEMs.
The lower variability of the DEMs within the area of the MLI
might improve the results of the models. The ASTER GDEM has
as well higher variabilities within the whole study area (SLI) for
two more characteristics, namely the slope angle and the cur-
vature. This might be a reason, why the models using ASTER
GDEM perform even worse over the whole study area than
using the other two DEMs. It can be doubted, though, that the
variability of the DEM-derived characteristics is the main expla-
nation for the model performance. There are no significant
differences between the DEMs considering the area of the SLI.
Still, there are differences in the AUC of around 0.07 for the
different DEMs. The study area of the MLI, on the other hand,
does have significant differences between the variability of the

Table 6 Summary of the comparison of the different susceptibility classes. The classes were obtained using natural breaks for the LRM and the slope model. The SINMAP
classes are the ones proposed by the authors (Pack et al. 1998). The two most susceptible classes refer to upper and lower thresholds instable, the least susceptible to
stable slope zone

Percentage of occurred landslides Percentage of class area to total area
2 most
susceptible

Most
susceptible

Least
susceptible

2 most
susceptible

Most
susceptible

Least
susceptible

SINMAP for SLI

GDEM 67.2 22.4 10.3 41.0 7.0 31.0

SRTM 70.7 24.1 6.9 39.7 6.3 33.2

TDX 77.6 17.2 5.2 42.8 6.1 29.3

Logistic regression for SLI

GDEM 43.1 15.5 6.9 18.3 3.9 21.0

SRTM 63.8 17.2 1.7 26.1 6.4 16.4

TDX 56.9 20.7 0.0 28.6 6.8 15.3

Slope model for SLI

GDEM 55.2 15.5 5.2 25.6 6.8 20.4

SRTM 58.6 19.0 1.7 24.2 5.7 19.4

TDX 51.7 19.0 1.7 28.0 6.4 18.8

SINMAP for MLI

GDEM 52.0 7.8 9.1 24.4 1.6 47.5

SRTM 54.6 11.7 16.9 23.9 1.6 49.7

TDX 66.2 13.0 10.4 27.1 1.6 45.5

Logistic regression for MLI

GDEM 13.0 1.3 5.2 3.6 0.2 38.8

SRTM 22.1 3.9 3.9 6.2 0.5 34.9

TDX 44.2 5.2 3.9 8.7 0.5 32.9

Slope model for MLI

GDEM 36.4 6.5 5.2 11.2 1.2 32.3

SRTM 39.0 6.5 2.6 10.9 1.1 31.3

TDX 59.7 16.9 2.6 15.7 1.8 30.3
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TDX and the ASTER GDEM, but there, the AUC of these two
DEMs is for all models within a range of 0.02. Hence, there
needs to be other factors influencing the model performance
than only the variability of the DEM-derived characteristics.
One of these factors could be the completeness of the used
landslide inventories as the MLI is considered to be more
complete due to the performed field check of the satellite image
interpretation results.

The distribution of landslides within the susceptibility classes
shows at first sight slightly better results for SINMAP considering
the SLI (see Table 6) than when using the ROC. It includes by far
the highest percentage of landslides occurring in the least stable

classes for the whole region. It also has, though, the highest
number of landslides occurring in the most stable class. Looking
at the extents of these classes, this is not surprising. SINMAP
considers around 40% of the area as most susceptible and 30%
as least susceptible. The LRM and the slope model consider no
more than 28.6% as most susceptible and no more than 21% as
least susceptible, respectively. A similar pattern is visible within
the MLI. SINMAP classifies regions where up to 66.2% of the
landslides occurred as unstable. On the other hand, depending
on the DEM, 9.1–16.9% of the landslides occurred in the most
stable class. Both these values are higher than the ones of the
LRM and the slope model. A spatial comparison of the consistency

Fig. 5 The study area showing the spatial agreement between the two most and least susceptible classes calculated by the different models using the SRTM DEM. The
class Bcontradiction^ refers to areas which are considered as stable by one and unstable by another model
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of these classes is provided in Fig. 5. It shows that similar slopes
are considered as most or least susceptible by the models. The
class defined as contradiction (see Fig. 5), which includes regions
which are considered as least susceptible by one and most suscep-
tible by another model, has a negligible extent (just one pixel of the
whole study area). This high spatial agreement is in contrast with
findings of other researchers (Sterlacchini et al. 2011) who noted
low spatial agreement of susceptibility maps prepared using dif-
ferent combinations of input factors, while maintaining very sim-
ilar prediction rate. The high ROC and spatial consistency of our
results may be attributed to the very similar and limited number of
input parameters used for the modelling.

Poor performance of the SINMAP model may also be ex-
plained by the morphological characteristics of the study area.
Previous works (Klimeš 2008; Thiebes et al. 2016) suggest that
the model performs better in regions with contrasting slopes
where landslide source areas distribution does not follow slope
distribution within the study area. For instance, highest land-
slide occurrence is related to less frequent slope class within the
study area. The high variability of the landslide occurrence
conditions considered by the SINMAP model is illustrated in
Fig. 6. The studied landslides occurred on a wide range of
slopes and flow accumulation. It contrasts with a different study
area in the Czech Republic (represented by the blue line in Fig.
6) where the slope/flow accumulation variability is much lower
and also the SINMAP model performed better in this condition.
Nevertheless, the obtained AUC values for the SINMAP model
results are comparable with other studies, where AUC values
between 0.647 and 0.703 were reported (Mergili et al. 2014).

The two evaluation techniques are generally in agreement
with each other. The high AUC values using the SLI for the
combinations LRM/SRTM, LRM/TDX, and slope model/SRTM
have high percentages of landslides in the most susceptible class

(56.9–63.8%) and low percentages in the least susceptible class
(0–1.7%). The LRM/ASTER GDEM combination, though, seems
to have a contradiction of the evaluation techniques for the
MLI. It received the highest AUC value (0.799) but just classifies
13% of the landslides correctly (in the most susceptible classes)
with wrongly classified 5.2% of the landslides in regions consid-
ered as least susceptible. An adjustment of the class limits could
possibly improve its performance there, as just a small area is
considered as most susceptible (3.6%) and a big area is consid-
ered as least susceptible (38.8%).

The performances of the slope models come quite close to
the one of the LRM model. The combination of TDX and MLI
even performed slightly better. For all the other combinations,
they just had slightly lower AUC values. These results show
that the slope angle is the most important model parameter
of the considered variables for explaining the occurrence of
shallow landslides. According to the landslide density slope
model, the susceptibility increases for steeper slope angles
until it reaches a peak somewhere between 40 and 45° (see
Fig. 2). Additional DEM-derived parameters only used as
explanatory variables for the LRM improved the model per-
formance only slightly. This confirms previous findings by
Glade and Crozier (2005) that simply increasing the number
of used preparatory factors for susceptibility modelling does
not necessarily improve the model performance. These results
also provide argument for application of simple susceptibility
models in regions with insufficient availability of representa-
tive and reliable input model parameters where in-depth
studies are missing so far. It would prevent introduction of
additional uncertainties into the model while providing ac-
ceptable results of the susceptibility zoning.

The spatial resolution of the DEMs does not seem to strongly
affect the modelling results. The performance of the SRTM with its
spatial resolution of 30 m is similar or even slightly better than the
performance of the TDX which has a spatial resolution of 12 m.
This may be explained by the fact that none of the DEM’s resolu-
tions is capable of capturing important local topographic varia-
tions; thus, no qualitative improvement of the results was detected.
This rather low resolution of the main model input parameter
limits its applicability which should be limited to the regional
scale. Slope-scale use should be very carefully considered and
combined with expert knowledge of the field stability conditions,
while site-specific applications have to be avoided completely.

Conclusion
Landslide susceptibility has been modelled for a high-mountain
study area within the Cordillera Blanca, Peru. Three different
model approaches and three different DEMs were evaluated, using
a regional and a local landslide inventory. An AUC value of 0.759
was received over the whole area using a logistic regression applied
on the SRTM DEM. This was just slightly better than the AUC of a
similar model considering only slope angle as model parameter
(0.742) or a model based on landslide densities of slope angle
classes (0.74). This is a remarkable performance of the models
when considering that the study area shows high topographic
variability, including elevations between 1400 and up to more than
5000 m a.s.l. (excluding glaciers and bare rock slopes) and that the
information used is restricted to remotely sensed data used for
both, DEM construction and landslide inventory preparation. The

Fig. 6 Comparison of the morphologic characteristics of ASTER GDEM and TDX
over the smaller area of the MLI for random points. The blue line indicates the
maximal extent of the morphologic variability for a study area in the
Czech Republic where SINMAP was applied as well (all points are below this line)
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topographic variability is much lower within the local study area of
the MLI with the modelling results suggesting that the topographic
variability affects performance of the model runs. The ASTER
GDEM for example has the highest variabilities of the DEM-
derived characteristics between the two study areas (SLI and
MLI) and as well the highest difference of the respective results
AUCs. The differences in model performances based on the dif-
ferent DEMs, however, could not be explained with this approach.
The visual validation of the models, looking at the most and least
susceptible classes, indicates reasonable results as well. The most
successful model (LRM on SRTM DEM) assigned 63.8% of the
mapped landslides to the most susceptible class. This is a satisfac-
tory performance when considering the prepared models as a
refinement of the national-scale landslide susceptibility models
and databases already available in Peru. Still, the models are surely
not precise enough for assessing single slope susceptibilities or
stability in the case of the SINMAP. Despite that, we consider the
presented approach useful and effective for landslide susceptibility
assessment for data-scarce regions as it requires input parameters
(DEM and landslide inventories) derived only from remotely
sensed data (e.g. SRTM, high-resolution optical satellite images).
With the same data, the required glacier and rock mask can be
established for further improving results. The presented analyses
are restricted to the shallow landslides triggered by water infiltra-
tion and saturation. Hence, for complex landslide hazard maps,
further modelling, possibly combining different types of models
(e.g. statistical and physically based), would be required in order
to include all kinds of landslides (e.g. slides, rock-falls, debris
flows) which may affect the study region.

For further studies, it would be interesting to analyse whether
physically based models could achieve better results at this scale
using spatially distributed estimators for soil characteristics and
water infiltration. Additionally, it would be interesting to do fur-
ther comparisons of the DEMs to evaluate if the ASTER GDEM is
generally less suitable for landslide susceptibility modelling on
regional scales. This was the case here, but for other DEMs,
reasonable results could be obtained. Hence, a comparison of
different approaches of landslide susceptibility modelling can be
recommended to get better results.
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