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Spatially distributed modeling of rainfall-induced
landslides in shallow layered slopes

Abstract The zoning of landslide susceptibility on layered land-
scapes is a key challenge for regional hazard analyses. From a
modeling standpoint, the combination of transient infiltration and
vertical heterogeneity can lead to hydro-mechanical processes that
are difficult to incorporate in spatially distributed frameworks. In
this work, a physically based model for the efficient generation of
regional landslide susceptibility maps in layered landscapes is pre-
sented. The formulation involves the discretization of a digital ter-
rain into slope units, thus enabling the incorporation of
georeferenced datasets to define the input variables. Model compu-
tations rely on a vectorized finite element (FE) solver that performs
simulations of vertical unsaturated flow and slope stability analyses.
The framework allows the use of different meshes across the region
to efficiently allocate the computational cost associated with layers of
variable thickness and/or complex stratigraphy. The model is used to
analyze a series of documented shallow landslides that occurred in a
region covered by stratified volcanic deposits. In addition to the
simulation of layered profiles constrained by field and laboratory
data, two simplified scenarios are considered in which homogeneous
slopes with different values of hydraulic conductivity Ks are used. It
is shown that, while the homogeneous models may have an accept-
able spatial performance in some sectors of the landscape, the use of
homogenized values of Ks leads to inconsistent temporal sequences
of landslide triggering, as well as to failure depths always located at
the base of the slope. By contrast, the use of stratified profiles leads to
an improved spatiotemporal performance over the whole region, as
well as to computed failure depths that are consistent with landslide
inventories. The proposed methodology provides a useful tool for
landslide hazard studies in that it not only addresses the com-
putational challenges associated with multiple slope stability
analyses, but it also enables the incorporation of system proper-
ties that are often neglected in spatially distributed modeling
frameworks.

Keywords Shallow landslides . Spatially distributed
modeling . Infiltration . Heterogeneity . Unsaturated soils

Introduction
Regional zonation of landslide susceptibility is an important tool
for risk assessment studies. Its development requires the analysis
of multiple datasets to define zones of potential instability across a
landscape and often requires the collection of detailed spatial
information over the affected areas (Van Westen et al. 2008;
Fressard et al. 2014). This is a challenging task for rainfall-
induced shallow landsliding, in which numerous slope failures
can occur within a temporal interval of few hours and involve
areas of several km2 (Baum et al. 2005; Crozier 2005; Van Westen
et al. 2006). Such features often preclude an immediate use of site-
specific slope stability analyses for landslide forecasting, thus
motivating the use of alternative methodologies.

The advent of Geographical Information Systems (GIS) and the
increasing availability of computational resources have led to the

development of spatially distributed models for landslide suscepti-
bility (Godt et al. 2008). For physically based models, a standard
computational approach consists of discretizing a landscape into
slope units for which stability analyses are performed. In this man-
ner, information from spatial datasets, such as Digital Elevation
Models (DEM), remote sensing, and georeferenced surveys are used
to define model conditions for each slope (Chen and Zhang 2014). A
key component of such frameworks is the simulation of subsurface
hydrologic processes. Earlier propositions were based on steady-
state groundwater conditions, topographic indexes, and saturated
soil properties to define critical thresholds for slope instability, which
were eventually mapped across the landscape (Montgomery and
Dietrich 1994). Subsequent formulations (Iverson 2000) simulated
infiltration in quasi-saturated soils as a pore pressure diffusion
process, thus enabling the incorporation of time-dependent rainfall
input. More recently, an analytical solution for the Richards’ equa-
tion has been used to simulate the transient infiltration process, thus
allowing the incorporation of unsaturated soil properties (i.e., water
retention models, hydraulic conductivity functions, effective stress)
into stability analyses (Baum et al. 2010). While such formulations
have proved useful in several geological contexts, they rely on the
assumption of homogeneous slope, thus precluding its use in regions
characterized by highly stratified soils.

In this work, a spatially distributed model for landslide suscepti-
bility in stratified, unsaturated slopes is presented. The framework
relies on a vectorized Finite Element (FE) algorithm that simulta-
neously solves the Richards’ equation at multiple cells by sharing the
same discretization parameters (i.e., mesh size and time steps). For
this purpose, a description of the implementation procedures is first
presented. Afterwards, the model is used to back-analyze a series of
documented shallow landslides that occurred in a highly stratified
volcanic setting, for which detailed laboratory and field datasets are
used to constrain the model inputs (Bilotta et al. 2005; Crosta and
Dal Negro 2003; Sorbino and Nicotera 2013). These results are finally
compared against simulations relying on homogeneous slope pro-
files by analyzing the spatiotemporal performance of the different
models and the computed failure depths.

Model description

Hydrological and mechanical modeling
For a given unsaturated slope, transient infiltration can be
modeled by enforcing the water mass balance (Richards 1931):

nCw hð Þ ∂h
∂t

¼ ∇⋅ K hð Þ∇ hþ zð Þ½ � ð1Þ

where n is the porosity, h is the pressure head induced by capil-
larity, t is time, z is the vertical coordinate, K(h) is a hydraulic
conductivity function (HCF), and Cw(h) is the unsaturated storage
coefficient (i.e., the rate of change of degree of saturation Sr(h)
with respect to h). The above equation supplemented with
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constitutive relations, initial and boundary conditions constitute
the initial boundary-value problem to solve for each slope unit
within the landscape. Although surface runoff can be incorporated
through enhanced boundary conditions and rerouting techniques
(Camporese et al. 2010), this aspect was not tackled here for the
sake of simplicity. In order to solve the equations numerically, the
problem must be discretized in space and time and converted in
algebraic form (Celia et al. 1990; Van Dam and Feddes 2000). For
this purpose, here a Galerkin spatial discretization and an explicit
forward temporal scheme have been used, respectively, by follow-
ing standard computational techniques for multi-phase flow
(Chen et al. 2006; Zienkiewicz et al. 1999).

Stability analyses require the definition of a factor of safety
(FS). Although several forms of FS have been proposed in the
literature (Duncan et al. 2014; Lu and Godt 2008), here the follow-
ing expression previously calibrated for the soils of the study area
will be used (Lizárraga and Buscarnera, 2017):

FS ¼ tanϕ
0

tanα
1þ ks

σnet

� �
ð2Þ

where ϕ′ and α are the friction angle of the layer and its slope
inclination, respectively, σnet is the net stress (in this case the
overburden stress), and k is a parameter that quantifies the effect
of suction s, on the shearing resistance (Fredlund et al. 1978).

Implementation
The model implementation is divided into three stages: input,
processing, and output. The first stage involves the input of spa-
tially distributed data and the definition of the model parameters.
To facilitate data manipulation/visualization, each dataset is treat-
ed as a georeferenced grid within a GIS. The study area is
discretized into m slope units (i.e., squared cells), as is schemati-
cally shown in Fig. 1, where m = 9. In addition to physical vari-
ables, the spatial distribution of FE discretization parameters (i.e.,
mesh and time steps) must be defined. This avoids the unneces-
sary use of the same mesh for all the slopes within the landscape,
thus providing flexibility to efficiently distribute the computation-
al cost associated with thicker layers and/or highly stratified pro-
files. In this manner, by the end of this input stage, each slope unit
is characterized by its own set of physical properties and FE mesh.

The processing stage is performed outside the GIS framework.
First, each georeferenced grid is transformed into a column vector
and arranged into j different subsets that share the same FE
discretization parameters. For instance, in the schematic example
shown in Fig. 1, three classes of slope thickness (and hence FE
meshes) have been identified and labeled with different colors (i.e.,
j = 1 to 3). Since the FE algorithm has been written using an array
programming structure (also referred to as vectorized form), op-
erations apply simultaneously to all the slope units that are within
a given subset j. This is highlighted in Fig. 1, for the subset j = 3,
where the simulations for cells m2, m6, and m7 are performed
simultaneously. Note that even though they share the FE mesh
and thickness, they might have different slope angles or hydro-
mechanical properties, thus leading to different profiles of suction
and/or FS. This computational sectorization becomes important
depending on the spatial variability across the zone of study. For
example, the study area of 9 km2 shown in the next section
contains more than m = 3 × 105 cells (Fig. 2) with significant

differences in layering and thicknesses. Instead of running a se-
quence of m individual FE simulations to cover the entire land-
scape, a sequence of j vectorized simulations is performed, each
applied over different cell clusters with the same thicknesses but
spatially variable properties.

During the simulation of the infiltration process, the computed
pore pressures are used to update the FS for each cell. If at any
time step, the condition FS < 1 is fulfilled at any depth throughout
the slope, then the corresponding time and depth of failure for that
cell are stored in two different column vectors (i.e., tf and zf,
respectively in Fig. 1). If the slope remains stable during the storm,
then a non-data index is assigned to such output cells. The final
stage consists on transforming the resulting tf and zf vectors into
the original georeferenced grid and the generation of raster files.
Lastly, postprocessing steps such as map visualization at different
times are performed through a GIS platform.

Case study

Site datasets
The proposed approach is here used to analyze a series of docu-
mented shallow landslides that occurred in Campania (Southern
Italy). Detailed analyses of the characteristics of the events have
been reported elsewhere (Cascini et al. 2008; Crosta and Dal Negro
2003; Guadagno et al. 2005). Here only a brief description of the
site-specific input datasets used for the simulations is presented.

The region of interest covers an area of approximately 9 km2

and is located in the Pizzo d’Alvano massif, on the vicinity of the
Sarno municipality (Fig. 2). A 4 × 4 m digital elevation model
(DEM) was used to define the size of the slope units. Such size is
lower than the smallest landslide (36 m2), thus providing an
appropriate spatial resolution for mapping the results of the
simulations.

On May 4–5 of 1998, after more than 48 h of rainfall, several
shallow landslides were triggered across the massif (Frattini et al.
2004). Based on field surveys and post-event aerial photos, Crosta
and Dal Negro (2003) mapped 47 landslide scars (red contours on
Fig. 2). Cascini et al. (2011) reconstructed the temporal sequence
for most of the failures by analyzing the reported arrival time of
landslide masses. Their results are shown in Fig. 2 as dashed
elliptic contours and labeled according to their estimated failure
times. Other authors have reported landslide triggering during the
last 10 h of the storm (Crosta and Dal Negro 2003). This value
provides a lower bound estimate for the lack of reported failure
times in the central sector (Fig. 2).

The site is located approximately 20 km east of the Somma-
Vesuvius volcanic system. Due to such proximity, the slopes are
mantled by air-fall pyroclastic deposits associated with different
phases of volcanic activity (De Vita et al. 2006). As a result,
alternations of ashes (with thickness between 40 to 60 cm) and
pumices (10 to 30 cm) are often found, resulting in stratified
profiles across the landscape (Cascini et al. 2014). The simplified
soil profile derived from average thickness values proposed by
Crosta and Dal Negro (2003) will be adopted here for the thicker
slopes of 2 m (Fig. 3c). Furthermore, the hydrologic properties of
the ashes vary according to their deposition history and depth
(Sorbino and Nicotera 2013). As a consequence, two types of ash,
labeled here as A and B (for the upper and buried ashes, respec-
tively), have been used.
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In addition to stratigraphic heterogeneity, the thickness of the
covers varies spatially (De Vita et al. 2006). Particularly, higher eleva-
tions are characterized by smaller depths to bedrock (between 0.5 and
2 m), while lower zones present much thicker deposits (larger than
5m). The distribution proposed by Cascini et al. (2008) was adopted in
this study, and accordingly, different FEmeshes were implemented for
each class of thickness (Fig. 2). The corresponding stratified profiles
(Fig. 3a, b) were chosen to keep the same layering sequence of the
thicker slope and reflect an increase in vertical heterogeneity with
burial depth, which is in agreement with field observations (Crosta

andDal Negro 2003). Initial hydrostatic conditions with suction values
of 20 kPa at the soil-bedrock interface were used on the basis of
monthly averaged suction profiles measured on monitoring hillslopes
of the area (Pirone et al. 2015), while zero-flux basal boundary condi-
tions were assumed. Lastly, rainfall data measured from the closest
meteorological station were used (Frattini et al. 2004).

The calibration of the hydrologic parameters for each of the layers
is shown in Fig. 4. While the water retention properties were derived
from pressure plate measurements (thus referring to the drying
branch of the retention curve), evidence reported by Sorbino and
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Fig. 1 Schematic representation of model workflow: m = number of cells, j = number of cell classes with the same FE mesh, tf = time to failure, zf = failure depth, s =
suction, FS = factor of safety. To efficiently distribute the computational cost of the simulations, different FE meshes can be used for distinct sectors of the landscape

Fig. 2 Landslide inventory and input datasets: spatial distribution of thickness (Cascini et al. 2008), FE meshes, landslide source areas (Crosta and Dal Negro 2003), and
reported contours of failure time (Cascini et al. 2011)
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Foresta (2002) for soils of the same area suggests that hysteretic
effects are negligible at confinement pressures typical of shallow
slopes, thus making the data reported in Fig. 4 a viable simplification
for the following analyses. The Van Genuchten (VG) model is used
for both water retention and the HCF. Note that the pumice presents
a value of saturated hydraulic conductivity Ks three orders of mag-
nitude higher than ash B. This causes a much faster propagation of
the infiltration front through these layers, thus requiring a larger
number of time steps to capture such abrupt process.

The strength parameters for ash B (k = 0.6, ϕ′ = 38°) were cali-
brated from shear test data at diferent levels of confinement and
suction and discussed in detail in (Lizárraga et al. 2017). Slight
variations in friction angle are found between the ashes (Pirone
et al. 2015), while consistent data for pumices is scarce. Hence, the
same set of mechanical parameters have been used for each layer.

Model scenarios based on homogeneous slope profiles
To analyze the role of the stratigraphy, two additional scenarios
based on homogeneous slope profiles have been considered. Since
Ks presents a high layer-to-layer variability and exerts a key influ-
ence on the hydrologic response, its representative values have
been defined on the basis of two distinct averaging procedures.
The rest of the model parameters have instead been assumed
identical to those of ash B due to its larger thickness (see Fig. 3).
It is worth noting that the latter simplification plays a smaller role
in the model predictions, due to the major effect played by Ks.

For groundwater flow, a weighted harmonic mean is often
employed to define Ks (Zhu 2008):

Kharmonic
s ¼ H

∑
i¼1

nlayers hlayer
Ks

¼ 2:0
0:5

Ks ash A
þ 0:6

Ks pumice
þ 0:9

Ks ash B

≈1� 10−6ms−1 ð3Þ

where nlayers is the number of layers, while H and hlayer indicate the
total thickness of the slope and the thickness of individual layers,
respectively. Since the harmonic mean is dominated by the

minimum of its arguments, it provides a lower bound of Ks

(indeed the obtained value is closer toKs ash A). This value will be
used for model scenario A. To test an upper bound value of Ks, a
weighted arithmetic mean is also considered:

Kmean
s ¼ 1

H
∑
i¼1

nlayers

hlayerKs
� � ¼ 0:5Ks ash A þ 0:6Ks pumice þ 0:9Ks ash B

2:0
≈3� 10−5ms−1

ð4Þ

which is closer to Ks pumice. Such value falls within the range
reported by (Cascini et al. 2011) and has been used to provide a
first-order estimate of hydrologic response in stratified slopes. In
the following, it will be used for model scenario B. The
stratified model is hereafter referred to as model scenario S.

Analyses and results

Spatial performance
The computed susceptibility map using the homogenous model A
is first shown in Fig. 5. Each unstable cell is associated with
different color levels that reflect the corresponding failure times,
thus allowing a direct inspection of the spatial and temporal model
response.

To allow a better visual inspection, three insets are shown at a
higher spatial resolution and are located at the western, central,
and eastern part of the landscape (insets A, B, and C, respectively).
An acceptable spatial performance is observed on the eastern
sector (inset C). However, the model vastly underperforms on
the west and center part of the zone of study. For instance,
consider insets A and B which contain 21 documented landslides
(red contours), i.e. approximately 40% of the entire inventory. Not
only there is a significant underestimation of unstable area, but
also the few model predictions fall outside the reported landslide
contours.

The simulation results for model B are shown in Fig. 6. Due to
the higher homogenized value of Ks, the amount of computed
unstable area increased by a factor of five across the landscape.
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Fig. 3 Stratigraphic profiles adopted for the analysis of the three classes of thickness considered in this study; a 0.5 m, b 1.3 m, and c 2.0 m (based on Crosta and Dal
Negro 2003)
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The improved performance within insets A and B came at the
expense of an overall increase of overpredictions, as can be found
in the central sector and in the westernmost part of the landscape,
where clusters of predicted unstable cells not only fall outside
landslide source areas, but also outside the elliptic dashed
contours.

A closer inspection of the color scale suggests a prevalence of
computed failure times at the early stages of the analysis. For
instance, the majority of predictions within inset A failed around
30 h, which is much earlier than the reported estimates (between
45 and 48 h in that zone). A similar case occurs within inset C,
where the computed failure times fall around 41 h, earlier than the
reported estimates of 47–48 h (see next section for further analyses
of temporal performance). Indeed, within this latter zone, the

previous model provided better results (compare with inset C of
Fig. 5).

The computed susceptibility map using the stratified model is
shown in Fig. 7. This scenario results in an intermediate level of
unstable area that provides a good spatial model performance
across the landscape. For instance, unlike model A, the computed
unstable cells in the western and central sectors are in better
agreement with landslide source areas, while at the same time,
the level of overpredictions is reduced compared to model B.
Indeed, the ratio of successful model computations versus
overpredictions (i.e., false positives), often used as a spatial per-
formance metric (Sorbino et al. 2010), increased by 15%. More
importantly, as it will be shown in the next section, the temporal
performance over the whole area was not compromised. Indeed,
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Fig. 5 Results of simulation for model scenario A (homogenized permeability; weighted harmonic mean)
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the computed unstable cells within insets A and C are accompa-
nied by predicted failure times that are closer to the reported
values.

In summary, the obtained results indicate that the use of ho-
mogeneous slopes based on harmonic mean values of Ks leads to
poor spatial performances (model A), while the use of a constant
Ks based on an arithmetic mean and layered profiles (models B

and S, respectively) improves such aspect. To complete the assess-
ment of the model results, the next sections focus on the evalua-
tion of temporal performance and predicted failure depths.

Temporal performance
The previous results suggest that the evaluation of physically based
models should incorporate an analysis of their temporal response,

Fig. 6 Results of simulation for model scenario B (homogenized permeability, weighted arithmetic mean)

Fig. 7 Results of simulation for model scenario S (heterogeneous permeability; layered slopes)
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since different model assumptions can lead to similar spatial clusters
of unstable cells within certain sub-regions of the landscape (compare
insets C of Figs. 5 and 7). To analyze this aspect, the statistical distri-
butions of predicted unstable times (using bins of 2 h) within selected
contours of failure time (those labeled by 44, 45, and 47 in Fig. 7) are
shown in Fig. 8 for each of the previous simulations.

The results of the stratified model S are first shown in Fig. 8a–c.
In general, the reported failure times are in close agreement with
the peaks of the histograms, thus suggesting a good temporal
performance. While it can be argued that Fig. 8b shows a wider
variability in temporal predictions, it still produced better results
than the other model scenarios (compare with Fig. 8e, h).

With regard to the simulations based on homogeneous profiles,
model A performed better in the eastern part of the landscape (Fig.
8f), where all the predictions occurred within the interval of 44–
48 h. However, it underperformed in the other sectors. In fact, the
few predictions for Fig. 8d, e are associated with poor spatial
performance (see Fig. 5). Alternatively, the simulations for model
B (Fig. 8g–i) were characterized by dominant failure times that
were computed earlier than the reported values. For instance, the

histogram in Fig. 8h shows that the most frequent failure time is
32 h, which is much earlier than the reported estimate of 45 h.
These analyses corroborate the observations drawn from the sus-
ceptibility maps which suggested a prevalence of computed failure
times at early stages (Fig. 6).

In most cases, contours of failure times are not reported, and
only a general description of the triggering sequence is provided.
For the selected case, landslides at the eastern and western parts of
the landscape were reported to occur during the last 4 h of the
storm (see Fig. 7). Although there are no reports for the central
sector, a lower bound estimate can be 38 h (i.e., 10 h before the end
of the storm), since several authors used this as the earliest esti-
mate of failure time across the region. Within this context, a first-
order evaluation of the model computations can be obtained by
analyzing the sequence at which unstable cells start to appear over
the landscape and comparing it against the reported data. To this
aim, consider first Fig. 9, which shows the predicted unstable area
for each model scenario during the last 24 h of the storm.

It is evident that by the end of the storm, model B computes the
largest amount of unstable area. Note also that for model B, the
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earliest predictions start at 24 h, while for model S, they occur at
32 h. What is not evident from this plot is that such early predic-
tions are related to different spatial locations, thus implying a
distinct computed sequence of landslide triggering.

To illustrate this aspect, Fig. 10a shows the temporal evolution of
unstable area for the western, central, and eastern sectors of the
landscape as predicted by the stratified model (the central sector
refers to the region with no contours of failure time in Fig. 7). For
times earlier than 40 h, the majority of predictions are associated with
the central sector, while the eastern and western sectors failed almost
simultaneously during the last 6 h of the simulation (similar to the
reported data). Therefore, the computed triggering sequence starts at
the center and then moves to the rest of the landscape. For the
homogeneous model A (Fig. 10b), all the predictions occur during
the last 6 h of the storm; however, as discussed, they are associated
with poor spatial performance in the east and central sectors. Alter-
natively, for the homogeneous model B (Fig. 10c), failures are first
computed in the western part (starting around 24 h), followed by the
central and eastern sectors. While for the present case, there are no
contours of failure times at the central zone, the western and eastern
sectors have been reported to occur at times no earlier than 44 h, thus
indicating that the homogenous model B provides not only mis-
matches in failure times but also a different sequence of predictions.
In summary, the previous analyses indicate that the sole evaluation of
temporal evolution of unstable area over the entire landscape provides
limited information about the model response, since similar temporal
curves can be associated with different spatial locations. Furthermore,
while it must be noted that factors not included in the current analyses
may also contribute to the temporal sequence of landslide triggering
(e.g., spatially varying rainfall, vegetation, local topographic features),
these results demonstrate that variations in hydrologic properties
across the slope profiles exert a major role on the temporal dynamics
of failure and must not be neglected when an accurate interpretation
of the sequence of events is necessary.

Failure depths
Stratigraphy not only affects the spatial and temporal model com-
putations, but also the vertical location at which instability occurs,
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thus providing additional information that can be used to evaluate
the model computations. For this purpose, consider Fig. 11 a,
which shows the histogram of computed failure depths for the
stratified model. The results indicate that, except few deep failures
occurred at 2 m, most of the unstable zones were located at the
interfaces between ashes and pumices. Indeed, the most frequent
failure depth was located at 0.80 m (i.e., at the upper pumice/ash B
interface).

Alternatively, for the homogeneous model A (Fig. 11b), all the
unstable cells were computed to occur at 0.50m and all of them were
located at slopes with thickness of equal depth (the thicker slopes
remained stable). For model B (Fig. 11c), failures were computed in
thicker slopes; however, all the unstable depths were located at the
base (at 0.50 m, 1.30 m, and 2.0 m). In other words, for homogenous
slopes, the distribution of failure depths is dependent on the adopted
thickness, while for stratified covers, failure can be expected either at
the base of the slopes or at layer interfaces. Lastly, Fig. 11d shows the
statistical distribution of failure depths from 26 landslide source
areas (Crosta and Dal Negro 2003). While such sample is of limited
size, it displays a wide variability of failure depths that is highly
influenced by complex sequences of layering, thus highlighting the
importance of such effects.

Discussion
The analyses indicated how stratigraphy influences the spatial and
temporal patterns of landslide triggering. To provide a physical
interpretation of such variability, it is useful to analyze the hydro-
logic response of a single slope within the landscape. This is first
shown for the homogenous model A (Fig. 12a) in terms of com-
puted profiles of pore water pressure pw. By the end of the storm,

the most critical section in the slope is located at the base, where
moisture has been accumulated and a value of pw = −10 kPa was
computed, which is not enough to mobilize failure. Alternatively,
for the homogeneous model B (Fig. 12b) characterized by a higher
value of Ks, the infiltration front propagates much faster, so that
the previous basal value of pw = −10 kPa is reached at approxi-
mately 24 h. Evidently, this is the result of the augmented value of
Ks induced by the selected homogenization procedure. Lastly, the
results for the stratified model are shown in Fig. 12c. Note that
transient spikes of pore pressure develop at the different ash/
pumice interfaces. Such behavior is promoted by the large con-
trasts of Ks, in which the underlying ash acts as a temporarily
impermeable barrier (Mancarella et al. 2012). If failure does not
occur during this pore pressure transient, the ash saturates and
starts to slowly allow drainage, thus enabling the propagation of
the infiltration front to deeper layers that are sustaining higher
overburden stresses.

These results are in agreement with reported triggering thresh-
olds derived from 2D numerical analyses performed at hillslope
scale (De Vita et al. 2013), thus confirming the key role of capillary
barriers on landslide susceptibility, especially in stratified settings.

The previous considerations highlight the challenges of using
homogenized profiles for layered slopes. If the properties of a
single-layer are used to define the parameters of the entire slope,
then the question becomes, which layer should be chosen as the
most representative. If homogenization or averaging techniques
are used, then the computed pore pressure profiles cannot be
directly compared against field monitoring data, since the homog-
enized value of Ks is not a measurable quantity, but rather a
numerical parameter introduced to adjust the timescale of the
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problem. Besides, in principle, multiple hydrologic and mechani-
cal parameters should be averaged, since Ks is not the only variable
changing from one layer to another. Such considerations pose

even more uncertainty when landslide forecasting is required, in
that homogenization techniques cannot accommodate spatially
varying strength or failure mechanisms, which by their own nature
may be highly localized and therefore very much dependent on the
frictional properties of the layers which are eventually mobilized.

In light of the above results, it is evident that physically based
models should provide not only information about whether a slope
will fail or not (i.e., spatial performance), but they should also provide
a consistent distribution of failure times and depths. Only in this
manner, detailed field observations and experimental datasets can be
used to constrain input data and/or evaluate the model performance.

Conclusions
A physically based model for the efficient generation of dynamic
landslide susceptibility mapping in stratified settings has been pre-
sented. The proposed framework enables the incorporation of
georeferenced datasets to define the spatial distribution of material
properties, rainfall intensities, and initial and boundary conditions.
Moreover, it relies on a vectorized solver that allows multiple simula-
tions of transient infiltration in unsaturated slopes that share the same
numerical discretization parameters (i.e., mesh and time steps).

The model was used to analyze a series of documented shallow
landslides that occurred in a mountainous landscape covered by strat-
ified volcanic soils. Laboratory and field data have been used to con-
strain the input parameters. In addition to the stratified model, two
further scenarios based on homogenous profiles and different values of
hydraulic conductivity were considered. The results indicate that the use
of layered profiles leads not only to a satisfactory spatial performance,
but also to computed failure times and depths that are consistent with
the landslide inventory. Alternatively, the use of homogeneous profiles
based on averaged values of Ks provides a spatial performance which is
acceptable only in selected portions of the landscape, as well as to poor
predictions of failure time and inaccurate computations of failure depth
(always located at the base of the slopes).

The proposed physically based model fosters the use of labora-
tory data and field measurements to constrain input data, as well
as the assessment of model predictions in light of metrics which
are often ignored in the context of spatially distributed landslide
forecasting. For instance, complex stratigraphy, advanced hydro-
logic models, and varying initial and boundary conditions can all
be incorporated in the proposed approach. Furthermore, informa-
tion from landslide inventories such as distribution of failure
depth and spatiotemporal sequences of landslide triggering can
be used to back-analyze case studies. In other words, the simula-
tion platform presented in this paper aims to provide an efficient
tool to optimize the use of available data and reduce the uncer-
tainty of model computations in hazard management studies.
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