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Landslide susceptibility and mobilization rates
in the Mount Elgon region, Uganda

Abstract Mount Elgon in Eastern Uganda is one of the most
landslide-prone regions in Africa. This extinct shield volcano is
characterized by steep slopes, intense precipitation, and fertile
lands supporting a dense human population. As a result, land-
slides frequently cause damage and many fatalities. Apart from the
need for a landslide susceptibility assessment, insight into the
landslide mobilization rates [ton/km2/y] is required to assess the
geomorphological importance of landslides. Such quantitative in-
formation is scarce for many regions around the world and par-
ticularly for Africa. We therefore compiled a calibration dataset of
653 landslides (514 slides and 139 rockfalls). Additionally, a second
dataset of over 400 landslides was independently collected for
validation purposes. To determine a logistic landslide susceptibil-
ity model, we used Monte Carlo simulations that selected different
subsets of the calibration dataset to test the significance of the
considered environmental variables. Susceptibility maps for all
landslide types and for rockfalls were constructed for the Mount
Elgon region in Uganda. In both maps, topography is by far the
most significant factor controlling landslide susceptibility. Includ-
ing lithology and soil moisture, further improved the model pre-
dictions. The models explain about 55% and 85% of the observed
variance in landslide occurrence for all landslide types and for
rockfalls respectively. The average calculated landslide frequency
and mobilization rate for the landslide affected area are respec-
tively 0.04 landslides/km2/y and 750 ton/km2/y. Landslide size is
only weakly positively correlated with landslide susceptibility.
Therefore, observed larger landslide mobilization rates correlating
with higher landslide susceptibilities result from larger landslide
numbers rather than from larger landslides. Our research high-
lights the relevance of detailed and long-term landslide mapping at
the regional scale in data-scarce areas for regional planning and
risk reduction strategies, as an improvement to continental and
global susceptibility models, but also to assess the geomorpholog-
ical importance of landslides as an erosion process.

Keywords Massmovement . Rockfall . Landslide
inventory . Landslide susceptibility . Landslide mobilization
rate . Landslide risk . East Africa

Introduction
Landslides are among the most damaging natural hazards in
mountainous areas around the world and are considered to be
an important cause of fatalities and economic loss worldwide
(Blahut et al. 2010; Petley 2012; Corominas et al. 2014). Most
fatalities occur in Global South countries (Kirschbaum et al. 2015;
Froude and Petley 2018). In these countries, the impact of land-
slides on the population and their livelihood can be large due to

their economic, social, political, and cultural vulnerability
(Alcántara-Ayala 2002; Mertens et al. 2016). Recently, the Sendai
Framework for disaster risk reduction has revived international
attention to the negative consequences of landslides among other
natural hazards (UNISDR 2015). The main goals of the Sendai
Framework are a better understanding of disaster risk and
strengthening of disaster risk governance (UNISDR 2015). As to
landslides, detailed landslide inventories and landslide suscepti-
bility (LSS) maps are a first key step for further disaster risk
reduction measures. Despite their importance, detailed landslide
studies are still lacking in many tropical regions, especially in
Africa (Maes et al. 2017; Broeckx et al. 2018; Reichenbach et al.
2018).

Mt. Elgon in east Uganda, which is part of the East African
Highlands that is one of the most landslide prone regions in Africa
(Broeckx et al. 2018), stands as an example of such regions. This
area is characterized by steep slopes, intense precipitation, high
weathering rates and a dense population (Knapen et al. 2006). This
translates into frequent landsliding that often claim casualties and
affect the livelihood of the inhabitants (e.g., damage to houses,
cropland and public infrastructure; Fig. 1a, b). One of the largest
recent landslides in the region (on March 1, 2010 in Nametsi) killed
365 people (Mugagga et al. 2012a). Rockfalls, a specific landslide
type generated at the steep cliffs located along the lower flanks of
Mt. Elgon volcano, pose an additional threat resulting in property
damage and fatalities (Fig. 1c, d). Mt. Elgon region has received
limited research attention, for instance in terms of geology (e.g.,
Simonetti and Bell 1995), soils (Van Eynde et al. 2017), land use
change and biodiversity (e.g., Sassen et al. 2013). Studies on
landsliding mainly consist of case studies focusing on the influ-
ence of soil properties on landslide occurrence (Kitutu et al. 2009;
Mugagga et al. 2012a), the relationship between landslides and
land use changes (Mugagga et al. 2012b) and landslide risk reduc-
tion through preventive resettlement (Vlaeminck et al. 2016).
However, a comprehensive landslide inventory and a LSS map
for the Mt. Elgon region are currently lacking. Only for Bududa
district (Fig. 2), Knapen et al. (2006) produced a first landslide
inventory and based on their findings, Claessens et al. (2007)
modeled the landslide hazard for this district.

Also from a geomorphological point of view, no or limited
quantitative data on landslides are available in Africa. Studies by
Vanmaercke et al. (2014) and Broeckx et al. (2018) underline the
role of landslides in explaining spatial patterns of sediment yield
across the continent. Nevertheless, the importance of landslides in
catchment sediment yield budget remains poorly understood,
especially in tropical environments. Broeckx et al. (2016, 2018)
demonstrated the potential of LSS maps as a tool to assess the
importance of landsliding for sediment yield. However, these
studies assess the geomorphological importance of landslides in
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an indirect way. A missing element in this type of analyses is the
fact that LSS does not provide information on landslide frequency
[#landslides/km2/y] and certainly not on landslide mobilization

rates [LMR, ton/km2/y], whereby also the landslide sizes are con-
sidered. No studies have investigated the linkages between LSS,
landslide numbers, landslide sizes, and LMR. Data on landslide

Fig. 1 Examples of landslides and their impact in the Mount Elgon region. a Deep translational landslide (03-09-2015; 1.061° N, 34.379° E). b Several houses and
agricultural plots destroyed by a landslide (10-08-2015; 1.105° N, 34.335° E). c Rockfalls originating from steep cliffs (4-10-2016; 1.357° N, 34.370° E). d Rockfalls
threatening villages and local communities in (21-08-2015; 1.292° N, 34.374° E)

Fig. 2 Location of the study area: a Africa, b Uganda, c Mount Elgon (DEM: USGS)
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frequency and size are scarce (especially for Africa and tropical
environments), but crucial to move from LSS to landslide hazard
and risk assessment and LMR to quantify the importance of
landslides in total erosion and catchment sediment export
budgets.

To address the identified research gaps, this research aims (1) to
produce a first regional landslide inventory for the entire Mt. Elgon
region in Uganda, (2) to construct logistic landslide (all types) and
rockfall-specific susceptibility models, and (3) to investigate the rela-
tionship between landslide susceptibility and landslide mobilization
rates. These results will contribute to a better understanding of
landsliding in the area and its geomorphic relevance, but will also be
valuable for assessing landslide risk and for guiding policy regarding
land use planning, infrastructure and agriculture.

Study area
Mt. Elgon is an extinct shield volcano located at the border of
Uganda and Kenya (Fig. 2a, b) and rises to an elevation of
4321 m a.s.l. (Scott et al. 1998; Knapen et al. 2006). Our study area
encompasses the Ugandan part of the mountain and consists of
eight districts (Bukwo, Kween, Bulambuli Kachorwa, Sironko,
Mbale, Bududa, and Manafwa) making up the Mt. Elgon region
(Fig. 2c). The region covers an area of 4200 km2 and has a total
population of 1.7 million inhabitants (UBOS 2017). Mbale is the
major city in the region, located in the western part of the study
area (Fig. 2b).

The geomorphology of the volcano is characterized by steep
cliffs (Fig. 1c), mainly along the lower flanks, interspersed with
gently sloping areas and incising rivers (Scott et al. 1998). Above
2300 m, the volcano is covered by natural vegetation
(Afromontane forest, heather, high altitude moorland) which
forms the protected Mount Elgon National Park. Outside the
national park, cropland is the most dominant land use (Sassen
et al. 2013). Mean annual precipitation in the region is ca.
1800 mm/year, distributed over two wet seasons (March to June
and August to November) (Knapen et al. 2006). However, regional
climate model simulations (Thiery et al. 2015) indicate that the
wettest parts of the region receive more than 3000 mm/year
(southeastern part of the study area). The oldest rocks in the
region are gneiss and granite belonging to the Precambrian Congo
craton which are characterized by a strong foliation (Westerhof
et al. 2014). Carbonatite intrusions, of Oligocene to early Miocene
age, can be found on the lower southern slopes of the mountain in
these gneisses and granites (King et al. 1972). These carbonatite
intrusions induced an extensive zone of sheared and fenitised
basement granite in their surroundings, called the metasomatic
halo. According to Knapen et al. (2006), this lithological setting
possibly contributes to increased slope instability, through intense
rock weathering. Mt. Elgon was formed during the Miocene and is
one of the oldest volcanoes in East Africa. The volcano is built up
from lava flows (nephelinite, basalt) and pyroclasts (agglomerate,
tuff). The last major eruption occurred around 12 million years ago
(Scott et al. 1998; Westerhof et al. 2014).

Material and methods

Landslide data collection
Reliable landslide inventories are the first step towards LSS assess-
ments. They can be prepared using different techniques, each

having its advantages and limitations (Guzzetti et al. 2012). In this
study, landslides and non-landslide locations were mainly mapped
during field surveys and further complemented with landslide
recognition in Google Earth. The first field survey in the region
was conducted in the Bududa district by Knapen et al. (2006) in
2002. To obtain landslide data for the entire region, two major
complementary landslide field surveys were conducted in 2015 and
2016. For most landslides, GPS points at the main scarp or in the
depletion zone of the landslide were taken and dimensions were
measured with a tape meter. At some locations, for instance within
the borders of the national park, it was not possible to reach the
landslides, so observations were made from a distance and map-
ping of these landslides was facilitated by using Google Earth
imagery. Google Earth was further used to map landslides else-
where in the national park, since these were not accessible in the
field. The age of landslides was assessed through interviews with
local guides and inhabitants. It was not possible to obtain the exact
date of occurrence for every landslide but for most of the land-
slides, local inhabitants could remember at least the year of oc-
currence, or it was at least clear whether landslides occurred
before or after 1997, which was most relevant for our LMR analysis
(see further).

If landslide inventories are correct and complete, they also
indicate the locations in the study area where landslides are absent
(Guzzetti et al. 2012). However, although we consider our inven-
tory representative, we do not consider it to be complete for the
entire study area for the past decades, since some areas were never
or only once covered in detail by our field surveys. Consequently,
this assumption could lead to the selection of false negatives.
Therefore, we also paid attention to older and revegetated land-
slides based on landslide-indicators, during our field campaigns.
These are environmental factors which are supposed to be directly
or indirectly correlated with slope instability (Van Den Eeckhaut
et al. 2006). Examples of such landslide-indicators are scarps,
concave-convex irregular and bumpy terrain, drunken trees, dis-
turbed soil profiles containing many or large rock fragments (Van
Eynde et al. 2017) and disturbed drainage networks due to land-
slide blocking. Mapping these indicators was especially important
to avoid the selection of potential past landslide locations as non-
landslide locations. Additionally, we focused our field mapping of
non-landslide locations on steeper terrain, to avoid trivial flat
locations for model calibration (cf. Steger and Glade 2017).

Apart from our mapping efforts, an independent dataset of
over 400 landslides was available. This dataset was constructed
by local authorities and staff of Busitema university. During mul-
tiple field campaigns, landslides were mapped at locations indi-
cated by local inhabitants, mostly lacking information on the
dimensions and timing of the events. Given the less detailed
information in this dataset and the partial overlap with the cali-
bration data, we only used these data to validate our LSS model.

Environmental variables
After consulting two literature reviews on considered environmen-
tal factors for LSS modeling (Pourghasemi and Rossi 2017;
Reichenbach et al. 2018) and based on the geomorphic/
environmental setting of the study area (as well as the available
environmental data), we selected four different environmental
factors that might help to discriminate patterns of landslide sus-
ceptibility: i.e., topography, lithology, precipitation, and soil
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moisture. For the logistic regression analyses, ten quantitative and
five categorical variables that describe these factors were derived
(Table 1). The categorical variables represent the most common
lithological classes in the study area and were transformed into
five dummy variables, indicating the presence or absence of a
particular lithology. The five lithological classes were derived from
georeferencing and digitizing copies of the region’s lithological
maps (at a resolution of 50 m), obtained from the Department of
Geological Survey and Mines, Entebbe (DGSM).

Four different topographic variables were considered at 30 m
resolution (SRTM, USGS, Table 1): slope (SLO), local relief (LR)
within a radius of 2000 m, plan curvature (CUR) and stream power
index (SPI). SPI is a measure to describe the erosive power of
flowing water:

SPI ¼ ln tan αð Þ*Asð Þ ð1Þ

where As is the specific catchment area [m2 m−1] and α is the slope
gradient [°]. Duman et al. (2006) showed that this variable can be
significant in explaining the spatial pattern of landslides. To avoid
giving disproportionate weight to As, we capped the value for SPI.
More specifically, very high SPI values generally correspond to perma-
nent drainage pixels (rivers) with large upstream areas and often very
low slope gradients that are not susceptible to landsliding. We there-
fore sampled the region for points where permanent drainage starts
and found that these points typically have an SPI above 1.9. Hence, 1.9
was used as the maximum value for all pixels with higher SPI.

Because detailed field measurements of rainfall and soil mois-
ture are not available for the region, both were obtained by
modeling techniques. Earlier studies already showed that in re-
mote areas with limited field measurements, modeled rainfall can
be a reliable proxy (Jacobs et al. 2016a, b). Thiery et al. (2015, 2016)
applied the regional climate model COSMO-CLM2 to the African
Great Lakes region to assess the climatic impact of the lakes. Mean
annual precipitation and mean annual soil moisture (modeled up
to 2.86 m depth, Oleson et al. 2008) were used from these model
results. Both factors were modeled for a 10-year period (1999–
2008) at a horizontal resolution of ca. 7 km (P10 and SW10) and
for a 1-year period (2015) at a resolution of ca. 2.8 km (P1 and
SW1). Although simulations for 1 year are less representative for
long-term annual means, we considered these variables because of
the higher spatial resolution at which they are available.

Land cover was not considered in our analyses as mapping of
landslides and landslide free-locations is biased towards cultivated
areas, while forested areas (national park) were less accessible. Within
these cultivated areas, no distinction could be made between different
crops in a GIS. Moreover, previous LSS analyses in a similar region in
Uganda and for Africa show that the impact of land cover is not clear
or can be ambiguous (Broeckx et al. 2018; Jacobs et al. 2018). For
similar reasons ofmapping biases and inadequate data availability, soil
type was not considered as a LSS factor.

For the rockfall susceptibility model, we considered two addi-
tional topographic variables: maximum slope (SLOM) and local
relief in a small area (LRS), which replace SLO and LR. SLOM is the
maximum slope within a radius of 100 m. This variable was
introduced because rockfalls were sometimes mapped with lower
accuracy than other landslides as locations on the cliffs are often

not accessible. By applying a buffer of 100 m, we can account for
this spatial uncertainty. LRS is the maximum elevation difference
within a circle with a radius of 200 m. LRS was introduced to
better represent the escarpments in the landscape, that develop
abruptly over much shorter horizontal distances than 2000 m (the
radius used to compute LR). Given the concentrated occurrence of
rockfalls at sites with a particular lithology, only two lithological
classes were considered for the rockfall susceptibility model, i.e.,
pyroclastic rocks and all other classes (granite, gneiss, lava,
carbonatite).

Logistic landslide susceptibility models
A pixel-based (30 m resolution) logistic regression approach was
used to assess the LSS of the Mt. Elgon region. Logistic regression
is most commonly applied to model LSS (Reichenbach et al. 2018).
Logistic models describe the relationship between a set of inde-
pendent variables and a dichotomous dependent variable, in our
case the presence or absence of a landslide. The logistic function
can be written as (Kleinbaum and Klein 2010):

p y ¼ 1ð Þ ¼ 1
1þ e− b0þb1x1þb2x2…þbnxnð Þ ð2Þ

with p the probability of landslide occurrence, xi the dependent
variables, and bi the regression coefficients. The output of this
equation is a probability value between 0 and 1, which can be
interpreted as the likelihood for a landslide to occur under the
given set of variable values (Kleinbaum and Klein 2010).

Final variable selection was based on the minimization of the
Akaike information criterion (AIC), which penalizes model com-
plexity (more variables) and a poor model fit. Forward-backward
stepwise variable selection starting from the null model was ap-
plied 100 times for both LSS models (all landslide types and only
rockfalls). Each time this selection was based on a randomly
generated subset containing 2/3 of the calibration dataset. Al-
though, like any other statistical technique, this selection proce-
dure is not perfect (e.g., the inclusion of variables that only slightly
improves the model), it provides an objective framework for
variable selection, often used in logistic LSS modeling (e.g., Goetz
et al. 2011; Petschko et al. 2014; Jacobs et al. 2018). Moreover, we
obtained similar results when P values and MCFadden’s pseudo R2

(R2
McF , a measure of goodness-of-fit for logistic regression models)

were considered (e.g., Broeckx et al. 2018). After selection of the
final model variables, we also used Monte Carlo simulations to
determine the final set of corresponding variable coefficients. In
each iteration, 2/3 of the dataset was randomly selected for model
calibration and 1/3 for internal model validation. This procedure
was repeated 101 times for both models, a sufficient number to
capture the full range of model variation (Broeckx et al. 2018).
From these simulations, the median coefficient of the most signif-
icant variable together with the corresponding coefficients of the
other variables was selected.

Evaluation of model performance

Reichenbach et al. (2018) recommend using multiple metrics to
evaluate the model skill and prediction performance of LSS
models, since they all have their specific advantages and
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limitations and combined give a better insight in the model per-
formance. Therefore, we constructed receiver operation character-
istic (ROC), sensitivity and success/prediction rate curves for the
calibration dataset. These curves were also used to select class
boundaries, based on natural breaks and aiming to include as
many landslides as possible in the highest susceptibility classes
covering areas as small as possible (e.g., Van Den Eeckhaut et al.
2012; Broeckx et al. 2018). Additionally, to evaluate local versus
large-scale LSS maps, we compared our landslide inventory to
recently produced global (Stanley and Kirschbaum 2017) and con-
tinental (Broeckx et al. 2018) LSS maps. Furthermore, Reichenbach
et al. (2018) indicate that only few studies also assess model
uncertainty and its spatial distribution (e.g., Guzzetti et al. 2006).
Therefore, we used the standard deviation of the 101 Monte Carlo
simulations with the final model variables (BLogistic landslide
susceptibility models^) as a metric to assess the LSS uncertainty
at each pixel. We then mapped these standard deviations, to
identify areas with large and small uncertainties in estimated LSS
across the Mt. Elgon region.

Relation between landslide susceptibility and landslide mobilization
rate
Some of the landslides that were collected in the field originated
several decades ago, but most of the mapped landslides occurred
between 1997 and 2016. Similarly, the dataset spans the entire study
area of 4200 km2, but can be considered to bemostly complete in only
part of this area (639 km2, Fig. 3). Given this relatively long-term
landslide dataset, we delineated part of the study area that was most
frequently covered during our field campaigns and for which probably

nearly all landslides occurring in the period 1997–2016 were mapped.
This dataset allows to assess the relationship between LSS and land-
slide mobilization rate (LMR), which depends on both the frequency
and size of the landslides. Rockfalls were excluded in our LMR anal-
ysis, since we only have few data on their volumes and timing and
since their mapping was more incomplete. However, based on our
field work, we expect that most of the mobilized landslide masses,
resulted from other landslide types.

First, we constructed frequency-area curves to compare our
landslide inventory with theoretical curves proposed by Malamud
et al. (2004). Next, we investigated the relationship between indi-
vidual landslide size and LSS at the pixel registered as the landslide
point location, for all landslides of which we had information on
the landslide length and width. Landslide areas were calculated
based on these dimensions. The global relationship between land-
slide area and volume, proposed by Larsen et al. (2010), was
applied to calculate landslide volumes:

V ¼ 10−0:836*A1;332 ð3Þ

In a last step, we calculated the number of landslides and LMR
[ton/km2/y] for each susceptibility class within the area that was
most completely mapped. To obtain LMR, we converted landslide
volumes to landslide masses. We assumed a dry bulk density of 1.6
ton/m3, given the rock content of the soil (Poesen and Lavee 1994).
The sum of all individual landslide masses was then divided by the
observation period (20 years) and considered area (639 km2)) to
obtain an average LMR for this region.

Table 1 overview of the considered variables. All variables were rescaled to a resolution of 30 m for the analyses. Variables with a * are only considered for rockfalls, na
indicates not applicable

Variable Description Unit Resolution Source

SLO Slope gradient calculated based on SRTM 1″ DEM % 30 m USGS

SLOM* Maximum slope gradient within a radius of 100 m,
calculated based on SRTM 1″ DEM

% 30 m USGS

LR Local relief: maximum elevation difference within a circle with radius of 2 km m 30 m USGS

LRS* Small local relief: maximum elevation difference within a circle with radius of 200 m m 30 m USGS

CUR Plan curvature: change in slope perpendicular to the steepest slope na 30 m USGS

SPI Stream power index: natural logarithm of the slope tangent multiplied by the specific
catchment area

na 30 m USGS

P10 Mean annual precipitation, modeled for the period 1999–2008 with COSMO-CLM2 mm 7 km Thiery et al.
2015

SW10 Mean annual soil moisture, modeled to 2.86 m depth,
for the period 1999–2008 with COSMO-CLM2

mm 7 km Thiery et al.
2015

P1 Mean annual precipitation, modeled for 2015 with COSMO-CLM2 mm 2.8 km Thiery et al.
2016

SW1 Mean annual soil moisture, modeled to 2.86 m depth, for 2015 with COSMO-CLM2 mm 2.8 km Thiery et al.
2016

GRA Granite: lithological class applied as a dummy variable na 50 m DGSM

GNE Gneiss: lithological class applied as a dummy variable na 50 m DGSM

PYR Pyroclastic rock: lithological class applied as a dummy variable na 50 m DGSM

LAV Lava: lithological class applied as a dummy variable na 50 m DGSM

CAR Carbonatite: lithological class applied as a dummy variable na 50 m DGSM
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Results and discussion

Landslide datasets
Figure 3 displays all landslide and non-landslide locations,
mapped during the past 15 years in the Mt. Elgon region. Our
inventory consists of 653 landslides and 260 non-landslide loca-
tions for calibration. An additional 413 landslides were indepen-
dently collected (by other researchers from Busitema University,
with a partial spatial overlap) during field campaigns in 2014 and
2015 and were used for external model validation. The calibration
dataset of 653 landslides, mostly translational and rotational slides,
also includes 139 rockfalls. All 8 districts of the Mt. Elgon region
are affected by landslides, also the forested areas in the national
park. However, mapped landslides are not homogenously distrib-
uted across the region. On the one hand, this can be attributed to a

mapping focus on the southwestern provinces during multiple
field campaings (cf. blue polygon in Fig. 3). On the other hand,
landslides and casualties are also more frequently reported in this
part of the study area. Field observations confirmed these reports,
with considerably less observed (recent) landslides in the north-
east of the Mount Elgon region. Although our data do not allow to
assess exact landslide frequencies across the entire region, they do
suggest that landslide frequencies are higher in the southwest
compared to the northeast of the Mt. Elgon region.

Landslide and rockfall susceptibility
The ratio between landslide (653) and non-landslide (260) loca-
tions is 2.5. The ratio between rockfalls (139) and non-landslide
locations is 0.53. For both ratios, this is within the suggested range
of 0.2 to 5 by King and Zeng (2001). However, these ratios in our

Fig. 3 Spatial overview of mapped landslide (rockfalls and other landslides of the slide type) and non-landslide locations in the Mt. Elgon region. The region within the
blue polygon can be considered to be the most completely mapped. Insets show landslides (upper left, with the squares indicating the mapped landslide locations) and
rockfalls (lower right, with the square indicating the mapped rockfall location and the white arrows indicating large individual rock fragments, ca. 20 m diameter) that can
be seen on Google Earth imagery
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dataset do not necessarily represent the true landslide versus non-
landslide proportion across the study area (Fig. 3). Hence, the LSS
values (between 0 and 1) do not represent the relative frequency of
landslide occurrences between different locations, but only indi-
cate whether a location is less or more susceptible to landsliding
compared to other locations in the Mt. Elgon region.

Multivariate logistic regression analysis with a minimization of
the AIC selected 20 out of 100 times the following set of variables
for the model of all landslide types: slope gradient (SLO), local
relief (LR), plan curvature (CUR), mean annual soil moisture
(SW10) and the carbonatite (CAR) lithology class. Apart from this
selection, 30 other variable combinations were generated, of which
only 4 were selected more than 3 out of 100 times. In 100% of the
simulations, SLO, LR, and CAR were selected. CUR and SW10 are
respectively selected in 73 and 94% of the Monte Carlo simula-
tions. This confirms that the five retained variables are in most
cases relevant for explaining landslide occurrence. The same anal-
yses for the rockfall susceptibility model resulted 39 out of 100
times in the following variable combination: maximum slope
(SLOM), SW10, and pyroclastic rocks (PYR). Apart from this mod-
el, 20 other variable combinations were generated, of which only 4
were selected more than 3 out of 100 times. SLOM, SW10 and PYR
were respectively selected in 100%, 85%, and 98% of the simula-
tions. These results indicate that rockfalls can be more consistently
predicted. This can be expected since one type of landslides spans
a smaller range of environmental conditions under which this
landslide type can be triggered. In the case of rockfalls, these
specific conditions are cliffs, which are widespread across the Mt.
Elgon region.

Figure 4 shows the range of explained variance of the selected
LSS models, based on 101 Monte Carlo simulations. For both
models, the performance during internal validation (using 1/3 of
the data) is only slightly less than the performance during calibra-
tion (using 2/3 of the data). More striking is the difference in
performance between both models. The model considering all
landslide types explains 50–60% of the variance in landslide oc-
currence and the model considering only rockfalls explains 80–
90%. Rockfall locations can simply be more accurately predicted
since their occurrence is strongly restricted to very steep
(subvertical) terrain or cliffs and are thus more strongly
constrained by the topographic variables. Although our results
suggest that we can almost perfectly predict rockfalls, the consid-
ered environmental variables are too general to describe intra cliff
variability. It is likely that other factors, such as the local rock
properties and characteristics (size, orientation, density) of
offloading cracks near cliffs, further control the susceptibility
and especially the frequency of rockfall occurrences (e.g.,
Messenzehl et al. 2017). Therefore, our rockfall model is especially
useful for a first prediction of the susceptibility threshold to
indicate all cliffs in the region that can be affected by rockfalls.
This then can be used for more detailed investigations of these
cliffs across the region in terms of local cliff conditions and
rockfall frequencies.

The LSS model for all landslide types and the LSS model for
rockfalls are given by Eqs. 4 and 5 and explain about 55% and 85%
of the variance in landslide occurrence, respectively.

p y ¼ 1ð Þ ¼ 1
1þ e−logit pð Þ ð4Þ

Fig. 4 Boxplots of explained variance (R2
McF) for 101 simulations with the model for all landslide types (left) and with the model considering only

rockfalls (right). The different predictor variables are explained in Table 1. For all simulations the calibration dataset (Fig. 3) was
randomly divided in a calibration (2/3) and an internal validation (1/3) part (see section BLogistic landslide susceptibility models^)
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logit pð Þ ¼ −12:26þ 0:11*SLOþ 0:0036*LR−0:37*CUR

þ 0:0064*SW10−0:43*GRA−

−0:80*GNE−0:90*LAV−4:97*CAR

p y ¼ 1ð Þ ¼ 1
1þ e− 5:15þ0:11*SLOM−0:013*SW10þ2:88*LAHð Þ ð5Þ

Themodel for all landslide types shows an increase of LSSwith slope,
local relief, plan concavity (i.e., negative curvature), and soil moisture.
All lithological variables in the model negatively correlate with LSS,
compared to the reference class of pyroclastic rocks. Although only
the carbonatite lithology significantly reduces LSS, all dummy variables

should be considered in the final model to correctly represent lithology
(e.g., Jacobs et al. 2018). However, in order not to artificially increase the
AIC threshold a priori, which would potentially prevent other variables
to be included, it is recommended to insert the other dummy variables a
posteriori (Bursac et al. 2008).

For the rockfall model, LSS increases with maximum slope
(SLOM) and the occurrence of pyroclastic rocks, but decreases
with soil moisture. The physical reason for effect of soil moisture
on rockfalls is not clear and might be the result of spurious
correlation or intercorrelation. We also tested mean annual pre-
cipitation and soil moisture at 2.8 km resolution, notably better
representing patterns of local topography, but modeled for only
1 year. As individual predictors, these variables score almost as
good as their 10-year counterparts at 7 km resolution. These
results suggest that the LSS model could benefit and be improved
by using a combination of high-resolution and long-term modeled
precipitation and soil moisture data, as factors enhancing
weathering of soil and bedrock, which accumulate over time,
making them more susceptible to landsliding.

In Fig. 5, we present a general landslide susceptibility map consid-
ering all landslide types (Eq. 4) and one specifically focussing on
rockfalls (Eq. 5). Our maps show that places most susceptible to
rockfalls are also the areas that are most susceptible to all landslide
types. This simply results from the dominance of topography in
explaining patterns of LSS across the region: steeper slopes inherently
result in higher susceptibility for all observed landslide types. A large
fraction of the area is highly susceptible to landsliding, while rockfall
susceptibility occurs in a linear pattern, i.e., at escarpments around the
volcano. In accordance with the more frequent landslide and casualty
reports in the southwestern part of the Mt. Elgon region, we observe
that this part of the study area is also more susceptible to landsliding.

A comparison of Figs. 2 and 5 shows that a large fraction of the
highly susceptible terrain is located within the national park. As
explained above, we did not consider land use in our models,
because of a mapping bias towards cultivated terrain outside the
national park (section BEnvironmental variables^). Consequently,
the actual susceptibility in this dominantly forested terrain could
be lower, resulting from the reinforcing effect of vegetation on
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slope stability (e.g.: Knapen et al. 2006; Gariano and Guzzetti 2016;
Guns and Vanacker 2013; Vannoppen et al. 2016). However, the
effect of tree cover on slope stability might not always be positive,
since trees also load the soil with extra weight, and since root
reinforcement has only a minor stabilizing effect, especially on
deep-seated (large) landslides (e.g., Sidle and Bogaard 2016).
Moreover, the larger evapotranspiration from forests might have
a limited effect under a tropical precipitation regime, where soils
are often saturated (Akkermans et al. 2014; Schwingshackl et al.
2017). Landslides were also observed within the national park and
are even likely to be underrepresented in our dataset, due to
limited field- mapping opportunities in this area. This clearly

suggests that also within the national park, large zones are effec-
tively highly susceptible to landsliding. This is an important ob-
servation concerning landslide risk reduction and an argument to
prevent people from settling in these areas.

Evaluation of model performance
Figure 6 shows the ROC curves of the calibration data applied to our
LSSmodels (see Fig. 5). For bothmodels the area under the ROC curve
(AUC) is very high (> 0.9). which indicates excellent discrimination of
landslide and non-landslide pixels (Swets 1988). Indicated class
boundaries on both curves show that the classes of the highest sus-
ceptibility contain 67% of observed landslides and 84% of observed

Fig. 8 Standard deviation of landslide susceptibility for the model based on all landslide types (left) and for the model considering only rockfalls (right), based on 101
simulations
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rockfalls, while these classes contain only 3.8% and 0.4% of non-
landslide locations for the model for all landslides and the model of

rockfalls, respectively. From the moderate LSS class onwards, the rate
of false positives increases more rapidly than the rate of true positives.
We also compared our landslide datatset with the global LSSmodel of
Stanley and Kirschbaum (2017) and the continental African LSSmodel
of Broeckx et al. (2018). It can be observed that these models, and
certainly the LSS model of Africa, are still relatively good at assigning
true positives in the Mount Elgon region. However, they perform less
in avoiding false positives, because also many non-landslide locations
get rather high LSS values. Since in these models topography is also by
far the main predictor, the lower resolution (30″ and 12″ for the global
and continental LSS model respectively, compared to 1″ for the Mt.
Elgon models) might be one of the main reasons for the performance
difference. Additionally, this comparison shows that LSS models at
large scale are useful to discern susceptibile regions and even to give a
first indication of LSS within these regions. However, regional to local
LSSmaps are still required to provide policy makers with a useful tool
to accurately identify the areas at risk within such susceptible regions.

To get more insight in the model skill and prediction performance,
we also constructed sensitivity and success/prediction rate curves
(Fig. 7). Sensitivity shows the fraction of true positives corresponding
to a certain susceptibility threshold: we note that 93% of the landslides
and 94% of the rockfalls have at least a moderate LSS (LSS > 0.5)
according to their respective LSS models. The success/prediction rate
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shows which fraction of true positives corresponds to a certain fraction
of the study area. It can be observed that 67% of landslides from the
calibration dataset falls within 10% of the study area, which is the area
with very high LSS. Likewise, 84% of the rockfalls is located in the area
of very high LSS, covering 3% of the study area. Overall, these results
indicate good model skill, with consistently better results for the rock-
fall model. Prediction performance was only assessed for the model of
all landslide types, since no independent rockfall dataset was collected.
Both in terms of sensitivity and prediction rate, the external validation
data (see Fig. 3, dashed green lines) scores almost as good as our
calibration dataset. Although this data has less detailed information,
this external validation clearly demonstrates that our model is capable
of assigning locations where landslides are likely to occur in the future.

As a last step in the model performance evaluation, we assessed
the model uncertainty and its spatial distribution (Fig. 8). Overall,
standard deviations of LSS (with values between 0 and 1) are very
small with mean values of about 0.01 for both models. This
suggests that the model results are little influenced by selecting
different subsets for model calibration and further indicates that
we present two robust models. Nevertheless, Fig. 8 does not show a
uniform pattern across the region, with clearly larger standard
deviations in some areas. For the model of rockfalls, highest
uncertainties correspond to areas with rather high maximum
slopes (SLOM, 40–70%, depending on the soil moisture (SW10) and
lithology). For the model based on all landslide types, uncertainty is
larger for areas with a lava lithology in combination with intermediate
slopes (20–30%, and for lower slopes in case of high soil moisture) and
for the combination of carbonatite lithology with rather steep slopes
(60–75%). This indicates that, for intermediately steep areas, the role of
lithology and soil moisture is important in determining LSS. Conse-
quently, further constraining the role of these factors (potentially in
combination with land use and other variables) could further improve
model performance. This will require improved data on these variables,
and a focus of more detailed landslide mapping in regions with the
highest uncertainties.

Relation between landslide susceptibility and landslide mobilization
rate
Figure 9 shows the landslide size-frequency density distribution of
our inventory (483 landslides). Only for the rockfalls and 31 (most-
ly old) landslides, we have no information on their size. We
observe more smaller and more larger landslides compared to
the theoretical curves (Malamud et al. 2004). The heavy tail is
the result of five large landslides (> 50,000 m2). The larger number
of small landslides might be the result of human impact in an
intensely cultivated region. This was also observed in other culti-
vated areas (e.g., Van Den Eeckhaut et al. 2007). Many small
landslides (1–100 m2) can be found along steep road cuts and talus
bordering agricultural plots in the Mt. Elgon region. Because of
quick land reclamation, the true portion of small landslides is
likely even larger. Small landslides make up only a minor part of
the total LMR. Nevertheless, it is important to know the total
number of landslides in an area if we want to assess the LMR
based on theoretical size-frequency distributions. Additionally, the
theoretical curves should correctly represent the real distribution.
We observe this is not the case for our dataset.

A slightly positive, but not significant (p = 0.07) relationship
between LSS and individual landslide size is found (Fig. 9). Nev-
ertheless, we do not observe a negative relationship between

landslide size and LSS or slope and do not find the largest land-
slides at lower slopes, which is often assumed and found in other
studies (e.g., Frattini and Crosta 2013; Jacobs et al. 2017). In
contrast, the biggest landslides are located in areas with high
susceptibility. When we exclude the smallest landslides (< 10 m2,
which are likely to be underestimated), the relation becomes
slightly significant (p < 0.01). Unlike landslide size, the landslide
frequency (hazard) clearly increases with LSS (Fig. 10), which can
be expected. Although susceptible areas are not necessarily haz-
ardous (i.e., having a high landslide frequency), hazardous areas
should correspond to areas with high LSS, for a good LSS model.
Although landslide frequency is highly dependent on the complete
mapping of especially small landslides, we can also make a first
crude assessment of the landslide risk in the entire region by
combining landslide frequency per susceptibility class with the
population density at the parish level (UBOS 2017). Figure 11 shows
the landslide risk of the Mt. Elgon region, with highest risk in the
southwest, where both landslide frequency and population density
are high. A landslide risk of 100 indicates that, for instance, within
an area of 1 km2 1000 persons are exposed to one landslide every
10 years or 500 persons are exposed to a landslide every 5 years.
The typical size of such landslide involves about 100 to 20,000 ton,
but could be much larger or smaller. The landslide frequency,
however, should be considered as a lower estimate for the actual
risk.

For the LMR analysis (Fig. 3, area delineated in blue), a poten-
tial underestimation of small landslides is less important, because
large landslides have a much stronger control on the LMR. There-
fore, the length of the considered observation period is more
important to capture the recurrence of low-frequency, large-
magnitude landslide events. As a result, similar to the landslide
risk assessment, our LMR should be considered as a lower esti-
mate of the actual LMR, since large landslides occurring infre-
quently might not be captured by our inventory. The 231 observed
landslides that occurred between 1997 and 2016 within the area
considered for the LMR calculation, range between 0.25 and 1.2 106

ton and represent a LMR of 350 ton/km2/y. However, when the
zone of very low susceptibility is excluded (53%), a LMR of 750
ton/km2/y is obtained and for the area of very high LSS this
increases to almost 2000 ton/km2/y. This rate is at the higher end
of the spectrum, observed at the global scale, but is still one to two
orders of magnitudes smaller than LMR generated in highly tec-
tonically active and/or very wet mountain ranges, such as for
instance Taiwan (Broeckx et al., manuscript in preparation). Ex-
trapolating the results of Fig. 10 to the entire Mt. Elgon region in
Uganda yields a rate of 255 ton/km2/y, and 655 ton/km2/y if the
area of very low susceptibility is excluded. Landslides are thus a
major sediment-producing source in this African region. A clear
positive relationship between LSS and LMR is observed in Fig. 10.
This results from the larger landslide numbers that are associated
with higher LSS values, rather than from larger landslides that are
also slightly correlated with higher LSS values.

These results show that LSS can be used as a first indicator or
estimate of LMR in the Mt. Elgon region. It is recommended to
investigate in follow-up studies whether such positive relation
between LSS and LMR can also be found for other study areas
and at larger scales. Broeckx et al. (2016, 2018) already demon-
strated that LSS can be a good predictor for catchment sediment
yield at regional to continental scale. Also our analyses suggest the
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potential of this relatively easy-to-calculate proxy variable, for
quantitative geomorphological processes such as LMR and sedi-
ment yield, for which data is often scarce and without continuous
coverage at large scale.

Conclusions
This study presents first detailed landslide and rockfall suscepti-
bility maps for the Mt. Elgon region in Uganda, based on a dataset
of 653 landslides collected in the field (2002–2016). Together with
the landslide mobilization rate (LMR) and landslide risk assess-
ment, these analyses provide a comprehensive approach to assess
both the social and geomorphological impact and importance of
landslides in this data-scarce region. As such, this study can be
used as an example to go beyond a standard landslide suscepti-
bility (LSS) assessment in other data-scarce regions in, but also
outside the Global South. Most importantly, the results of our
analyses and produced maps can be directly used by policymakers
as a basis for sustainable planning and risk reduction for the
region and its inhabitants.

Topography is the main predictor for both LSS models, but has
a stronger control on rockfalls, which are restricted to the steep
escarpments being main geomorphological structures around Mt.
Elgon. Lithology and soil moisture are also significant predictors
of LSS. Uncertainty analyses showed that especially for intermedi-
ate relief these variables are important and should be further
constrained to improve model performance. The LSS models for
all landslide types and for rockfalls (Fig. 5) successfully distinguish
between landslide and non-landslide locations and indicate re-
spectively 17% and 5% of the region’s area as at least highly
susceptible to landslide and rockfall occurrence. Comparison of
our model with global and continental landslide susceptibility
models shows that these large-scale models can already provide
a first indication of the general LSS pattern within our region, but
that higher resolution models are needed to differentiate suscep-
tible and non-susceptible slopes at local scale.

Our dataset shows a larger fraction of small landslides com-
pared to proposed theoretical size-frequency distributions. This
may be the result of human impact, which generates many small
landslides near for instance road cuts and earth banks. However,
at the same time, humans can also quickly remove the traces of
these smaller landslides by land reclamation. Therefore, we hy-
pothesize that in many similar, intensely cultivated steep moun-
tain regions, the fraction of very small (1–100 m2) landslides is
strongly underestimated. Small landslides have a limited contri-
bution to the LMR. However, their omission could cause a larger
underestimation of the LMR, if theoretical frequency-size distri-
butions are used to estimate LMR based on the number of land-
slides. Consequently, for such approaches, it is crucial that both
the number of landslides and the theoretical frequency density
distributions are representative for the real situation. A positive
relation is observed between LSS and LMR, which is mainly attrib-
utable to a larger number of landslides observed in classes with
higher landslide susceptibility. This result indicates that LSS can be
used as a first estimate for LMR in the Mt. Elgon region. Given the
scarcity of LMR data in many regions around the world and at
larger scales, LSS might be useful as a first LMR estimator in such
regions. However, this relation should be further explored in other
regions and potentially at larger scale to assess its true quantitative
predictive power.
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