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Visual interpretation of stereoscopic NDVI satellite im-
ages to map rainfall-induced landslides

Abstract Landslide inventory maps are commonly prepared
through the visual interpretation of stereoscopic aerial photo-
graphs and field checks. Stereoscopic satellite images can also be
interpreted visually to recognize and map landslides. When
interpreting stereoscopic imagery, shadows can conceal the pho-
tographic elements typical of landslides, hampering the recogni-
tion and mapping of the landslides. To mitigate the problem, we
propose a method that exploits normalized difference vegetation
index (NDVI) images and digital stereoscopy for the 3D visual
recognition and mapping of landslides in shadowed areas. We
tested the method in the 25 km2 Pogliaschina catchment, northern
Italy, where intense rainfall caused abundant landslides on 25
October 2011. Using a PLANAR® StereoMirror™ digital stereo-
scope, we prepared an event landslide inventory map (E-LIM)
through the visual interpretation of a pair of NDVI images obtain-
ed from a WorldView-2 stereoscopic multispectral bundle. We
compared the event inventory with two independent E-LIMs for
the same area and landslide event. The 3D vision of the NDVI
stereoscopic image pair maximized the use of the radiometric
(color and tone) and the terrain (elevation, slope, relief, and
convexity) information captured by the stereoscopic multispectral
images, allowing for the recognition of more landslides and more
landslide areas than the other E-LIMs in the shadowed areas. Our
results confirm that use of NDVI images facilitates the visual
recognition and mapping of landslides in terrain affected by
shadows. We expect that the proposed method can help trained
interpreters to map landslides more accurately in areas affected by
shadows.

Keywords Digital stereoscopic vision . Landslide inventory
map . Normalized difference vegetation index . WorldView-2

Introduction
For decades, landslide inventory maps (LIMs) have been prepared
through the visual interpretation of stereoscopic aerial photo-
graphs aided by field surveys. The growing availability of high
and very high resolution satellite images is driving the experimen-
tation of automatic and semi-automatic methods for landslide
detection and mapping (Guzzetti et al. 2012). Today, monoscopic,
panchromatic, and multispectral satellite images can be used to
prepare projected and orthorectified images equivalent in quality
to aerial orthophotographs (Casagli et al. 2005; Weirich and
Blesius 2007; Marcelino et al. 2009; Fiorucci et al. 2011; Sun et al.
2017), or they can be combined with digital elevation models to
obtain 3D views. Stereoscopic panchromatic and multispectral
satellite images can also be used to prepare anaglyphs and stereo-
scopic models that can be interpreted visually to recognize and
map landslides (Haeberlin et al. 2004; Nichol et al. 2006; Weirich
and Blesius 2007; Bajracharya and Bajracharya 2008; Alkevli and
Ercanoglu 2011; Ardizzone et al. 2013; Murillo-García et al. 2015).

The visual interpretation approach considers a set of photo-
graphic elements typical of landslides, including shape, size, color,
tone, mottling, and texture (Rib and Liang 1978; van Zuidam 1985;
Antonini et al. 2002; Guzzetti et al. 2012). Shadows are an addi-
tional element that can help—or hamper—the visual interpreta-
tion of aerial or satellite imagery (Hackman 1967; Philipson 1997;
Moreno et al. 2008; Paine and Kiser 2012). Under favorable lighting
conditions, features such as landslide scarps, lateral cracks, or
pressure ridges can be recognized by their shadows. However,
steep and rugged terrain shadows generated by low illumination
angles can conceal the photographic elements typical of landslides,
limiting or even preventing the effective visual interpretation of
aerial or satellite imagery.

In this work, we propose a method that exploits normalized
difference vegetation index (NDVI) images and 3D digital stereos-
copy for the visual recognition and mapping of event landslides by
trained investigators. We tested the method preparing an event
landslide inventory map (E-LIM) for the Pogliaschina catchment,
northern Italy, where on 25 October 2011, an intense rainfall event
triggered numerous landslides (Marchi et al. 2013; Bartelletti et al.
2017), and we compared the new event inventory to two pre-
existing E-LIMs available for the same area and the same event
(Mondini et al. 2014).

Study area
The Pogliaschina torrent is a right tributary of the Vara River that
drains a portion of the eastern Ligurian Apennines range into the
Tyrrhenian Sea, in northern Italy (Fig. 1 a, b). In the 25-km2

catchment, elevation ranges from 95 to 720 m (average, 340 m)
and terrain slope from 0° to 63° (average, 28.5°), with local differ-
ences controlled by the geological and tectonic settings (Marchi
et al. 2013). The area is characterized by the presence of a NW-SE
regional thrust associated with high-angle normal faults. Carbon-
ate rocks, overlaid by siltstones and mudstones pertaining to the
Scaglia Toscana and the Macigno Formations, crop out W of the
thrust, and carbonates and sandstones covered by ophiolites and
turbidites pertaining to the Monte Gottero flysch crop out E of the
thrust. Fluvial deposits, recent in age, mantle locally the
Pogliaschina valley floor (Mondini et al. 2014; Bartelletti et al.
2017). Climate is Mediterranean, with dry summers and most of
the precipitation falling as rainfall from October to November.
Mean annual precipitation in the 50-year period 1961–2010 was
1500 mm, with a maximum of 2417.6 mm measured by the
Brugnato rain gauge, at 115 m of elevation (Desiato et al. 2011).
The landscape is mostly forested. Vineyards, olive groves, and
agricultural areas cover about 10% of the catchment, and urban
areas are small and concentrate at lower elevations.

Landslides are abundant in the catchment, and are represented
by rotational and translational slides, earthflows, soil slips, debris
flows, and compound landslides (Marchi et al. 2013). On 25
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October 2011, an intense rainstorm hit the Tyrrhenian coast be-
tween Liguria and Tuscany. In Val di Vara, rainfall intensity
exceeded 150 mm h−1, and the Brugnato rain gauge measured
539 mm of rainfall in 24 h. The intense rainfall triggered numerous
landslides, mostly soil slips and earthflows (Fig. 1 c, d) and caused
a flash flood along the Pogliaschina torrent (Marchi et al. 2013).

Data

Satellite imagery
A pair of the WorldView-2 stereoscopic satellite images of the
study area taken on 29 October 2011—4 days after the landslide-
triggering rainfall event—in panchromatic and multispectral
bands was available to us. The image pair has a 0.5-m ground
sampling distance (GSD) in the panchromatic band and a 2-m
GSD in the multispectral bands (blue, green, red, near-infrared
regions (NIR)). The two images were acquired with off-nadir
angles of 6.6° and 32.2°, and made available to us in the WGS84
coordinate system. Due to the local morphological setting (Fig. 1b)
and the date of the acquisition, in mid-autumn, 32% of the
stereoscopic-pair is affected by shadows that reduce the illumina-
tion of many of the NW-facing slopes (Mondini et al. 2014).

Landslide event inventory maps
Two pre-existing E-LIMs showing landslides triggered by the 25
October 2011 rainfall event were available (Mondini et al. 2014).
The first event inventory (MAP A in Fig. 2 a, b) was obtained
through the visual interpretation of (i) post-event aerial photo-
graphs and orthophotographs, for 62.5% of the study area and of
(ii) the panchromatic WorldView-2 stereoscopic image, for the
remaining 37.5% of the area. The visual interpretation of the
aerial and the satellite imagery was aided by field surveys con-
ducted to resolve local ambiguities (Mondini et al. 2014). MAP A
shows 591 landslides, corresponding to a density of 23.6 land-
slides per km2, for a total landslide area ALT = 452,079 m2. In the
E-LIM, the smallest landslide has AL = 11 m2, the largest landslide
has AL = 13,795 m2, and the average landslide area is ÂL = 764 m2

(Table 1).
The second event inventory (MAP B in Fig. 2 c, d) was prepared

using a semi-automatic classification procedure applied to the
WorldView-2multispectral bundle (Mondini et al. 2014).MAPB shows
537 landslides, corresponding to a density of 21.5 landslides per km2,
for a total landslide area ALT = 382,931 m2. In this E-LIM, the smallest
landslide has AL = 31 m2, the largest landslide has AL = 7869 m2, and
the average landslide area is ÂL = 713 m2 (Table 1).

The two E-LIMs (MAP A and MAP B) were compared to a new
event inventory prepared in this study (MAP C in Fig. 2 e, f), which
we present in the BResults^ section.

Method
We propose a method to facilitate trained investigators to recog-
nize and map landslides in shadowed areas. The method exploits
NDVI images prepared to improve the information given to a
photo interpreter for the heuristic, visual recognition of event
landslides using 3D digital stereoscopy. This is obtained in four
steps (Fig. 3), which include (i) the preparation of standard NDVI
images from stereoscopic multispectral satellite images; (ii) the
contrast enhancement of the NDVI images, if necessary; (iii) the
preparation of a stereoscopic model of the (enhanced) NDVI

Fig. 1 a Index map showing geographical location of the Pogliaschina catchment
(orange area), Liguria, northern Italy. b Shaded relief image showing topography in
the Pogliaschina catchment. Blue lines show drainage network. Red stars show
location of two landslides caused by intense rainfall on 25 October 2011, shown by
dashed yellow lines in (c) and (d)
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Fig. 2 Event landslide inventory maps (E-LIMs) for the Pogliaschina catchment, northern Italy, used in this study. a, c, e Show inventories for the entire study area. Black
rectangles show location of panels (b), (d), and (f) that portray enlarged maps for a small portion of the study area. MAP A (upper row) shows E-LIM prepared by visual
interpretation of post-event aerial photographs, orthophotographs, and the panchromatic WorldView-2 stereoscopic images, aided by field surveys (Mondini et al. 2014).
Landslides are shown in red. MAP B (middle row) shows E-LIM prepared using a semi-automatic procedure applied to the multispectral bundle acquired by the WorldView-
2 satellite (Mondini et al. 2014). Landslides are shown in blue. MAP C (lower row) shows E-LIM prepared in the study through the visual interpretation of e-NDVI100

stereoscopic pair obtained from the WorldView-2 satellite images. Landslides are shown in green in areas not affected by shadows and in violet in areas affected by
shadows. Yellow rectangles show location and extent of area shown in Fig. 4
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images for 3D visualization; and (iv) the visual analysis of the 3D
stereoscopic model for landslide recognition and mapping, and
the preparation of an E-LIM.

Preparation of the NDVI image pair
The first phase of the method (I in Fig. 3) consists in the calcula-
tion of the normalized difference vegetation index, NDVI ¼ NIR−R

NIRþR,
where R and NIR are the spectral radiance measurements acquired
in the red (R) and the near-infrared (NIR) regions, for the single
multispectral images of the stereoscopic pair. For this step, we
used ERDAS IMAGINE® software that produced for each image
a matrix of real (floating point) numbers in the range from − 1.0 to
+ 1.0. Our 3D-visualization system used for the interpretation of
the stereoscopic images did not accept images represented by
floating point numbers. For this reason, we transformed the orig-
inal NDVI values to obtain NDVI100 = INT (100 × NDVI).

Figure 4a shows a panchromatic view of a portion of the study area
where rainfall-induced landslides occurred on 25 October 2011. The
landslides are not visible in the image, due to the presence of shadows
that conceal the landslide features. Figure 4b shows the NDVI100 image
for the same area. The event landslides present in the area are visible in
the NDVI100 image, allowing the interpreter to recognize and map
them, albeit with some difficulty.

Enhancement of the NDVI image pair
The second phase (II in Fig. 3) enhances the contrast of the
NDVI100 image pair. This step is optional, and is performed if (or
where) the contrast of the NDVI100 image is low. Contrast, the ratio
between the difference and the sum of the maximum and the
minimum luminescence values in an image, C ¼ Lmax−Lmin

LmaxþLmin
(Barten

1999), is key to the visual recognition of objects (Brivio et al. 2006).
Where contrast is low, it may be difficult, or even impossible, for
an interpreter to discriminate an object (i.e., a landslide) from the
surrounding (i.e., the non-landslide area). For digital images, con-
trast can be enhanced using a variety of techniques that operate in
the image frequency or spatial domains (Maini and Aggarwal 2010;
Bedi and Khandelwal 2013). In our test case, to enhance the low
contrast images (Fig. 4b), we used the Bpiecewise linear contrast
stretch^ technique available in ERDAS IMAGINE® software.
Figure 4c shows the result of the image stretching. In the
contrast-enhanced image, the narrow event landslides are more

clearly visible than in the low contrast image, making it simpler for
the interpreter to recognize and map the event landslides.

E-NDVI100 stereoscopic model for 3D visualization
The third phase (III in Fig. 3) consists in the preparation of a
stereoscopic model of the contrast-enhanced, e-NDVI100 image
pair for 3D visual interpretation. The step involves first the inter-
nal and the external orientations of the image pair. For the pur-
pose, we used ERDAS IMAGINE Photogrammetry® software. For
the internal orientation, we used the geometric information on the
sensor model (SM) provided by the software for the WorldView-2
satellite, and for the external orientation, we used the information
in the rational polynomial coefficients (RPC) file associated to the
multispectral image bundle.

Next, to obtain a 3D view of the e-NDVI100-oriented image pair, we
used a PLANAR® StereoMirror™ system (http://www.planar.com/me-
dia/211324/mn-planar-sd2020.pdf). The digital display system exploits
two active matrix liquid crystal display (AC-LCD) monitors oriented at
an angular distance of 110°. A passive beam splitter mirror bisects the
angle between the two monitors. The laterally reversed right image is
projected on the top screen, and the left image is projected on the
bottom (front) screen. Using passive polarization glasses, a photo
interpreter sees the right image reflected on the mirror with the right
eye, and the left (frontal) image with the left eye. Fusion of the right and
left images in the photo interpreter’s brain allows for the 3D visualiza-
tion of the contrast-enhanced e-NDVI100-oriented image pair (Fig. 5).

Visual interpretation of the 3D stereoscopic model
The last phase of the method (IV in Fig. 3) consists in the 3D visual
analysis of the oriented pair of contrast-enhanced e-NDVI100 ste-
reoscopic images, allowing a trained interpreter to recognize and
map the event landslides captured by the satellite image pair. This
is equivalent to what a photo interpreter does when he/she inter-
prets visually a pair of stereoscopic aerial photographs using an
analog or digital stereoscope. For this step, we used Stereo Analyst
for ArcGIS® software that allowed the interpreter to recognize the
event landslides and to draw the landslide geometry directly on
the 3D-view. The geographic and geometric information on the
event landslides was stored in a GIS database for further process-
ing and analysis. The process reduced the acquisition time and the
errors associated with the manual transfer of the landslide infor-
mation from the image to a digital map (Santangelo et al. 2015).

Table 1 Descriptive statistics for three event landslide inventory maps (E-LIMs) (Fig. 2) available for the Polgliaschina catchment and used in this study

MAP A MAP B MAP C

Number of mapped landslides (n) 591 537 551

Landslide density (n/km2) 23.64 21.48 22.04

Minimum landslide area (m2) 11 31 44

Maximum landslide area (m2) 13,795 7869 9033

Mean landslide area, ÂL (m
2) 764 713 904

Total landslide area, ALT (m
2) 452,079 382,931 498,230

MAP A, E-LIM prepared by Mondini et al. (2014) through the visual interpretation of aerial and satellite imagery, aided by field surveys

MAP B, E-LIM prepared by Mondini et al. (2014) exploiting a semi-automatic classification procedure applied to a multispectral WorldView-2 satellite image

MAP C, E-LIM prepared in this work through the 3D digital visual interpretation of contrast-enhanced e-NDVI images obtained from a WorldView-2 stereoscopic multispectral image pair
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In places, visual mapping of the event landslides proved difficult due
to the large parallax—the distance between two corresponding
points—in the image pair. Parallax is responsible for the apparent
displacement of an object viewed from different lines of sight, and
conditions the effective interpretation of landslides and other geomor-
phological features. The two satellite images had a large difference in
their off-nadir angles (6.6° and 32.2°), making parallax control problem-
atic. In places, mapping small and elongated landslides proved difficult,

Fig. 3 Logical framework for the method proposed to exploit normalized
difference vegetation index (NDVI) images and 3D digital stereoscopy for the
visual recognition and mapping of event landslides in areas affected by shadows.
Colored rectangles show model steps in four phases. Parallelograms show input
(top), intermediate outputs (right), and output (bottom) products. See text for
explanation

Fig. 4 Example of the application of the proposed method for a portion of the
study area. a Original, panchromatic satellite image. b Re-scaled normalized
difference vegetation index, NDVI100 image. c Contrast-enhanced e-NDVI100 image.
d Same as (c) with mapped event landslides (in violet). See yellow rectangles in
Fig. 2 for location of the area in the Pogliaschina catchment
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particularly in steep, narrow channels where it was not easy to keep the
floating cursors of the PLANAR® system on the topographic surface. To
cope with the problem, we mapped the small and elongated landslides
in steep and narrow channels as lines. Next, we buffered the lines to
obtain polygons to represent the landslides, with the size of the buffer
selected from measurements of the width of the channels (from 3 to
23 m, mean= 8 m, σ= 2.8 m), also obtained from the satellite images.

Results
We used the contrast-enhanced e-NDVI100 3D stereoscopic model
prepared adopting the method described in the BMethod^ section to
recognize visually and map digitally the rainfall-induced event land-
slides triggered by the 25 October 2011 rainfall event in the Pogliaschina
catchment. The new E-LIM, shown as MAP C in Fig. 2e, has 551
landslides (Table 1), corresponding to a density of 22.0 landslides per
km2. The figures include 386 landslides in steep terrain and narrow
channels that were mapped as lines and buffered to obtain the corre-
sponding landslide polygon. The total landslide area in MAP C is
ALT = 498,230 m2. In the new event inventory, the smallest landslide
has AL = 44m2, the largest landslide has AL = 9033 m2, and the average
landslide area is ÂL = 904 m2 (Table 1).

We compared MAP C prepared in this work to the two previous
E-LIMs available for the study area, i.e., MAP A showing 591
landslides and MAP B showing 537 landslides caused by the 25
October 2011 rainfall event (Mondini et al. 2014) (Fig. 2). The
comparison revealed that the three E-LIMs are different in terms
of the number of the mapped landslides and of the statistics of the
landslide areas (Table 1). The comparison revealed a small differ-
ence between MAP A and MAP B, as shown by Mondini et al.
(2014), with MAPA showing 9.1% more landslides and 15.3% more
landslide area than MAP B. A smaller difference exists between
MAP A and MAP C, with MAP A showing 6.7% more landslides
than MAP C, whereas MAP C shows 9.2% more landslide area than
MAPA. MAP C has 2.5% more landslides and 23.1% more landslide
area than MAP B (Table 1).

Considering only the shadowed areas (Table 2) and counting
the number of landslides and the total landslide area ALT, the main
differences are for landslides recognized using the satellite images

and the orthophotographs (MAP A). Table 2 shows that in the
shadowed areas, MAP A is substantially different from both MAP
B and MAP C, whereas MAP B and MAP C show similar number of
landslides and comparable ALT. In the shadowed areas, MAP C has
20.7% more landslides and 23.5% more landslide area than MAP B.
Considering the non-shadowed areas, the number of landslides,
and the total landslide area ALT, the main differences are for the
landslides recognized using the satellite images and the
orthophotographs (MAPA). Table 2 shows that MAPA is substan-
tially different from both MAP B and MAP C, whereas MAP B and
MAP C show similar number of landslides and a comparable ALT.
In the non-shadowed areas, MAP B has 5.8% more landslides and
MAP C has 22.8% more landslide area than MAP B.

To quantify the degree of spatial match between the three E-
LIMs, we computed the mismatching index, E (Carrara et al. 1992)
and the related matching index, M (Galli et al. 2008),

M ¼ 1−E;E ¼ A1
LT∪A

2
LT

� �
− A1

LT∩A
2
LT

� �

A1
LT∪A

2
LT

� � ; 0≤M≤ 1; 0≤E≤1;

where A1
LT and A2

LT are the total landslide areas of two landslide
inventories, and ∪ and ∩ are the geometric union and intersection
of the inventories. Where two maps show exactly the same land-
slides in the same geographical locations, the degree of matching is
perfect (M = 1), and the mapping error is null (E = 0). Where
instead the maps show landslides in completely different locations,
the cartographic matching is null (M = 0), and the mapping error
is maximum (E = 1). Using the three E-LIMs shown in Fig. 2 (MAP
A, MAP B, and MAP C), we calculated the E and M indices for all
the map pairs (Table 3). We calculated the indices considering (i)
the entire study area (25 km2), (ii) the portion of the study area
affected by shadows (~ 8 km2), and (iii) the portion of the study
area not affected by shadows (~ 17 km2). The results confirm that
the three inventories are different.

To compare the spatial distribution of landslides in the three E-
LIMs, we further examined the spatial correlation between pairs of
inventory maps (Mondini et al. 2014). We first applied to E-LIM
pairs a diversity filter to reduce the co-registration errors. The
filter consisted in a kernel, 7 × 7 pixel in size, moved across pairs
of landslide maps. The filtering process resulted in three diversity
maps, and we determined the spatial correlation between the pairs
of the diversity maps computing their correlation coefficient,

ccρ1ρ2 ¼ cov ρ1; ρ2ð Þ
σρ1ρ2

;

where, ρ1 and ρ2 are the two spatial landslide diversity maps, cov is
the corresponding covariance matrix, and σρ1 and σρ2 are the
standard deviations of ρ1 and ρ2, respectively. Values of ccρ1ρ2 close
to 1 indicate a high level of similarity between the maps, and values
of ccρ1ρ2 close to 0 indicate a low similarity of the maps (Mondini
et al. 2014). We computed the correlation coefficients for the three
pairs of density maps obtained from the E-LIMs considering three
cases: (i) the entire study area (25 km2); (ii) the sub-area affected
by shadows (~ 8 km2, 32%), where the visual recognition of the
event landslides was more problematic; and (iii) the portion of the

Fig. 5 Illustrative sketch of the PLANAR® StereoMirror™ digital system used in the
study for the stereoscopic visualization of the contrast-enhanced e-NDVI100-ori-
ented image pair
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study area not interested by shadows (~ 17 km2, 68%). The results
revealed that MAP B and MAP C exhibit the largest similarity in all
the considered cases (Table 4).

Discussion
The heuristic, visual interpretation of stereoscopic, aerial or satellite
images remains a valuable and effective technique to map landslides
over large and very large areas (Guzzetti et al. 2012). However, due to
geometry of the acquisition, the date and time of the acquisition (that
controlled the height and position of the sun), and the morphology of
the terrain, the aerial and the satellite images are affected by shadows
locally. The problem is particularly severe in the mountains and the
hills, where terrain is rugged and slopes are steep. The presence of
shadows hampers, and in places prevents, the visual recognition and
mapping of landslides (Fig. 4). When working with analogic aerial
photographs, the impact of shadows is unavoidable. Where shadows
are dark, landslide mapping becomes inaccurate or incomplete, affect-
ing the quality of the resulting LIMs.

Multispectral satellite (or aerial) images have more radiometric
information than the traditional analogic, panchromatic, or color
aerial photographs. Properly treated, the additional information
can facilitate the visual recognition and mapping of landslides by a
trained investigator in areas affected by shadows. Among the
many spectral band ratio indices used in remote sensing to treat
the complex information provided by multispectral images, the
normalized difference vegetation index (NDVI) is known to be

little sensitive to local topographic and illumination conditions
(Lillesand et al. 1994; Lawrence and Ripple 1998) and to facilitate
the visual recognition of landslides (Temesgena et al. 2001; Lee
2005; Hsieh et al. 2011; Schlögel et al. 2013; Liu 2015; Plank et al.
2016). Our work confirmed that use of stereoscopic NDVI images
facilitates the visual recognition and mapping of landslides in
rugged terrain affected by shadows.

For optimal results, the visual interpretation of aerial photography
for landslide and geomorphological mapping (Rib and Liang 1978; van
Zuidam 1985; Antonini et al. 2002; Guzzetti et al. 2012) is performed
using stereoscopic vision, which allows a trained investigator to exploit
jointly the photographic (e.g., color, tone, mottling, and texture) and
the terrain (e.g., elevation, slope, relief, and convexity) information
available from analogic aerial photography. In this work, we extended
the use of the 3D vision to contrast-enhanced NDVI images, maximiz-
ing the use of the radiometric and the terrain information captured by
the satellite stereoscopic pair. Results proved successful, with more
landslides mapped in the shadowed areas (Table 2). We conclude that
the proposed method can be used effectively to help a trained inves-
tigator to recognize and map landslides in areas affected by shadows.

We further note that calculation of the NDVI reduced the resolution
of the images used for the visual interpretation fromGSD=0.5 m of the
panchromatic image to GSD= 2.0 m. Despite the loss in resolution, the
interpreter was able tomapmore landslides in the shadowed areas than
the landslides shown in the other available inventories (Table 2).We take
this as an indication of the fact that the joint use of stereoscopy and

Table 2 Statistics for the three E-LIMs in areas affected (~ 8 km2, 32% of the total area) and the not affected (~ 17 km2, 68%) by shadows

MAP A MAP B MAP C

Number of mapped landslides (n)

Shadowed areas 50 142 179

Non-shadowed areas 541 395 372

Density (n/km2)

Shadowed areas 6.25 17.75 22.37

Non-shadowed areas 31.82 23.23 21.88

Minimum landslide area (m2)

Shadowed areas 126 78 56

Non-shadowed areas 10 31 44

Maximum landslide area (m2)

Shadowed areas 8191 7869 9033

Non-shadowed areas 13,795 5709 8175

Mean landslide area (m2)

Shadowed areas 1686 1283 1330

Non-shadowed areas 680 508 699

Total landslide area (m2)

Shadowed areas 84,300 182,322 238,153

Non-shadowed areas 367,778 200,610 260,077

MAP A, E-LIM prepared by Mondini et al. (2014) through the visual interpretation of aerial and satellite imagery, aided by field surveys

MAP B, E-LIM prepared by Mondini et al. (2014) exploiting a semi-automatic classification procedure applied to a multispectral WorldView-2 satellite image

MAP C, E-LIM prepared in this work through the 3D digital visual interpretation of contrast-enhanced e-NDVI images obtained from a WorldView-2 stereoscopic multispectral image
pair
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NDVI images can be very effective to map landslides in hilly or moun-
tain terrain areas affected by shadows. Further enhancements, not tested
in this work, would be to experiment with pan-sharpening techniques
(Mondini et al. 2011) to preserve in a higher resolution Bsharpened^
image (GSD=0.5 m) the NDVI information available at a lower reso-
lution (GSD=2.0 m) or to experiment adaptive stretching of the pan-
chromatic images. We expect that this could further enhance the ability
of the investigator to map landslides accurately.

The availability of independent E-LIMs for the same event and the
same area (Mondini et al. 2014) allowed for a quantitative comparison.
The inventory map obtained through the visual interpretation of the
available post-event aerial photographs, orthophotographs, and

panchromatic WorldView-2 stereoscopic images (MAPA) shows more
landslides than (i) the E-LIM prepared exploiting a semi-automatic
procedure applied to the WorldView-2 satellite image (MAP B) and
(ii) the E-LIM prepared in this work through the visual interpretation of
the contrast-enhanced e-NDVI100 WorldView-2 stereoscopic satellite
image pair (MAP C). In the areas affected by shadows (32% of the study
area), MAPA has the lowest number of landslides (50), whereas MAP B
(142) and MAP C (179) show a relatively similar number of landslides.
MAPC has 37more landslides and the largest total landslide area,ALT =
238,153 m2. We attribute this result to a better recognition and mapping
of event landslides under the forest canopy in the shadowed areas, better
exploiting the 3D radiometric and terrain information available from the

Table 3 Mismatching (E) and matching (M) indices calculated for (I) the entire study area (25 km2), (II) the area affected by shadows (~ 8 km2, 32% of the area), and (III)
the area non-affected by shadows (~ 17 km2, 68%) for the three pairs of E-LIMs

I, Entire study area

MAP A MAP B MAP C

E M E M E M

MAP AA – – 0.74 0.26 0.83 0.17

MAP B 0.74 0.26 – – 0.70 0.30

MAP C 0.83 0.17 0.70 0.30 – –

II, Areas affected by shadows

MAP A MAP B MAP C

E M E M E M

MAP A – – 0.74 0.26 0.83 0.17

MAP B 0.74 0.26 – – 0.70 0.30

MAP C 0.83 0.17 0.70 0.30 – –

III, Illuminated areas without shadows

MAP A MAP B MAP C

E M E M E M

MAP A – – 0.70 0.30 0.76 0.24

MAP B 0.70 0.30 – – 0.68 0.32

MAP C 0.76 0.24 0.68 0.32 – –

MAP A, E-LIM prepared by Mondini et al. (2014) through the visual interpretation of aerial and satellite imagery, aided by field surveys

MAP B, E-LIM prepared by Mondini et al. (2014) exploiting a semi-automatic classification procedure applied to a multispectral WorldView-2 satellite image

MAP C, E-LIM prepared in this work through the 3D digital visual interpretation of contrast-enhanced e-NDVI images obtained from a WorldView-2 stereoscopic multispectral image
pair

Table 4 Correlation coefficient ccρ1ρ2 (Mondini et al. 2014) calculated for the three pairs of landslide density maps for the entire study area and for the portion of the
study area affected by shadows

Entire area Shadowed areas Non-shadowed areas

ccρaρb 0.49 0.67 0.49

ccρaρc 0.41 0.59 0.40

ccρbρc 0.58 0.71 0.58

The three density maps were obtained using a low-Gaussian filter from the three E-LIMS (Fig. 2)

MAP A, E-LIM prepared by Mondini et al. (2014) through the visual interpretation of aerial and satellite imagery, aided by field surveys

MAP B, E-LIM prepared by Mondini et al. (2014) exploiting a semi-automatic classification procedure applied to a multispectral WorldView-2 satellite image

MAP C, E-LIM prepared in this work through the 3D digital visual interpretation of contrast-enhanced e-NDVI images obtained from a WorldView-2 stereoscopic multispectral image
pair
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stereoscopic multispectral images. We note that the effect was more
relevant for narrow, channeled landslides.

We calculated the mismatch index E in a pairwise fashion for
the entire study area, for the shadowed areas, and for the portion
of the territory not covered by shadows (Table 4). Analysis of the
mismatch indices confirmed that the differences between the three
E-LIMs are significant, but in the range of differences measured by
other investigators that have performed similar map comparisons
(Carrara et al. 1992; Galli et al. 2008; Fiorucci et al. 2011). Compar-
ison of the maps prepared exploiting the spectral information
(semi-automatic classification in MAP B and visually interpreted
e-NDVI images in MAP C), and the traditionally interpreted MAP
A, revealed a higher mismatch in the shadowed areas, whereas the
maps prepared exploiting the spectral information showed similar
results in all areas. We conclude that effective use of the spectral
information is important for the detection and mapping of land-
slides, particularly in the areas affected by shadows, where the
visual interpretation of the standard optical aerial or satellite
images is more difficult and error prone.

Lastly, we note that part of the mismatch revealed by the tests
performed might be the result of a locally non-optimal co-regis-
tration of the satellite imagery. The effect is more relevant in steep
terrain, and it is a consequence of the large difference in the off-
nadir angles between the two satellite images and to the different
resolutions of the satellite and the aerial imagery.

Conclusions
To mitigate the problem posed by shadows to the visual recogni-
tion of landslides from stereoscopic imagery, we proposed a meth-
od that exploits normalized difference vegetation index (NDVI)
images and 3D digital stereoscopy to facilitate event landslide
mapping by trained investigators. We tested the method using a
pair of WorldView-2 stereoscopic multispectral images taken over
the Pogliaschina catchment, NW, Italy (Fig. 1), 4 days after the 25
October 2011 landslide-triggering rainfall event (Marchi et al. 2013;
Mondini et al. 2014). For each image in the stereoscopic pair, we
prepared separate NDVI images at 2-m resolution, and we used a
PLANAR® StereoMirror™ digital stereoscopic system (Fig. 5) to
visualize a stereoscopic model of the NDVI image pair and to map
the rainfall-induced landslides. We then compared the obtained
event landslide inventory map (E-LIM) with two E-LIMs prepared
independently for the same area and rainfall event (Mondini et al.
2014) (Fig. 2). Results proved the effectiveness of the proposed
method, which in shadowed terrain allowed to map more land-
slides and more landslide area than the other E-LIMs. We attribute
the improvement in the mapping to the stereoscopic vision of the
NDVI images, which maximized the use of the radiometric (color
and tone) and the terrain (elevation, slope, relief, and convexity)
information captured by the multispectral pair. We expect that the
proposed method will help trained investigators to map event
landslides more accurately in areas affected by shadows, produc-
ing more complete landslide inventory maps. We further expect
the method to be improved adopting pan-sharpening techniques
or adaptive stretching of the panchromatic images.

Software and hardware used
For our experiment, we used a PLANAR® StereoMirror™ system,
version 9.3.1; ERDAS IMAGINE Photogrammetry® software, ver-
sion 10.1; and Stereo Analyst for ArcGIS® software, version 9.3.1.
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