
Landslides (2018) 15:2211–2225
DOI 10.1007/s10346-018-1022-0
Received: 11 December 2017
Accepted: 28 May 2018
Published online: 9 June 2018
© Springer-Verlag GmbH Germany
part of Springer Nature 2018

Chao Zhou I Kunlong Yin I Ying Cao I Emanuele Intrieri I Bayes Ahmed I Filippo Catani

Displacement prediction of step-like
landslide by applying a novel kernel extreme learning
machine method

Abstract Landslide displacement prediction is an essential com-
ponent for developing landslide early warning systems. In the
Three Gorges Reservoir area (TGRA), landslides experience step-
like deformations (i.e., periods of stability interrupted by abrupt
accelerations) generally from April to September due to the influ-
ence of precipitation and reservoir scheduled level variations.
With respect to many traditional machine learning techniques,
two issues exist relative to displacement prediction, namely the
random fluctuation of prediction results and inaccurate prediction
when step-like deformations take place. In this study, a novel and
original prediction method was proposed by combining the wave-
let transform (WT) and particle swarm optimization-kernel ex-
treme learning machine (PSO-KELM) methods, and by
considering the landslide causal factors. A typical landslide with
a step-like behavior, the Baishuihe landslide in TGRA, was taken as
a case study. The cumulated total displacement was decomposed
into trend displacement, periodic displacement (controlled by
internal geological conditions and external triggering factors re-
spectively), and noise. The displacement items were predicted
separately by multi-factor PSO-KELM considering various causal
factors, and the total displacement was obtained by summing
them up. An accurate prediction was achieved by the proposed
method, including the step-like deformation period. The perfor-
mance of the proposed method was compared with that of the
multi-factor extreme learning machine (ELM), support vector
regression (SVR), backward propagation neural network (BPNN),
and single-factor PSO-KELM. Results show that the PSO-KELM
outperforms the other models, and the prediction accuracy can be
improved by considering causal factors.

Keywords Step-like landslides . Displacement prediction . Kernel
extreme learning machine . Three Gorges Reservoir

Introduction
Landslides, which cause fatalities and economic damages world-
wide, are a common natural hazard (Petley 2012). In the Three
Gorges Reservoir Area (TGRA) of China, thousands of landslides
are threatening the surrounding environment. It is timely and
significant to carry out accurate landslide displacement prediction,
which is an essential component of developing early warning
systems for landslides (Casagli et al. 2010; Intrieri et al. 2013).

Since Saito proposed the empirical formula for landslide pre-
diction (Saito 1965), numerous landslide prediction models have
been developed (Fukuzono 1985; An et al. 2016; Carlà et al. 2016;
Carlà et al. 2017; Conte et al. 2017; Zhou et al., 2018). They can be
grouped into two categories: physical models and data-based
models. The data-based models are more popular than physical
models (Corominas et al., 2005) because of simple process and
accurate prediction. Recently, a variety of machine learning (ML)

models have been applied in landslide spatial and temporal pre-
diction, such as artificial neural network (ANN) (Du et al. 2013; Liu
et al. 2016), support vector machine (SVM) (Wu et al. 2016; Zhu
et al. 2017), decision tree (Krkač et al. 2017; Ma et al. 2017), extreme
learning machine (ELM) (Cao et al. 2016; Vasu and Lee 2016;
Huang et al. 2017), and so on.

Previous studies suggest that the ML models have achieved
good performances in landslide displacement prediction. Howev-
er, two deficiencies may limit its application: i.e., the fluctuation of
prediction results and the inaccurate prediction in strong defor-
mation period. For example, ELM randomly generates the con-
nection weight between the input and hidden layers, which leads
to the varied outputs, even if the inputs are totally the same
(Huang et al. 2004; Yang et al. 2017). To address these limitations
and improve the stability and accuracy of prediction, the kernel
ELM (KELM) model, proposed by Huang et al. 2012, is applied to
predict landslide displacement in this study. Simultaneously, the
particle swarm optimization (PSO) algorithm was utilized to opti-
mize the parameters of KELM. The combination of these two
methods is expected to increase the prediction accuracy.

Landslide displacement is controlled by many factors and can
be considered being constituted by several components. For ex-
ample, the long-term deformation trend is controlled by the in-
ternal geological conditions, while the short-term deformation
fluctuation is caused by external triggering factors (Glade et al.
2005; Du et al. 2013), such as seasonal weather variations. The key
of prediction, especially in strong deformation periods, is to es-
tablish accurate response relationship between causal factors and
landslide deformation. Consequently, displacement time series
should be decomposed and predicted separately with consider-
ation of different causal factors in modeling.

In this study, a hybrid ML model for landslide displacement
prediction was proposed with the consideration of causal factors.
The Baishuihe landslide in the TGRA was taken as a case study. It
has a typical step-like kinematic behavior, which means that long
stable periods are interrupted by periodic abrupt accelerations.
Based on the analysis of landslide step-like deformation, its dis-
placement was decomposed into trend component, periodic com-
ponent, and noise by wavelet transform (WT). The precipitation,
reservoir level, and previous displacements were adopted as the
causal factors of periodic displacement, while the previous dis-
placements were used as the causal factors of trend displacement.
The PSO-KELM was applied to predict both the trend and periodic
displacements with respect to causal factors, and the total forecast
displacement was the summation of the predicted displacements.
To verify the performance of the proposed model (multi-factor
PSO-KELM), the single-factor PSO-KELM and multi-factor ELM,
support vector regression (SVR), and backward propagation neu-
ral network (BPNN) models were executed and compared.
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Displacement analysis of step-like landslides
According to the creep deformation theory (Saito 1969), landslides
approaching failures experience three consecutive stages (Fig. 1a):
an initial deceleration (primary creep), a steady deformation (sec-
ondary creep), and eventually a hyperbolic acceleration which can
lead to collapse. However, because of the influence of external
triggering factors, landslides often show different deformation
patterns. In the TGRA, under the influence of periodic precipita-
tion and reservoir water level oscillations (Fig. 2), most landslides
deform sharply from April to September every year. Then, when
the triggers cease, typically from October to April, they become
steady again (Miao et al. 2014). Consequently, the resulting cumu-
lated displacement against time shows a step-like curve (Fig. 1b).

The deformation evolution of step-like landslide is jointly af-
fected by internal geological conditions and external triggering
factors. The displacement controlled by internal geological condi-
tions shows approximately monotonically increase in larger time
scale (Fig. 1a), while the displacement induced by periodic rainfall
and reservoir scheduling shows sudden increases in small time
scale (Fig. 1b). These two components of the total displacement are

defined as trend displacement and periodic displacement, respec-
tively. At the same time, the system error always exists during
deformation monitoring process. The cumulated displacement
time series can be decomposed as follows:

D ¼ T þ P þ N ð1Þ

Where D is the original total cumulated displacement, T is the
trend displacement, P is the periodic displacement, and N is the
noise from system error of monitoring.

Displacement prediction model and methodology

Wavelet transform
Wavelet transform (WT) is an effective analysis method for the
signal process, which provides good localization in both time and
frequency domains (Daubechies 1990). The WT can be divided
into two classes: continuous wavelet transformation (CWT) and
discrete wavelet transformation (DWT). Compared to the CWT,

Fig. 1 a Standard creep curve of landslide (I, decelerating creep stage; II, steady-state creep stage; III, accelerating creep stage). b Step-like landslide evolution curve

Fig. 2 Monthly precipitation and reservoir water level variations in the TGRA (2012)
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which requires complex computation and massive data, the DWT
requires less time and is easy to be implemented; the definition is
shown as follows:

DWTy m; nð Þ ¼ 2−
m
2 ∫þ∞
−∞ s tð Þσ* 2−mt−nð Þdt ð2Þ

Where m is the scaling constant and n is the translating constant
which is an integer; s(t) is a signal time series and σ∗(x) is the
complex conjugate function.

The DWT algorithm proposed by Mallat (1989) has been widely
used. It applies high-pass and low-pass filters to extract approxi-
mation and detail sequence from the original signal. The approx-
imation sequence represents the low-frequency component, which
contains trend information. The detail sequence represents the
high-frequency component, which contains periodic information.
In addition, a proper wavelet function is also important for WT.
There are many wavelet functions, such as the Haar (1910), Meyer
(1990), Daubechies (1992), and so on. In this study, Daubechies,

Fig. 3 The network structure of ELM

Fig. 4 The proposed prediction method for the step-like landslide displacements
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which is smooth, orthogonal, and compactly supported, was
adopted to decompose landslide displacement time series.

Kernel extreme learning machine
ELM (Huang et al. 2006) is a novel ML model with feed-
forward neural network training. Because of the excellent
generalization ability and fast learning speed, ELM has been
adopted in various fields recently (Lima et al. 2015; Barzegar
et al. 2016; Yang et al. 2017). The main characteristic of ELM

is that some parameters, such as the connection weight be-
tween the input and hidden layers, are generated randomly.
The basic network structure of ELM is shown in Fig. 3.

For N arbitrary samples (xi, yi), where xi = [xi1, xi2, ⋯xin]T∈ Rm,
yi∈ R, the output of ELM is defined as follows:

f xð Þ ¼ ∑
N

i¼1
βih wi⋅xi þ bið Þ ð3Þ

Fig. 5 The location of Baishuihe landslide (satellite image from Google Earth)

Fig. 6 Topographical map of the Baishuihe landslide (modified from Li et al. 2010)
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Where N is the number of hidden neurons; βi = [β1, β2, ⋯, βN] is the
output weight connecting the hidden nodes and the output nodes;
wi = [w1i,w2i, ⋯,wNi] is the weight vector connecting the hidden
nodes and the input nodes; bi = [b1, b2, ⋯, bn] is the threshold of the
hidden nodes; h(x) is a future mapping of hidden nodes. As the
input weight w and the hidden layer threshold b are determined
randomly, the goal of network training is to find the best output
weight β, which can be calculated by the least square method:

β
0 ¼ HþY ð4Þ

Where H+ is the Moore-Penrose generalized inverse of the hidden
layer output matrix H (Huang et al. 2006).

In order to overcome the randomness of ELM, and
improve its generalization capability and stability, Huang
et al. (2012) extended ELM into kernel learning and proposed
kernel-based ELM. Based on orthogonal projection method
and ridge regression theory, the output weight β can be
calculated by adding a positive constant 1/C as:

β ¼ HT 1=C þ HHT� �−1
Y ð5Þ

Hence, the output function of ELM is expressed as follows:

f xð Þ ¼ h xð ÞHT 1=C þ HHT� �−1
T ð6Þ

Fig. 7 Geological profile I–I′ of the Baishuihe landslide (modified from Li et al. 2010)

Fig. 8 The monitoring data of the Baishuihe landslide
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The kernel matrix for the ELM can be utilized to replace h(x).
Then, the output function of KELM can be written as follows:

f xð Þ ¼
K x; x1ð Þ

⋮
K x; xNð Þ

24 35T

1=C þ HHT� �−1
T ð7Þ

Where K(x, xi) is the kernel function. In this study, the radial basis
function was applied as the kernel function.

Particle swarm optimization
The PSO algorithm was proposed by Eberhart and Kennedy
(1995). It is a population-based stochastic optimization meth-
od and has been developed rapidly in recent years. Inspired
by the feeding behavior characteristic of bird flock, PSO was
applied to solve the optimization problem. In PSO algorithm,
the particle is described by three basic features, namely posi-
tion, speed, and fitness value. Each particle represents a so-
lution for the target problem. PSO achieves the search of
optimal solution through the pursuit of the optimal fitness
value, which is obtained by calculating the objective function

Fig. 9 Deformation indications on Baishuihe landslide

Table 1 The main macroscopic deformation phenomena in the Baishuihe landslide

Time Rainfall
(mm)

Reservoir
water
level(m)

Deformation
velocity
(mm/day)

Description of main deformation indications
Year Month

2003 7~9 228.8 135(± 0.2) 1.8~2.1 Generated the tensile crack L1 with direction of 320°,
width of 5~20 mm and length of 5~300 m (Fig. 9a);
generated the shear crack L2 with direction of 10°~40°, width
of 5~15 mm, and length of 5~20 m (Fig. 9b)

2005 8~10 178.4 135.5(± 0.5) 1.8~3.0 Generated the shear crack L3 with direction of 50°, length
of 50 m and width of 10~20 mm (Fig. 9c); generated
the tensile crack L4 with direction of 300°, length of 50 m,
and width of 10~20 mm (Fig. 9d)

2007 5~8 518.2 148.5~146 0.3~50.9 The landslide deformed the most in this year. All the
cracks developed greatly (Fig. 9); a series of cracks
developed in the rear and formed the landslide boundary.
Some small cracks developed in the west
part of the landslide

2009 5~7 120.2 155.9~145.5 2.2~6.7 The cracks kept developing, especially in the eastern and front
parts of the landslide
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of the target problem. In addition, the motion direction and
the distance of the particles are determined by the speed
feature. The search process of PSO is implemented through
a loop iteration. In the loop iteration, PSO seeks the global
best solution by adjusting the trajectory of each individual
toward its own best location and the best particle of the
entire swarm (Eberhart and Kennedy 1995). Considering that
the performance of KELM will be affected by its parameters,
PSO was adopted to seek appropriate parameters.

The proposed model and performance evaluation
As analyzed in BDisplacement analysis of step-like landslides,^ the
step-like displacement of the studied landslide is composed of
trend displacement, periodic displacement, and noise. The dis-
placement components are affected by different factors. In this
proposed model, the noise was removed from the original total
displacement at first; then, the total displacement (after denoising)
was decomposed into two displacement components (see
BDecomposition of displacement time series^ for details). Consid-
ering the different mechanisms of trend and periodic displace-
ments, they were separately modeled using the PSO-KELM, and

the total displacement was obtained by adding them together. The
flowchart of the proposed method is shown in Fig. 4.

In order to assess the model performance, four statistical indi-
ces were used, namely the root mean square error (RMSE), abso-
lute percentage error (APE), mean absolute percentage error
(MAPE), and relation coefficient (R). Larger R and smaller RMSE,
APE, and MAPE indicate higher prediction performance. The
formulas of the four indices are shown as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i¼1
Dbi−Di

� �2
s

ð8Þ

APE ¼ Dbi−Di

Di

�����
����� ð9Þ

MAPE ¼ 1
N

∑
N

i¼1

Dbi−Di

Di

�����
����� ð10Þ

Fig. 10 Displacement decomposition result of XD-01

Table 2 Some data samples used in the modeling of trend displacement

Time Input 1 Input 2 Input 3 Output Notes

Jan 2013 0.8332 0.8477 0.8626 0.8770 Inputs 1–3 are the trend displacement over the past 1, 2, and
3 month, respectively

Feb 2013 0.8477 0.8626 0.8770 0.8914

Mar 2013 0.8626 0.8770 0.8914 0.9042 Output is the trend displacement of the current month

Apr 2013 0.8770 0.8914 0.9042 0.9152

May 2013 0.8914 0.9042 0.9152 0.9256 The displacement data is normalized into the range of [0,1]

Jun 2013 0.9042 0.9152 0.9256 0.9351
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R ¼
∑
N

i¼1
Di−D

� �
Dbi−Db� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
Di−ð D

�2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼1
Dbi−Db� 	2

s ð11Þ

where N is the number of cumulated displacement values; Di is the
observed cumulated displacement values; Dbi is the predicted cu-
mulated displacement values; D is the mean of observed values; D̂
is the mean of predicted values.

Case study: the Baishuihe landslide

Geological conditions
Baishuihe is located in the county of Zigui, Hubei Province (31° 01′
34″ N, 110° 32′ 09″ E), 56 km away from the Three Gorges Dam
(Fig. 5). The landslide is fan-shaped in plane with a main sliding
direction of 20° NE. The area of Baishuihe is about 0.42km2, with
the maximum length and width of 780 and 700 m, respectively
(Fig. 6). The average depth of sliding mass is approximately 30 m
with an estimated volume of 12,600 m3. The landslide elevation
extends from 75 to 390 m, and the slope is gentle in the middle part
and steep in both the front and rear parts (Fig. 7).

The main materials of Baishuihe landslide are quaternary de-
posits, which contain silty clay and fragmented rubble with a loose
and chaotic structure. The bedrock underlying the landslide is
composed of silty mudstone and sand muddy siltstones of the
Jurassic Xiangxi Formation (Chen et al., 2004; Miao et al. 2014;

Yabe and Hayasaka 1920), with the dip direction ranging from 15°
to 20° and the dip angle from 32° to 36° (Fig. 7).

Deformation characteristic analysis
The depth of the sliding zone was identified through boreholes and
inclinometers. As shown in Fig.7, there are two sliding surfaces,
namely initial sliding surface and secondary sliding surface, oc-
curring at different depths. The depth of the secondary sliding
surface varies from 12 to 21.5 m, while the initial sliding surface is
deeper than 30 m. A possible explanation for the formation of the
secondary sliding surface is that a complete failure along the initial
sliding surface would have required much more energy due to the
large volume and complex geological conditions of the Baishuihe
landslide.

According to field investigation and monitoring data analyses,
the Baishuihe landslide can be divided into two blocks, the active
block and the relatively stable block. The cumulated displacement
of the active block is found as much as 3500 mm from the years
2003 to 2014 (Fig. 8). The stable block is deforming very slowly and
the cumulated displacement is approximately 20 mm. Apparently,
the deformation velocity varies spatially. The deformation of the
eastern part is stronger than the western part, while the front part
experiences larger deformation than the rear part.

Since the first impoundment of the Three Gorges Reservoir in
June 2003, there were many deformation indications found on
Baishuihe landslide. In the early stage of impoundment, the res-
ervoir water level rose from 75 to 145 m, and the Baishuihe land-
slide deformed gradually and several cracks developed in the front
part of the landslide (Table 1, Figs. 6 and 8). In 2007, when the

Fig. 11 The predicted and measured values of the trend displacement

Fig. 12 The relationship between antecedent rainfall and the displacement of XD-01
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reservoir level firstly reached 156 m and dropped from 156 to 145 m
from February to August, combining the influence of the heavy
precipitation of 518.2 mm in July, the landslide deformed greatly
and the cumulated displacement reached 1711.4 mm (Fig. 8).

As a typical landslide with step-like deformation, the displace-
ment of Baishuihe was increasing from April to September each
year under the joint influence of heavy precipitation and draw-
down of the reservoir water level. However, from October to April
in the following year, while the reservoir level was stable (175 m)
and the precipitation was gentle, the landslide was in a stable state,
experiencing small displacement.

Decomposition of displacement time series
The step-like deformation of landslide is a complex, dynamic, and
nonlinear system (Eid 2014). According to the deformation anal-
ysis in BDeformation characteristic analysis,^ Baishuihe landslide
is a retrogressive landslide under combined influence of precipi-
tation and reservoir level. The GPS monitoring station XD-01 in
the front part was selected to establish the landslide forecasting
model, since its monitoring data showed the highest cumulated
displacement (Fig. 8). In the TGRA, the reservoir level has been
regularly fluctuating between 145 and 175 m since 2009 (Fig. 8).
Hence, the monitoring data after 2009 was adopted for modeling.

Noise is unavoidable for the surface deformationmonitoring by GPS
and should be removed at first. Wavelet transform is an effective
denoisingmethod, and the automatic one-dimensional denoisingmeth-
od in the wavelet toolbox of MATLAB was used to remove the system
noises from the original displacement sequence. In the frequency do-
main, the low-frequency component represents the trend displacement,

while the high-frequency component represents the periodic displace-
ment. The DWTwith the function of Daubechies 4 was applied to divide
the total cumulated displacement into the trend and periodic displace-
ment (Fig. 10). The DWT process is performed in the wavelet toolbox of
MATLAB as well.

In addition, the ML models are more sensitive to the data ranging
from0 to 1. Therefore, all the data should be normalized into the desired
range using the following formula before modeling:

x ¼ x−xmin
xmax−xmin

ð12Þ

Where, x are the normalized values, x are the original values, xmax

is the maximum value of a sequence, and xmin is the minimum
value of a sequence.

Prediction of trend displacement
The trend displacement is controlled by internal geological
conditions. As shown in Fig. 10, the trend displacement of
the landslide is a smooth and monotonically increasing se-
quence, which is similar to the secondary stage of the stan-
dard creep curve (Fig. 1a). Therefore, we can infer that
Baishuihe landslide is in a steady deformation state in large
time scale. The PSO-KELM was applied to predict the trend
displacement of Baishuihe landslide. In the modeling of trend
displacement, the monthly displacement from January 2009 to
December 2012 was used to train, while the monthly displace-
ment from January to December in 2013 was used for testing.
The trend displacement over the past 1, 2, and 3 months was
used as inputs (Zhou and Yin 2014; Cao et al. 2016). Some

Table 3 Inputs for periodic displacement modeling

Factors Inputs 1–7

Precipitation Input 1, the 1-month antecedent rainfall

Input 2, the 2-month antecedent rainfall

Reservoir level Input 3, the variation speed of reservoir level of the current month

Input 4, the average elevation of reservoir level in the current month

Evolution state Input 5, the displacement over the past 1 month

Input 6, the displacement over the past 2 months

Input 7, the displacement over the past 3 months

Fig. 13 Relationship between the displacement and reservoir water level variation
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samples of the data used in the modeling are shown in
Table 2. The optimal parameters of KELM were searched with
PSO, whose results were C = 133.5672 and γ = 49.8025, where C
is the regularization coefficient and γ is the parameter of
Kernel function. As shown in Fig. 11, the PSO-KELM achieved
a good performance in trend displacement; the results of
RMSE, MAPE, and R were 2.397, 0.001, and 0.998,
respectively.

Prediction of periodic displacement

Causal factor analysis and input decision
For the periodic displacement component, which shows small-
scale fluctuations, external triggering factors are considered. As
stated in BDeformation characteristic analysis,^ heavy precipita-
tion and fluctuation of reservoir level are the main factors trigger-
ing the deformation of Baishuihe landslide from April to
September.

The Baishuihe landslide is located in a rainy area where
landslide deformation easily occurs. Rainfall infiltration may
increase the sliding force which promotes landslide evolution:
on the one hand, rainfall infiltration in landslides will in-
crease the weight of the sliding mass; on the other hand,
the accumulation of rainwater on the sliding surface will
reduce the shear strength of sliding soil. Previous studies
suggest the cumulated precipitation over the previous
2 months has a close relationship with landslide deformation
(Keefer et al. 1987; Cao et al. 2013; Cao et al. 2016; Krkač
et al. 2017; Bogaard and Greco 2018). In this study, the shapes
of the precipitation of the 1- and 2-month antecedent rainfalls
were coincident with the monthly displacement in general
(Fig. 12). Therefore, the 1- and 2-month antecedent rainfalls
were adopted as inputs to reflect the effect of precipitation
(Table 3).

The macroscopic deformation of the Baishuihe landslide
occurred at the beginning of the TGRA impounding in 2003
(Table 1 and Fig. 8). The influence of the reservoir level
fluctuation on landslide deformation mainly took place dur-
ing the water level decline period (Fig. 13); the faster the
reservoir level was descending, the greater the landslide de-
formed (Tang et al. 2015; Sun et al. 2017). For example, in
May 2009, the landslide deformed 36 mm when the reservoir
level dropped 5.3 m; under the similar precipitation condition
in June 2009, the landslide displacement was 218 mm when
the reservoir level dropped 8.7 m (Fig. 13). Moreover, land-
slide deformation varies with different elevations of reservoir
level as well (Ren et al. 2015; Zhou et al. 2016). Hence, the
variation rate and average elevation of reservoir level in the
current month were applied as inputs to represent the effect
of reservoir scheduling on landslide deformation (Table 3).

The current kinematic state of a landslide is another im-
portant factor for its dependence from external factors
(Crozier 1986). Under varied evolution states, the response
of landslide deformation to external triggering factors is to-
tally different. For example, when the landslide is under
stable conditions, even a strong precipitation may only cause
slight deformation. In contrast, when the landslide is under
an unstable evolution state, a slight precipitation may break
the equilibrium of the original system and cause a sharpTa
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acceleration (Glade et al. 2005). Therefore, the displacements
over the past 1, 2, and 3 months were adopted as inputs to
represent the current evolution state (Zhou and Yin 2014)
(Table 3).

Modeling and prediction of periodic displacement
Based on the deformation analysis of Baishuihe landslide,
seven causal factors were taken as inputs, and the periodic
displacement was considered as the output. As with the
modeling of trend displacement, the monthly displacement
from January 2009 to December 2012 was used to train, and
the monthly displacement from January to December in 2013
was used for testing. Some samples of the data used in the
modeling of periodic displacement are shown in Table 4. The
forecasting model of periodic displacement was established
with the application of PSO and KELM. Furthermore, in order
to compare the prediction performance of multi-factor PSO-
KELM, four other methods were adopted to predict the peri-
odic displacement, namely the single-factor PSO-KELM, multi-
factor ELM, multi-factor SVR, and multi-factor BPNN. The
parameters and inputs of these methods are shown in Table 5.

As shown in Fig. 14 and Table 6, the predicted values of
the five models show high agreement with the measured
values. However, the single-factor PSO-KELM, multi-factor
ELM, SVR, and BPNN did not perform well during the step-
like deformation period. The performance criteria indicate
that the multi-factor PSO-KELM achieved the best perfor-
mance with RMSE, MAPE, and R values of 18.104, 0.083,
and 0.983, respectively.

Prediction of total displacement
The predicted total displacement was obtained by adding the
predicted trend and periodic displacements together. As stated
in BPrediction of trend displacement,^ the time series of trend
displacement is smooth and can be easily predicted, so it was
predicted applying the same model of PSO-KELM. As shown
in Fig. 15, the predicted total displacement of multi-factor
PSO-KELM shows the best agreement with the measured total
displacement, while the RMSE, MAPE, and R are 18.418,
0.494%, and 0.991, respectively (Table 7). Furthermore, during
the step-like deformation, multi-factor PSO-KELM shows ex-
cellent prediction performance as well. For example, jointly

Table 5 The description and parameters of the five methods

Model Description Parameter Notes

Multi-factor PSO-KELM PSO-KELM model with consideration of
causal factors

Inputs: input 1 ~ 7

c = 985.4135
γ = 0.6240

c is the regularization coefficient; γ is the
parameter of kernel function

Single-factor PSO-KELM PSO-KELM model without consideration of
triggering factors.

Inputs: input 5~7

c = 133.5672
γ = 49.8052

Multi-factor ELM ELM model with consideration of causal factors
Inputs: input 1~7

n = 15 n is the number of neurons in hidden layer

Multi-factor SVM SVM model with consideration of causal factors
Inputs: input 1~7

p = 115.0016
g = 0.0281

p is the penalty factor; g is the parameter
of kernel function

Multi-factor BPNN BPNN model with consideration of causal factors
Inputs: input 1~7

m = 20
a = 0.9
r = 0.05

m is the number of neurons in hidden
layer; a is the momentum; r is the
learning rate

Fig. 14 The predicted and measured values of periodic displacement (M-factor means multi-factor, and S-factor means single-factor)
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affected by heavy precipitation and decreasing of reservoir
level, Baishuihe landslide deformed sharply in June 2013, and
the multi-factor PSO-KELM achieved precise prediction by
establishing the accurate response relationship between trig-
gering factors and deformation; the APE of the predicted
value is only 0.670% (Fig. 16). The four compared methods
also performed well most of the time, but all of them
achieved less accurate prediction in the crucial period of
step-like deformation. For the predicted displacement of June,
the APE of signal-factor PSO-KELM and multi-factor ELM,
SVR, and BPNN are 2.511, 1.463, 2.448, and 2.323%, respectively
(Fig. 16).

Discussion

Early warning application
Landslide prediction is an important component of early
warning system which is essential for landslide prevention
and mitigation (Sassa et al. 2009; Intrieri et al. 2013;
Mazzanti et al. 2015; Intrieri and Gigli, 2016). ML methods
and in general all data-based predictive models (such as those
cited in BIntroduction^) use past monitoring data as the
foundation for their forecast. To monitor a phenomenon’s
parameter, a longer time series (preferably at least 1 year)
allows to better express its whole variability and complete
range of behaviors, such as seasonal oscillations, level of
noise, and trend. A slope collapse is usually an unprecedented
event characterized by peaks in deformation rate and acceler-
ation. It is typically represented by the maximum values in
the time series. If ML methods do not have a precedent

history of such events to train with, it is not possible to
forecast them and therefore to provide a time of failure.
Furthermore, the output of such models is not a time (of
failure) but a displacement value, underlying that their pur-
pose is not directly to provide an estimation of the moment
of collapse of a landslide.

Nonetheless, the predictive capacities of models such as the
PSO-KELM can still be useful in an early warning perspective.
In fact, predicted displacements can be used to set warning
thresholds (Crosta and Agliardi 2012) and to recognize when
the landslide undergoes an unpredicted acceleration that can
therefore be considered anomalous and trigger the necessary
early warning procedures. For example, such models can
detect anomalous displacements relatable with the initiation
of the tertiary creep stage (Fig. 1a). At that point, time of
failure forecasting methods (Saito 1969; Fukuzono 1985;
Mufundirwa et al. 2010) could be run in parallel until either
the collapse occurs or the landslide reaches a new equilibri-
um. The same application was envisaged by Carlà et al. (2016)
and Miao et al. (2018) using similar approaches. Such a
method permits to overcome the setting of thresholds based
only on expert judgment but has a major drawback of requir-
ing a long time series of monitoring data.

Performance of PSO-KELM and future developments
By comparing the multi-factor ELM, SVR, and BPNN, it is
found that the prediction capacity of ELM is better than SVR
and BPNN, that is in agreement with the previous scientific
literature (Lian et al. 2014; Cao et al. 2016; Huang et al. 2017).
However, in the application on landslide displacement

Table 6 The prediction accuracy of periodic displacement

Models RMSE MAPE R

Multi-factor PSO-KELM 18.104 0.083 0.983

Single-factor PSO-KELM 29.572 0.095 0.918

Multi-factor ELM 22.761 0.096 0.958

Multi-factor SVR 32.087 0.125 0.906

Multi-factor BPNN 34.515 0.147 0.943

Fig. 15 The predicted and measured values of total displacement (M-factor means multi-factor, and S-factor means single-factor)

Table 7 The prediction accuracy of total displacement

Models RMSE MAPE (%) R

Multi-factor PSO-KELM 18.418 0.494 0.991

Single-factor PSO-KELM 29.125 0.626 0.969

Multi-factor ELM 22.709 0.574 0.984

Multi-factor SVR 31.910 0.777 0.965

Multi-factor BPNN 35.628 0.899 0.971
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prediction, one drawback of the ELM is that the prediction
results vary with its random connection weight between the
input and the hidden layers. As shown in Fig. 17, although the
inputs and parameter of the ELM are the same, four sets of
predicted periodic displacements are different, especially in
the step-like deformation period. ELM can achieve accurate
predictions, but inaccurate predictions occur sometimes, with
the risk of misleading the decisions of disaster managers. In
order to avoid the random factor within the prediction pro-
cess, kernel learning was introduced into ELM, and the KELM
was proposed. In this study, the hybrid model of PSO-KELM
was applied in landslide displacement prediction. Moreover,
comparing the prediction results of the multi-factor PSO-
KELM and ELM (Figs. 15 and 16), we can find that the PSO-
KELM has a stronger prediction capacity.

As shown in Figs. 15 and 16, compared with the multi-
factor PSO-KELM, the single-factor PSO-KELM performed
worse in the step-like deformation period. The sharp increase
of the displacement plays a significant role in the evolution
process of the step-like landslide, the speed and increase of
which are controlled by the triggers (the precipitation and the
reservoir fluctuation). The single-factor PSO-KELM method
cannot simulate the relationship between the deformation
and the triggers, that is the reason why the large difference
exists. Hence, in order to achieve accurate prediction in the

step-like deformation period, the triggering factors should be
considered.

Landslide displacement prediction can be implemented accu-
rately by integrating the application of ML technique and engi-
neering geology. However, the cost of some professional
monitoring devices, such as GPS, clinometers, et al., may limit
the application of the proposed model. The development of satel-
lite radar interferometry provides effective methods to solve this
tough problem. In future studies, open-access satellite data (such
as Sentinel-1) and advanced InSAR time series processing tech-
niques will be applied to extract landslide deformation informa-
tion, which can be used as basic data to achieve economic and
effective landslide prediction.

Conclusions
The Baishuihe landslide in the TGRA has a typical step-like defor-
mation behavior. It experiences sudden accelerations from April to
September under the combined influence of precipitation and
reservoir water level variation, while it is almost stable during
the rest of the year. The landslide is under a steady deformation
state in large time scale and deforms retrogressively with the
stronger deformation in the eastern and front parts.

The sequence of the total cumulated displacement can be
decomposed into trend displacement and periodic displacement
by wavelet transform, while the noise component was eliminated.

Fig. 16 The error comparison of the five methods

Fig. 17 The prediction accuracy comparisons between different trials of ELM
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The trend displacement shows approximately monotonically in-
creasing controlled by geological conditions, while the periodic
displacement shows periodic fluctuations induced by triggering
factors. The two displacement items were predicted by the PSO-
KELM model with different inputs separately; and the predicted
total displacement was obtained from the summation. The REMS,
MAPE, and R of the predicted result are calculated as 18.418,
0.494%, and 0.991, respectively. It indicates that the proposed
method can achieve excellent performance in displacement
prediction.

The accurate prediction of periodic displacement is the key to
landslide displacement prediction. In this process, the causal fac-
tors (rainfall, reservoir level, and landslide evolution state) enable
to simulate the response relationship between the triggering fac-
tors and landslide deformation. The prediction accuracy can be
improved by considering the causal factors, especially in the case
of step-like deformation.

The PSO-KELM integrated both the advantages of PSO and
KELM algorithms, where KELM has high prediction performance,
and PSO can seek appropriate parameters of KELM. The multi-
factor PSO-KELM can simulate the response relationship between
triggering factors and landslide deformation better than the
methods of multi-factor ELM, SVR, and BPNN. In addition, the
prediction of the PSO-KELM is found stable, that is crucial for
developing a landslide early warning system.

Overall, the proposed method, which applies the ML techniques
and landslide evolution theory, can achieve accurate and stable
prediction in case of the slow and step-like deformation period.
This novel method can be recommended to conduct landslide
displacement prediction in the TGRA and other landslide-prone
regions.
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