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Abstract The topic of rainfall thresholds for landslide occurrence
was thoroughly investigated, producing abundance of case studies
at different scales of analysis and several technical and scientific
advances. We reviewed the most recent papers published in scien-
tific journals, highlighting significant advances and critical issues.
We collected and grouped all the information on rainfall thresh-
olds into four categories: publication details, geographical distri-
bution and uses, dataset features, threshold definition. In each
category, we selected descriptive information to characterize each
one of the 115 rainfall threshold published in the last 9years. The
main improvements that stood out from the review are the defi-
nition of standard procedures for the identification of rainfall
events and for the objective definition of the thresholds. Numer-
ous advances were achieved in the cataloguing of landslides too,
which can be defined as one of the most important variables,
together with rainfall data, for drawing reliable thresholds. Anoth-
er focal point of the reviewed articles was the increased defini-
tion of thresholds with different exceedance probabilities to be
employed for the definition of warning levels in landslide early
warning systems. Nevertheless, drawbacks and criticisms can be
identified in most part of the recent literature on rainfall thresh-
olds. The main issues concern the validation process, which is
seldom carried out, and the very frequent lack of explanations
for the rain gauge selection procedure. The paper may be used as
a guide to find adequate literature on the most used or the most
advanced approaches followed in every step of the procedure for
defining reliable rainfall thresholds. Therefore, it constitutes a
guideline for future studies and applications, in particular in
early warning systems. The paper also aims at addressing the
gaps that need to be filled to further enhance the quality of the
research products in this field. The contribution of this manu-
script could be seen not only as a review of the state of the art,
but also an effective method to disseminate the best practices
among scientists and stakeholders involved in landslide hazard
management.

Keywords Early warning system . Landslide prediction . Slope
failure . Validation

Introduction
Landslides are frequent and widespread natural phenomena that
cause casualties and damages to public and private properties
worldwide. Rainfall is the main trigger of landslides and rainfall
thresholds are the most used tools to forecast the possible occur-
rence of a landslide in a given study area; they are defined as the
rainfall conditions that when reached or exceeded, are likely to
trigger landslides (Guzzetti et al. 2008). In general, White et al.
(1996) defined a threshold as a condition—expressed in quantita-
tive terms by a mathematical law—whose overcoming results in a
change of state of a system. For what concerns landslides, a
threshold represents the lower bound of known hydrological con-
ditions (e.g., rainfall, infiltration, soil moisture) that resulted in

landslides (Reichenbach et al. 1998). In a Cartesian plane, thresh-
olds are expressed in terms of curves that delimit a portion of the
plane containing the hydrological conditions related to known
slope failures. An upgrading to this approach is obtained by
including in the analysis (and in the Cartesian plane) also the
known hydrological conditions not related to landslide occur-
rences. In these cases, thresholds are defined as the best separators
among triggering and non-triggering known conditions (Crozier
1997). A further improvement consists in dividing the Cartesian
plane in three parts, by means of two thresholds: a lower thresh-
old, below which no landslides occur, and an upper threshold,
above which landslides always occur (Wilson et al. 1993). Between
the two thresholds, different probabilities of occurrence are de-
fined, with uncertainties related to the incompleteness of knowl-
edge on the physical process (Crozier 1997) and on the landslide
database.

The first author introducing the concept of a minimum amount
of rainfall necessary to trigger a landslide was Endo (1969). Five
years later, Onodera et al. (1974) proposed the first quantitative
rainfall threshold for landslide triggering. Afterwards, Campbell
(1975) and Caine (1980) published the two most famous pioneering
works about rainfall thresholds. In particular, analyzing the rain-
fall conditions responsible for the initiation of soil slips in Cali-
fornia, Campbell (1975) pointed out that the cause of the failures
were the combination of antecedent cumulated rainfall and event
rainfall intensity. Further, Caine (1980) proposed the first global
threshold, expressed by a power-law equation and representing
the minimum boundary of 73 rainfall intensity (I) vs. rainfall
duration (D) conditions that have triggered landslides in several
parts of the World. Since those pioneering works—and despite
criticisms—rainfall thresholds were widely used to characterize
the relationship between rainfall and the triggering of landslides
(De Vita et al. 1998; Reichenbach et al. 1998; Corominas 2000;
Crosta and Frattini 2001; Aleotti 2004; Wieczorek and Glade
2005). Guzzetti et al. (2007, 2008) published two works proposing
an extensive review of the international literature. They highlight-
ed that, since then, rainfall thresholds were broadly used consid-
ering: different scale of analysis (global, regional, local), a wide
variety of rainfall parameters, various physiographic settings, and
different landslide types. Guzzetti et al. (2007) also stated that for
defining rainfall thresholds, physically based (process-based,
conceptual thresholds) or empirical (historical, statistical thresh-
olds) approaches can be used. Among the latter, three kinds of
rainfall measurements were more frequently used: rainfall mea-
surements obtained for specific rainfall events; antecedent rainfall
conditions; other thresholds, including hydrological thresholds.
Finally, they proposed a global threshold based on a global data-
base of 2626 rainfall events resulted in shallow landslides and
debris flows.

In the decade following the works by Guzzetti et al. (2007, 2008),
the topic was further investigated, producing abundance of case stud-
ies at different scales of analysis, and significant technical and scientific
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advances. Therefore, we felt necessary to further review the recent
international literature, collecting information about the definition,
the employment, and the validation of landslide rainfall thresholds
worldwide, in order to highlight the best practices, themain drawbacks
still affecting recent case studies, the most common critical problems,
and the most effective solutions adopted. The aim of the paper is to
describe the main characteristics of the reviewed thresholds and to
produce a complete analysis of the most used approaches followed in
every step of the procedure for defining reliable rainfall thresholds.
The contribution of this manuscript could be seen not only as a review
of the state of the art, but also an effectivemethod to address the future
trends of the research and to disseminate the best practices among
scientists and stakeholders involved in landslide hazard management.

The paper is organized in four sections. The “Method” section
describes the method used to collect information in order to
compare the different thresholds reviewed. The “Results and dis-
cussion” section presents the result obtained from the analysis and
discusses the main findings. Finally, the “Concluding remarks:
lessons learnt and advices” section concludes and summarizes
the lesson learnt. For the sake of brevity, in the following sections
we often use just the word “threshold” letting it mean “rainfall
threshold for landslide occurrence.”

Method

Data gathering
The main purpose of this review is to analyze all recent advances
in the definition and employment of rainfall thresholds for land-
slide occurrence. To this aim, we examined all published papers
presenting studies on the definition of thresholds, including the
contributions on the employment of such thresholds into proto-
typal or operational landslide early warning systems (LEWSs). We
concentrated our research in the period 2008–2016, because all the
works published before 2008 were included in the reviews made by
Guzzetti et al. (2007, 2008). We decided to restrict our review
exclusively to peer-reviewed papers published in journals indexed
in SCOPUS or ISI Web of knowledge databases, because the litera-
ture on the subject is very broad and diversified. We excluded
from the analysis all proceedings of technical conferences, multi-
authored books, as well as all the gray literature. Peer-reviewed
papers in indexed international journals are the most common
means to disseminate significant scientific advances, contempo-
rary ensuring relevance, and reliability of the scientific content.
Moreover, we considered only papers written in English, for
guaranteeing accessibility and readability to all works reviewed
herein. With the aforementioned filters adopted to collect infor-
mation on rainfall thresholds, we identified 107 papers, for a total
number of 115 thresholds. Some articles described two or more
thresholds, using both different approaches and datasets; for these
reason, we treated them separately.

Collected information
For each of the 105 thresholds, we collected and grouped technical
and scientific information according to four categories: publica-
tion details, geographical distribution and uses, dataset features,
and threshold definition. In each category, we selected several
descriptive information to describe thoroughly the threshold char-
acteristics. We acknowledge that, for many articles, not all the
abovementioned information were clearly expressed. However,

for the completeness of the review, we tried to fill the information
for each parameter, but at the same time, we only included the
data clearly expressed and described by the authors of the papers.

Publication details
The first category contains information on the information neces-
sary for the identification of the paper presenting the threshold, such
as authors, title, year, title, journal, DOI, complete reference, and
identification code composed as “Year_FirstAuthor_JournalName”
(e.g., 2018_Segoni_Landslides). Moreover, a specific field for notes
and other relevant information was planned.

Geographical distribution and use
The second category comprises information on the location, ex-
tent, and use of the threshold (Table 1). We collected information
on the location and the extent of the study area for which a
threshold was defined. Concerning the spatial scale of analysis,
we defined the following classes, as a function of geographical and
administrative constraints: global, national, regional, basin, local,
and slope. The “global” scale refers to thresholds established

Table 1 Information included in our analysis. Threshold purpose and use

Information Classes Example

Study area Campania
region

State Italy

Continent Europe

Study area extension (km2) 1619

Spatial scale - Global Regional

- National

- Regional

- Basin

- Local

- Slope

Early warning system - Y (yes) P

- N (no)

- P (preliminary)

Number of warning levels 4

Target for warnings - Civil protection Population

- Local
authorities

- Population

- None

- Not expected

- Not specified

Minimum territorial extent for
warnings (MTE)

- Territorial unit Territorial
unit

- Whole area

- Single slope

Average extension of MTE
(km2)

1619

The example refers to Piciullo et al. (2017)
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worldwide as a minimum level below which landslides do not
occur (Guzzetti et al. 2008); the “national” to thresholds developed
for a whole nation; “regional” is intended here as an administra-
tive subdivision of a nation (i.e., a province), typically extending
for thousands square kilometers. The “basin” scale refers to
thresholds defined for a hydrographic basin of a river and “local”,
for thresholds developed in a very restricted area (from a few to
some hundreds of km2) with local climatic regime and geomor-
phological setting. The “slope” scale is used for studies dealing
with a single slope or a single landslide.

Concerning the implementation of the thresholds in a LEWS, we
defined three classes. The first (Y, yes) consists of thresholds imple-
mented into an operational or prototypal LEWS. The second (N, no)
entails the thresholds not deemed to be part of a LEWS: this mainly
happens for a “minimum rainfall threshold,”which aims at assessing
the minimum rainfall conditions for the landslide triggering or to
characterize a landslide prone area. The third (P, preliminary) com-
prises the thresholds not yet integrated into an operational or pro-
totypal LEWS, but defined—as stated in the investigated papers—to
this objective. The number of warning levels (i.e., the number of
states defined by the threshold system) was also considered. The
minimum value is 2, obtained in the case of one threshold defining
the states “no landslide”/“landslide.” Moreover, we analyzed the
minimum territorial extent (MTE) employed by a LEWS for issuing
a warning. We evaluated the average extension (in km2) of the MTE
and defined three classes: territorial unit, when the area interested is
divided in smaller parts for which different levels of warning can be
issued simultaneously; whole area, if only one level of warning at a
time can be issued for the area; single slope, when the LEWS is
employed at slope scale. Finally, we collected information on the
target of the warnings, e.g., local administrations, civil protection,
decision makers, and citizens.

Dataset features
The third category includes information about the main features
of the dataset used to prepare the thresholds (Table 2). First, we
studied the period of analysis, i.e., the time lapse of rainfall and
landslide data used for threshold calibration and/or validation.
Then, we collected the number and the type (according to
Cruden and Varnes 1996) of landslides used for the threshold
definition. In addition, we stored the sources used to gather
information on landslide occurrences (e.g., database, newspapers,
technical and scientific reports, field surveys) and source(s) of
rainfall data (e.g., rain gauge, satellite, radar). About rainfall data,
we analyzed the number of rainfall events used for the analysis,
together with the temporal and spatial resolution of the measure-
ment. We categorized temporal information in four classes
(subhourly, hourly, daily, monthly). Regarding spatial information,
we extracted from the analyzed papers the number of measuring
stations and the average spatial density of measures. Finally, in
case the threshold definition and employment required additional
instruments (e.g., to measure snowpack thickness, soil moisture,
or temperature), we also collected information on the secondary
monitoring instruments and other monitored variables.

Threshold definition
Finally, the fourth category comprises details regarding the defi-
nition and validation/evaluation of the thresholds (Table 3). The
criteria used for rain gauge selection were classified as “nearest,”

when the rain gauge is the closest to each landslide; “manual/
expert judgment,” when the rain gauges are selected after an
expert evaluation of the pluviographs; “automatic selection,” when
a criterion was set up in advance to automatically relate each
landslide to a rain gauge among many possible ones; “reference
rain gauge,” when a single rain gauge was a-priori chosen, among
many that were selectable, to characterize all landslides in a given
area; and “only reference,” when there was only a rain gauge in the
area and the choice was forced. Moreover, we listed several classes
to describe the procedures used for defining rainfall events and for
passing from a series of pluviographs to a point cloud in a graph.
In particular, “manual” procedures consist in analyzing every
pluviograph or other rainfall measurements and adopting an ex-
pert judgment to define the extents of the rainfall events. “Stan-
dard” procedures consist in setting in advance some standards to
define the rainfall event or its attributes or else in defining the
values based on standard durations (e.g., daily intensity, 3-day
total rainfall). Furthermore, an automated method (e.g., an algo-
rithm) can be used to analyze rain gauges and rainfall data and
quantify the optimal attributes to be entered in the graph; this was
named the “algorithm” approach, and it is based on the values of
information inside the rainfall event (e.g., peak intensity or event
total rainfall amount) or on other variables (e.g., return period).

Furthermore, we catalogued two relevant features: the meth-
od used to draw the thresholds (also determining the threshold
type) and the rainfall variables or parameters used to define the
thresholds. The first information was classified as “manual,”
“statistical technique,” “probabilistic approach,” and “physically
based calculation.” For what concerns the rainfall variables, we
explicitly considered only the most common combinations,
namely “intensity-duration,” “rainfall event-duration,” and “an-
tecedent condition,” and grouped all the other approaches in the
“other” class.

Finally, we collected some details about validation of the
thresholds. This is a fundamental issue for rainfall definition and
it is intended to be performed against an independent dataset that
was not used for calibration. Nevertheless, the predictive capability
of the thresholds often undergoes a check on historical data
already used for the threshold definition. For this reason, we
considered three classes of validation: Y/s (Yes) with the same
(or part of the same) dataset used for threshold definition; Y/d
(Yes) with a different dataset; N (No). In addition, we analyzed the
methods used for validation: count (the authors just enumerate
the occurrences above/below the threshold), skill scores (usually
derived from a contingency matrix), and receiver operating char-
acteristic (ROC) curves (Hosmer and Lemeshow 1989; Fawcett
2006), comparison with other thresholds.

Results and discussion

Publication details

Journals
Our review identified 107 papers presenting 115 thresholds, published
on 26 different international journals. Figure 1a shows the number of
papers on rainfall thresholds published on the main journals during
the investigated period. Landslides, Geomorphology, and Natural
Hazards journals together represent about half of the total scientific
production. However, the topic has drawn the attention of 26
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journals pertaining to the subject areas “Earth and Planetary Sci-
ences” and “Environmental sciences,” demonstrating a widespread
interest in thresholds as research topic.

Spatial distribution
The reviewed literature reports rainfall thresholds for a wide
variety of countries, as showed in Fig. 1a. Europe and Asia are

Table 2 Information included in our analysis. Dataset features

Information Classes Example

Period of analysis Jan 2003–Dec 2013

Calibration duration (years) 8

Validation duration (years) 3

Number of landslides 140

Landslide type - Debris flows (including post-fire and post-seismic debris flows) Shallow landslides

- Earth and mud flows

- Rock slides

- Shallow landslides

- Deep-seated landslides

- All

- Not specified

Information source - Database and/or historical data Newspapers, internet,
reports

- Internet

- Literature research

- Survey and/or monitoring

- Newspaper

- Previous works

- Remote sensing

- Reports (scientific or technical)

- Theoretical calculations

- Others

Number of events 297 multiple
combinations

Rainfall time scale - Subhourly Hourly

- Hourly

- Daily

- Monthly

- Not specified

Source of rainfall data - Rain gauges Rain gauges

- Radar (ground-based)

- Satellite

- Historical records

- Theoretical calculations

- Not specified

Number of rain gauges 58

Rain gauge density (#/100km2) 3.58

Other monitoring instruments
(if any)

e.g., geophones, multi-sensor monitoring stations, pore pressure transducers,
tensiometers, thermometers

None

Other variables monitored
(if any)

e.g., pore pressure, seismic noise, temperature None

The example refers to Piciullo et al. (2017)
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the most represented continents (52 and 36%, respectively); 9% of
the thresholds analyzed are located in the Americas, while Africa
and Oceania are only marginally represented (1% each). This
distribution is partially in accordance with the distributions of
landslide hazard and risk across the world (Nadim et al. 2006,
2013; Petley 2012). Moreover, it is also linked to the progress of
scientific advances in this field: Africa and central/south America
started to focus on the issue of landslide forecasting only recently.

In North America, the number of articles is low (3%), but they all
are related to thresholds implemented (or to be implemented) in
functional LEWS, demonstrating that the studies on landslide
thresholds are advanced and their low number is mainly related
to a landslide hazard lower than in other continents.

About half of the papers pertains to thresholds located in two coun-
tries: Italy (35%) and China (14%). Again, this overwhelming concentra-
tion of thresholds reflects directly the exposition of these two countries to

Table 3 Information included in our analysis. Threshold definition

Information Classes Example

Rain gauge selection - Automatic selection Automatic selection

- Manual/expert judgment

- Nearest

- Reference rain gauge

- Single rain gauge

- Thiessen polygons

- Mixed

- Not used

- Not specified

From event to graphic - Algorithm Algorithm

- Expert judgment

- Standard (automatic; semiautomatic)

- Physically based calculations

- None

- Not specified

Type of thresholds - Manual drawing Statistical (frequentist)

- Probabilistic

- Statistical (bayesian; frequentist)

- Physically based calculations

- Not expected

- Not specified

Threshold parameters - Intensity—duration Rainfall event—duration

- Rainfall event—duration

- Antecedent conditions

- Others

Validation - Y/d (yes) with a different dataset Y/d

- Y/s (yes) with the same dataset

- N (no)

Validation method - Comparison ROC, skill scores

- Count

- Skill scores

- ROC analysis

- Others

- Not applicable

The example refers to Piciullo et al. (2017)
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landslide related risk (Nadim et al. 2006; Haque et al. 2016), supported
by a long tradition of studies in the field of landslides (Gokceoglu and
Sezer 2009;Wu et al. 2015a). The urge to cope with landslide risks in these
two countries induces an intense research activity applied to forecasting
tools and LEWSs. Moreover, about half (53%) of the thresholds imple-
mented into LEWSs pertain to test sites located in Italy, while half of the
works related to study areas in China describe operational or prototype
LEWSs. Regarding other countries, India and Portugal are well represent-
ed in our review, each with 5% of the analyzed thresholds, followed
by Malaysia and Taiwan (4%), Japan, Slovenia and the USA (3%), Brazil,
France, Honduras, Nepal, Philippines, and Spain (2%).

Temporal distribution
Figure 1b shows the number of thresholds published each year in
international journals. The publishing activity in the field of rain-
fall thresholds has recently improved: splitting the surveyed time
interval into three 3-year periods, more than half of the works
(53%) were published in the last 3 years: 26 in the 2008–2010, 25 in
the 2011–2013, and 63 in the 2014–2016. This outcome can be
considered a proof that rainfall threshold research is a very press-
ing and up-to-date issue in the scientific research community.

Geographical distribution and use

Spatial scale and areal extension
The scientific community is mainly focusing on threshold analysis
applied to restricted and specifically defined areas. Indeed, only two
global-scale thresholds were published, both in 2008 (Guzzetti et al.
2008; Hong and Adler 2008). National scale approaches are only a few
(8.3% of the total), while most of the works are at regional (23.5%),
basin (39.2%), and local scale (24.2%). Furthermore, 4.2% of the
thresholds reviewed herein were conceived for even smaller test sites,
at the slope scale (Fig. 1c). The spatial detail is even greater if we
consider that in one of the national scale studies and in eight of the
regional ones, the authors did not propose a single threshold for the
whole study area, but subdivided the study area into several subzones,
defining a specific threshold for each of them (Lagomarsino et al. 2013;
Segoni et al. 2014b; Rosi et al. 2016). All authors support their decision
by observing that the subdivision leads to territorial units with higher
meteorological and geomorphological homogeneity, where more
reliable rainfall thresholds can be defined. However, the scale of
analysis classification does not reflect perfectly the spatial extent of
the study area. As instance, the national scale analysis performed by
Rosi et al. (2016) in Slovenia and the regional scale analysis performed
by Segoni et al. (2015a) in Tuscany have similar extension (slightly
above 20,000 km2). Therefore, we considered significant to take into
account also the extensions of the study areas (Fig. 1d): all orders of
magnitude from 102 to 105 km2 are quite uniformly represented
(Zêzere et al. 2015; Robbins 2016). This outcome is in accordance with
the previous reviews of Guzzetti et al. (2007, 2008) and it is a poof that
rainfall thresholds are suitable for every extent of analysis. Remark-
ably, a relevant percentage of works (13%) does not report the exten-
sion of the study area and in some articles we had to estimate the
extension of the study areas from the figures in which they were
shown.

Objective of the thresholds
Usually two categories of thresholds are identified based on their
specific objective: thresholds aimed at forecasting landslide

occurrences and thresholds aimed at identifying the minimum
rainfall conditions likely triggering landslides. While the first cat-
egory encompasses thresholds that try to find a balance between
correct and incorrect prediction, the second category identifies the
minimum possible rainfall conditions associated with landslides.
These approaches are equally represented in our review. Exactly
50% of the thresholds analyzed are aimed at identifying the min-
imum rainfall conditions for landslides (e.g., Chen and Wang
2014). Concerning thresholds for landslide forecasting or warning,
about 34% of them are part of preliminary works on LEWSs, i.e.,
the thresholds are not yet integrated into a real or prototype
system, but in the paper the authors declare that the threshold
was defined with this objective (e.g., Mathew et al. 2014). On the
other hand, in 16% of the works analyzed, thresholds are implement-
ed into a LEWS, or at least an operational use is depicted, simulated
and evaluated in the paper (e.g., Baum and Godt 2010). Figure 1b
shows the yearly distribution of the thresholds implemented in a
LEWS, preliminary works, and thresholds not conceived to be in-
corporated in a LEWS. The percentages do not exhibit evident
variations among the years of analysis. This outcome demonstrates
that both thresholds aimed at forecasting landslide and minimum
rainfall thresholds are up-to-date approaches aimed at pursuing
different objectives: the first ones represent a useful tool to be
employed in landslide risk mitigation strategies; the second ones
are useful to characterize cases of study and to investigate scientific
issues related to landslide triggering.

Number of threshold levels
The objective of a threshold is to separate rainfall conditions leading to
(at least) two possible states: instability (above the threshold) and
stability (below the threshold). Since the transition between the stabil-
ity and the instability field cannot be devised so sharply, in many
works, more than two thresholds are depicted, for increasing levels of
instability/warning. This approach is often used in thresholds to be
used in a LEWS, where different levels of warning can correspond to
the exceeding of different thresholds. As showed in Fig. 1e, 68 works
(60%) present a single threshold that discriminates between stability
and instability conditions (e.g., Miller et al. 2009; Kanungo and
Sharma 2014). This simple approach can be more frequently observed

�Fig. 1 a Geographical distribution of the analyzed rainfall thresholds. Countries
colored based on the number of published thresholds. In the inset in the bottom
left, the number of papers per scientific journal in which they were published. b
Bar chart showing the number of thresholds published in scientific journals from
2008 to 2016, according to SCOPUS and ISI Web of knowledge databases.
Each year, the number of thresholds implemented in a LEWS (Yes), the preliminary
thresholds (Preliminary), and thresholds not deemed to be part of a LEWS (No) are
also shown by means of different colored bars. c Pie chart showing the
percentages of thresholds per spatial scale (see text for explanation). The total
number of the thresholds is reported in square brackets in the top left. d Pie chart
showing the percentages of thresholds in classes of study area extension. Key:
global scale, entire world; n.s., not specified. The total number of the thresholds is
reported in square brackets in the top left. e Bar chart showing the number of
threshold levels per analyzed work. Bars colored as in b. f Bar chart showing the
targets for the warning issued by the operational or prototype LEWS in which the
thresholds are implemented. Key: n.s., not specified; none, thresholds not deemed
to be part of a LEWS. g Bar chart showing the types of the minimum territorial unit
for warning (MTE) in which the warning messages of the operational or theoretical
LEWS is issued. Key: n.s., not specified; none, thresholds not deemed to be part of a
LEWS. h Distribution of the areas of MTE: 25, 50, and 75% percentiles are reported
each type; the number of MTE in each class is also reported
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in thresholds that are not directly devised with the purpose of warning
system implementation (38 out of 68, e.g., Khan et al. 2012; Hasnawir
and Kubota 2008). Conversely, complex threshold systems accounting
for 3, 4, or more states of the systems are typically used in warning
systems or in preliminary works (e.g., Jaiswal and van Westen 2013;
Huang et al. 2015; Floris et al. 2012).

Targets for warning
Among all the articles describing operational or prototypal ver-
sions of LEWSs, only 28 clearly state which is (or is expected to be)
the main target for the issued warnings. In 14 cases (23.7%, Fig. 1f),
Civil Protection authority is mentioned as the main subject ex-
pected to receive warnings. It is not surprisingly that 12 out of
these 14 works are based in Italy (e.g., Martelloni et al. 2012), where
Civil Protection was in charge of managing natural hazards at all
levels since at least 1992. We include in this class also two Slove-
nian works, which address Civil Protection and National Geolog-
ical Service as the main target for warnings (Rosi et al. 2016; Jemec
Auflič et al. 2016). In six cases (10.2%), local authorities are the
main receivers of the warnings. This can include both local gov-
ernment (e.g., Zhou and Tang 2014; Althuwaynee et al. 2015) or
technical offices (e.g., Mathew et al. 2014). In two cases (3.4%), the
warnings arrive directly to the population (Calvello et al. 2015),
while in six cases (10.2%), the target for warning are both popula-
tion and local authorities (e.g., Baum and Godt 2010; Chen and
Huang 2010; Tiranti and Rabuffetti 2010; Jaiswal and van Westen
2013; Zhuang et al. 2014; Huang et al. 2015).

Minimum territorial extent for warnings
The application of rainfall thresholds to warning systems requires
a spatial resolution compatible with operational purposes. The aim
is to divide an area into territorial units with meteorological and
hydrogeological homogeneity, to reduce the number of false and
missed warning. Therefore, many works introduced a partition of
the study area into different territorial units, monitored and
alerted independently (Jaiswal et al. 2010; Martelloni et al. 2012).
As can be seen from Fig. 1g, h, this approach brings the conse-
quence of reducing the area adopted for issuing a warning: when
the study area is partitioned into smaller territorial units instead of
being managed as a single entity, the mean area drops from 435 to
302 km2 and the 25th percentile from 100 to 15 km2. This approach
is particularly relevant in large study areas: as instance, Zhuang
et al. (2014) worked on a 10,106 km2 wide area, but dividing it into
three distinct MTEs a mean areal extension of 3368 km2 was
obtained. Moreover, Segoni et al. (2014b) designed a regional scale
warning system, subdividing a 23,000 km2 wide study area into 25
different alert zones with an average extension of about 900 km2

and demonstrated that this approach enhances the forecasting
effectiveness of the system. It is worth highlighting also experi-
mental studies in which rainfall thresholds and susceptibility maps
are coupled in an effort to further reduce the spatial resolution of
regional scale warning systems (Segoni et al. 2015b; Jemec Auflič
et al. 2016).

Dataset features

Period of analysis
The starting point for most part of the threshold analyses is
collecting landslide and rainfall data. The period of analysis of a

given work is the time span for which it was possible to gather
both landslide and rainfall data in order to find an empirical
correlation.

Since it is quite established that the longer the timespan of the
dataset used and the more robust and performing is the threshold
(e.g., Lagomarsino et al. 2013; Rosi et al. 2015), the objective of
every researcher is to collect as long as possible datasets of rainfall
and landslides. However, both datasets are intrinsically limited
and subject to varying degrees of completeness. We found that
typically (46% of the occurrences) the dataset used for the works
spans through 5 to 20 years. In 17% of occurrences, it is lower than
5 years and sometimes (6%), it is 1 year or even less. In 12% of the
works, the authors use a very long dataset (> 50 years) but argue
about the completeness of the landslide inventory since usually
historical landslide archives keep track only of the major events
and neglect the ones with limited impact on the society.

We observed a consistent time gap between the most recent
data used in the threshold analysis and the publication date of the
article. Only half of the articles have a gap lower than 3 years, while
for 30% of them the gap is at least 5 years. A relevant number of
works rely on even older data: in 18% of the cases, the gap is higher
than 7 years and in 12% is 10 years or more. This gap could point
out that in many cases rainfall and landslide databases are not
immediately available to the researchers. The main reasons could
be that the compilation of landslide databases is time consuming;
therefore, catalogues are not constantly and timely updated.

Since it is demonstrated that a bigger and updated calibration
dataset enhances the effectiveness of thresholds and consequently
of the LEWS (Rosi et al. 2015), local and central governments
should develop the political will of keeping databases updated
and foster scientific and technical programs that allow to have
complete and updated landslide catalogues. As instance, Ma et al.
(2015) report that in their test site in China, groups of experts
perform field surveys immediately after each rainfall event and
populate the landslide database with high-quality and constantly
updated data. The same practices are pursued for the LEWS
operational in Rio de Janeiro, Brazil (Calvello et al. 2015). To
obtain the same objective with reduced workforce, some re-
searchers are developing methods to provide automated, fast,
and timely updates by means of semantic search engines on online
news (Battistini et al. 2013, 2017). Another point, which is common
to many scientific research fields, is the development of methods
and wills to share data. In many works, the initial databases are
often created from the scratch or consist in updated versions of
databases previously used in other works by the same authors. We
found that only 7% of the works have a gap of 1 year between the
most recent data used in the threshold analysis and the date of
publication of the article. These numbers demonstrate that the
availability of updated databases is an issue that should be urgent-
ly addressed by research community and decision makers.

Source of landslide data
Regarding the most used methods to compile the landslide data-
bases, one third of the reviewed works makes use of two or more
sources of information, trying to compile a database as much
complete as possible, not only in terms of number of events
reported, but also in terms of information to be used in the
analyses. As an instance, local newspapers usually report with
good temporal precision landslides that had a relevant impact on
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human infrastructures but very rarely provide reliable technical/
scientific information (e.g., landslide type). On the contrary, sci-
entific reports may be rich of details but sometimes they can be
written after a long lasting event and they may not state clearly the
exact moment or day of landslide occurrence.

Figure 2a reports the distribution of landslide information
source. The most used sources of information are reports (used
in 50 cases), which can have various different origins: fire bri-
gades, civil protection, local administration, technical offices,
and scientific reports. Another relevant source of information
are news (e.g., Peruccacci et al. 2012; Gariano et al. 2012, 2015;
Vennari et al. 2014), which can be found in newspapers archives
(27 occurrences) and/or on internet (7 occurrences). Further-
more, 26 studies make use of official databases released by
different organizations, mainly governmental organizations, lo-
cal authorities, or research institutions. Reports, newspapers,
internet, and official databases are the main sources of informa-
tion for regional or national scale thresholds (e.g., Lagomarsino
et al. 2015; Piciullo et al. 2017). Direct post-event field surveys are
quite used (18 occurrences), especially in small areas or in land-
slide studies limited to a few relevant rainfall events. In two
circumstances, field surveys were also accompanied by inter-
views to local inhabitants to better ascertain the exact timing of
the landslides (e.g., Erener and Düzgün 2013). Remote sensing
can be a valuable tool to compile post-event catalogues or to
constantly update large inventories (Tofani et al. 2013), indeed
surveys performed by remote sensing techniques were used in
10 circumstances, both in large scale and small scale studies
(e.g., Chang et al. 2008; Shieh et al. 2009; Papa et al. 2013). In
7 works, historical records of various origin, including tree
ring series (Saez et al. 2103), were taken into account, while 6
works declare to include datasets used by previous works
(e.g., Winter et al. 2010; Terranova et al. 2015). In 3 circum-
stances, the threshold analysis is based on monitoring data
coming from different instruments: Staley et al. (2013) used
channel monitoring equipment to set up a comprehensive
database of post-fire debris flows; Vallet et al. (2016) used
displacement sensors to correlate rainfall to the reactivation
of a monitored landslide; Burtin et al. (2009) used seismom-
eters to detected debris flows activations.

Landslide types
Regarding the landslide types considered in the threshold analysis,
the reviewed articles followed two radically different approaches:
while some of them are focused on few landslide types (sometimes
even a single type); others include different landslide types, up to
cases where all landslide types are encompassed. The distribution
of landslide types is reported in Fig. 2b. Most of the thresholds
analyzed (43%) are built for wide groups of landslides, in partic-
ular 38.3% for shallow landslides (Brunetti et al. 2010; Peruccacci
et al. 2012; Cepeda et al. 2010) and 4.7% for deep seated landslides
(Uchida et al. 2013). On the other hand, some works focus on a
very specific type of landslide, such as debris flows for the 25.8% of
cases (e.g., Winter et al. 2010; Huang and Tang 2014; Nikolopoulos
et al. 2015), rockslides (2.3%; Sengupta et al. 2010; Terranova et al.
2015), and earth flows (3.9%; Greco et al. 2013). A few works are
even more restrictive and specific, addressing a landslide type
triggered or favored by particular contour conditions. It is the
case, as instance, of slope-cut-related landslides (Zhuang and

Peng 2014), post-fire debris flows (Cannon et al. 2008), and post-
seismic debris flows (Shieh et al. 2009; Tang et al. 2012; Zhou and
Tang 2014; Guo et al. 2016; Li et al. 2016). Conversely, 21.9% of the
works declare to take into account every type of landslide encoun-
tered in their study area (Marques et al. 2008), even if sometimes a
few prevailing landslide types are identified (Segoni et al. 2014a;
Zêzere et al. 2015).

A deeper analysis highlighted some approaches of consider-
ing few landslide types even when all the landslides available
were taken into account. This is the case of works in which a
very widespread study area is partitioned into subzones that
have homogeneous geomorphological characteristics (e.g.,
Martelloni et al. 2012; Segoni et al. 2014b; Ma et al. 2015, Tiranti
and Rabuffetti 2010). Each subzone is independently analyzed
for the definition of a specific threshold equation. In this way,
instead of having a large and heterogeneous study area with
different landslides type, the authors obtain a mosaic of smaller
subzones characterized by more homogenous landslide cata-
logues. Finally, it should be highlighted that 3.1% of the works
analyzed do not state clearly the landslide type considered in
the analyses.

Landslide number
Only the 88% of the analyzed works clearly state the number of
landslides used for defining thresholds. In 40 cases detailed infor-
mation, on the number of both landslides and landslide events (a
single landslide event could be composed by one or more land-
slides) were provided. Regrettably, 12% of the works leave this
important aspect unspecified.

Only few attempts were made to establish the minimum num-
ber of landslides necessary to define a reliable threshold (e.g.,
Peruccacci et al. 2012; Vennari et al. 2014). In our review, we found
a very wide number of landslides used to define thresholds. Some
works declare to use hundreds of landslides (Berti et al. 2012; Lee
et al. 2015; Ma et al. 2015; Saito et al. 2010; Lagomarsino et al. 2013;
Segoni et al. 2015a; Rosi et al. 2015) or hundreds of rainfall events
responsible for the landslides (Guzzetti et al. 2008; Saito et al. 2017;
Peruccacci et al. 2012; Vennari et al. 2014; Gariano et al. 2015).
Other works perform a threshold analysis using only a few (i.e.,
below 10) landslides (Sengupta et al. 2010; Chen and Wang 2014;
Chien-Yuang et al. 2008; Tang et al. 2012; Greco et al. 2013). In
addition, some local scale studies focus on a single landslide
considering many events of reactivation (Terranova et al. 2015;
Vallet et al. 2016), or cases in which the analysis is based on
physically based theoretical calculations of the slope stability and
no actual landslide events were taken into account (Alvioli et al.
2014; Bovolo and Bathurst 2012).

Source of rainfall data
Our review highlights that still the rain gauges are by far the most
used instrument to obtain rainfall data for threshold analysis:
79.5% of the works rely on rain gauges, among which 7% combines
rain gauges and radar measurements (Fig. 2c). On the other hand,
6.6 and 4.1% of the rainfall measurements are provided only by
radar and satellite measurements, respectively. In some circum-
stances, this is a forced choice, because no reliable rain gauge
network exists in the studied area and satellite or radar measure-
ments are the best choices available (Posner and Georgakakos
2015; Robbins 2016). Conversely, in other cases, the choice of using
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radar (mainly ground-based radar) is an attempt to obtain rainfall
measurement with higher spatial and temporal resolution and
reduced uncertainties (Saito et al. 2010; Marra et al. 2016). More-
over, 3.3% of the works do not clearly state the source of rainfall
data while the 2 works presenting global thresholds make use of
literature data. Finally, 5.7% of the thresholds are not based on
rainfall measurements and make use of theoretical values to

calculate theoretical rainfall thresholds, mainly by means of phys-
ically based models (Salciarini et al. 2012; Papa et al. 2013; Wu et al.
2015b).

Rainfall time scale
As shown in Fig. 2d, almost half of the thresholds analyzed (52.2%)
are defined using hourly rainfall data (e.g., Garcia-Urquia and

Fig. 2 a Bar chart showing information sources used to define the analyzed thresholds. b–i Pie charts showing the percentages of b landslide types considered to define
the thresholds (key: n.s., not specified); c sources of rainfall data used to define thresholds; d rainfall time scales adopted in the analysis; e spatial density of used rain
gauges, in classes (key: n.s., not specified; n.e., not expected; n.a., not available); f methods adopted for the selection of rain gauges (rg); g methods adopted for the
extraction of rainfall parameters; h main parameters adopted for defining the thresholds; i types of thresholds, i.e., methods used for drawing or defining the thresholds
(key: n.s., not specified). The total number of the thresholds is reported in square brackets in the top right of each panel
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Axelsson 2015; Lainas et al. 2016). A higher temporal detail was
used in only 4.3% of the works (Cannon et al. 2008; Huggel et al.
2010; Staley et al. 2013; Ciabatta et al. 2016; Iadanza et al. 2016),
which relied on the use of advanced rain gauges. Daily rainfall data
(Nolasco-Javier et al. 2015) are also widely used (39.1%) and in two
circumstances (1.7%, Saez et al. 2013; Kanjanakul et al. 2016),
thresholds were defined using monthly measures. However, it
should be specified that these two cases are very peculiar,
consisting respectively in an investigation of historical landslides
through tree-ring series to assess climate changes (Saez et al. 2013)
and a work located in a poorly instrumented area in Thailand
(Kanjanakul et al. 2016). Eventually, 2.6% of the works analyzed do
not specify clearly the time scale used in the threshold analysis. We
acknowledge that the abovementioned percentages are referred to
the majority of measures used in each work. However, in 6.1% of
the cases, time resolutions of mixed origin are used, mainly in case
of scarce density of instrumented networks. In these cases, data
are gathered from instruments of mixed origin (different types of
rain gauges or rain gauges and radar) and in case of thresholds
devised for very large areas (up to global thresholds) collecting
published data of heterogeneous origin (Guzzetti et al. 2008;
Mathew et al. 2014; Calvello et al. 2015). The temporal resolution
is clearly correlated to the objective of the thresholds. All thresh-
olds used for early warning purposes are based on data of at least
hourly time scale, while in preliminary works, also daily measures
were considered. Minimum thresholds were proposed with
datasets of every temporal resolution.

Spatial density of rainfall measurements
Figure 2e shows the distribution of the density of rain gauges
used for defining the analyzed thresholds. The number of used
stations greatly varies from a minimum of 1 (a single rain gauge
used in 25.2% of the cases, e.g., Sengupta et al. 2010; Khan et al.
2012; Huang and Tang 2014; Napolitano et al. 2016) to a maxi-
mum of 2457 (Ma et al. 2015). Less than 15% of the analyzed
thresholds were defined relying on data recorded from more
than 100 rain gauges; on the other hand, for more than 60%,
data gathered from up to 100 gauges were exploited. Oddly, in 12
cases (10.4% of the total), we were not able to found the number
of used rain gauges.

Regarding the spatial density of rain gauges in the study area,
only 7.9% of the analyzed cases have a very high density (≥ 500
gauges per 100 km2; e.g., Dahal and Hasegawa 2008). About a third
of the occurrences (31.6%) have a coarser spatial gauge resolution,
using up to 100 rain gauges per 100 km2, while 23.7% of the
thresholds were defined considering between 100 and 500 rain
gauges per 100 km2 (Fig. 2e). Overall, decrease in gauge density
leads to increased underestimation of rainfall, which in turn leads
to large underestimation of the thresholds, especially in those
based on intensity and duration (Nikolopoulos et al. 2014, 2015).
High spatial density of rain gauges is usually encountered in very
small test site; however, sometimes relevant densities are reported
even for relatively large areas with well-equipped rain gauge net-
works. It is the case, as instance, of the works by Rosi et al. (2012),
Ma et al. (2015), and Piciullo et al. (2017). These cases took advan-
tage respectively of 332 gauges in an Italian region extending
23,000 km2 (1.44 gauges per 100 km2), 2457 gauges for a
101,800 km2 area in China (2.41 per 100 km2), and 58 gauges in a
1619 km2 area in Italy (3.58 per 100 km2).

In some cases, other rainfall sources (apart from rain gauges)
were considered. In particular, when radar measurements are
used, the spatial resolution can be greatly enhanced, depending
on the pixel resolution, which can arrive even to a few km2 in case
of ground-based radar. This is one of the most evident technical
advantages of using radar instruments rather than rain gauge
networks (Peleg et al. 2013; Borga et al. 2014; Marra et al. 2014,
2016).

Other monitoring instruments and other variables monitored
In 20 cases (17.4%), additional monitoring instruments, besides
those used to obtain rainfall data for the threshold analysis, were
used. In particular, in 7 cases, they consist in other instruments
used to measure rainfall, e.g., to integrate rainfall measures or to
have redundancy of rainfall data. In 13 circumstances, instead, the
work describes the use of instruments that measure physical phe-
nomena other than rainfall. This circumstance is mostly verified in
small test sites that include monitoring stations equipped with
video cameras, pore pressure transducers, tensiometers, water-
mark pressure head sensors, geophones and, more in general,
multi sensors monitoring stations. In 6 cases, the test sites is
equipped with instruments for temperature measurements. The
use of temperature data is due to cope with snowmelt induced
landslides (Bíl and Müller 2008), to take into account snow
accumulation/melting phenomena in regional scale threshold
analysis (Martelloni et al. 2013), to model the degree of saturation
in order to adjust operational rainfall thresholds (Ponziani et al.
2012) or to assess the impact of climate change in landslide hazard
(Saez et al. 2013; Ciabatta et al. 2016). Only in two cases (Baum and
Godt 2010; Napolitano et al. 2016) a correlation between rainfall
data and pore pressure measures were used to define thresholds;
this approach, despite not simple and not always feasible, would
be useful for enhancing the reliability of the thresholds.

Threshold definition

Rain gauge selection
The decision on the rain gauges selection is an important step in
the rainfall threshold analysis (when based on gauges). The meth-
od adopted influences the results of the analysis and the opera-
tional activities of a LEWS; therefore, we focused on this crucial
aspect to review all possible solutions adopted in the recent liter-
ature (Fig. 2f).

First, we remark that this important information is not de-
scribed, or not clearly specified, in 29 cases out of 115 (25.2%). This
is a major point of weakness, because the method proposed in
these works cannot be adequately evaluated and replicated else-
where. In 14 cases (12.2%), the rain gauge selection is not a part of
the method, because of the inherent nature of the work. As in-
stance, rainfall data are based on radar measurements (e.g., Saito
et al. 2010) or theoretical rainfall values are used to define phys-
ically based rainfall thresholds (e.g., Salciarini et al. 2012). The
remaining 72 cases, for which the rain gauge selection is described,
can be grouped into six main classes, as reported in Fig. 2f:
automatic selection, manual/expert judgment, nearest, reference,
single, and others.

In 21 cases (18.3%), the choice was obligated because in the
study area, there was only a rain gauge, therefore chosen as the
only reference rain gauge for the whole area. We mainly
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encountered this approach in very small areas, from a few km2 to a
few decades of km2 (e.g., Floris et al. 2012; Napolitano et al. 2016),
or in developing countries where only few rain gauges have suit-
able technical characteristics such as an adequate time resolution
and a long record of rainfall data (e.g., Afungang and Bateira
2016). In 18 cases (15.7%), the nearest rain gauge is selected by
default to provide the rainfall data to be correlated to each land-
slide. In some works, minor refinements of this technique are
proposed. As an instance, Palenzuela et al. (2016), in case of rain
gauges with similar distance, select the rain gauge with the same
mean annual precipitation class of the landslide spot. Winter et al.
(2010) selected the nearest rain gauges but for landslides where no
rain gauge was available within 20 km, radar data were used.
Althuwaynee et al. (2015) used the nearest rain gauge technique
only if the landslide was nearer than 6 km, while all other land-
slides were discarded from the threshold analysis. However, many
works point out that the nearest rain gauge may not be the best
option to capture the triggering rainfall, especially in complex
geographic settings and in case of localized convective storms.
Therefore, more refined approaches were developed by the re-
search community. In 12 cases (10.4%), the procedure of rain gauge
selection is completely automated and based on objective and
quantitative elements. In these cases, a fundamental part of the
threshold analysis is the development of automated algorithms
that associates to each landslide a rain gauge according to some
criteria. The advantage of this method is that it is standardized and
replicable, it reduces subjectivity and it can be applied to big
datasets in small amounts of time. As instance, different algo-
rithms test all possible reference rain gauges and select the one
performing better in terms of return times, weights, and skill
scores (Lagomarsino et al. 2013; Staley et al. 2013; Segoni et al.
2014a; Melillo et al. 2015, 2016; Iadanza et al. 2016). In 11 cases
(9.6%), no particular procedures are implemented and the re-
searchers selected the most suitable rain gauge, between many
possible ones, according to manual/expert judgements, therefore
with an a-posteriori and subjective selection. For each landslide,
the pluviographs recorded by several rain gauges are evaluated
and the authors selected the pluviometer that, according to their
judgment, better captures the triggering event. In some articles,
the expert/manual judgment is strengthened providing further
details about the criteria that guided the choice of the authors
(e.g., Gariano et al. 2012; Giannecchini et al. 2012; Jaiswal and van
Westen 2013; Vennari et al. 2014). Most of the times, these criteria
included one of the following: proximity, similar elevation, and
same mountainside of the landslide. In six cases (5.2%), a single
rain gauge is a-priori chosen among many possible ones, to char-
acterize all the landslides in the study area or in a subzone of a
wide study area. The criteria of the selection include, e.g., the
accordance with the rainfall regime of the study area (de Oliveira
et al. 2016) or a combination of geographic and technical features
(Martelloni et al. 2012). In two cases, Thiessen polygons were
drawn for all the rain gauges available and each rain gauge is used
to characterize the landslides located inside its polygon. This
system was used in two regional scale approaches with hundreds
of rain gauges and thousands of landslide records distributed in
two Italian regions, namely Tuscany (Rosi et al. 2012) and Emilia
Romagna (Berti et al. 2012). In other cases, a mixed approach was
considered, e.g., Jemec and Komac (2013) used an expert judgment
approach to select for each landslide one out of three possible

reference rain gauges previously identified. These latter methods
were grouped together in the class “other” (Fig. 2f), representing
the 3.4% of analyzed works.

Methods for the extraction of rainfall parameters
Another crucial step in the threshold definition is the analysis of
the pluviograph and the definition of rainfall values (or events)
responsible for landslides. In the past, this part of the threshold
analysis was often characterized by a relevant degree of subjectiv-
ity and uncertainty. This flaw was addressed by most part of the
herein reviewed works.

In 15 cases (13.0% of the total, Fig. 2g), the expert judgment was
used to manually analyze the pluviographs and assess the rainfall
conditions to be associated with landslides (e.g., triggering rain-
fall events). These occurrences concern thresholds based on
intensity-duration (Dahal and Hasegawa 2008; Rosi et al. 2012)
or total event rainfall duration (Sengupta et al. 2010; Vennari et al.
2014). In 23 occurrences (20.0%), software substitutes the expert
judgment and identifies the most appropriate values by means of
objective and reproducible approaches (algorithm approach). As
instance, Chang et al. (2008) and Giannecchini et al. (2016) used
logistic regression, while other authors purposely developed soft-
ware (Segoni et al. 2014a; Vessia et al. 2014, 2016). Melillo et al.
(2015) proposed an algorithm that reconstructs the rainfall events,
identifies the rainfall conditions that have resulted in landslides,
and measures the duration and the cumulated rainfall for the
events based on a reduced set of parameters to account for
different physical settings and operational conditions. However,
the most used approach to get objective and fully reproducible
measures is to set in advance a standardized criterion (59 occur-
rences, 51.3%). The most straightforward method is to take into
account a standard duration to calculate the cumulated rainfall
(Calvello et al. 2015; Garcia Urqia 2016; Bai et al. 2014) or to set
standard amount of time without rainfall to define the start/end
of each rainfall event (Tiranti and Rabuffetti 2010). To conclude,
in 8 cases (7.0%), the points in the graph are not derived from
pluviographs but are derived from physically based calculations
(e.g., Salciarini et al. 2012; Papa et al. 2013; Van Asch et al. 2014; Wu
et al. 2015b; Napolitano et al. 2016), while in other 8 cases (7.0%),
the approach is not clearly specified (e.g., Huang and Tang 2014;
Guo et al. 2016).

Threshold parameters
The most common couple of parameters used for rainfall thresh-
old definition is intensity-duration, I-D (48.6%, Fig. 2h). This
approach follows a consolidated tradition that dates back to the
work of Caine (1980). It is worth highlighting that different ap-
proaches can be used to define intensity and duration, and
sometimes, significant differences exist from a work to another.
As an instance, Cannon et al. (2008) uses the peak intensity,
Brunetti et al. (2010) uses the mean intensity, while another series
of works tries to identify the I-D combination associated to the
higher return period (Segoni et al. 2014a, b).

The second most used approach relies on antecedent rainfall
conditions (26.8%). A more in-depth look at this category reveals
that antecedent rainfall is taken into account in an overwhelming
variety of ways. It is not an exaggeration stating that almost every
research group uses its own approach. As an instance, Tien Bui
et al. (2013) combined daily rainfall and 15-day antecedent rainfall,
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Saadatkhah et al. (2015) considered 3- and 30-day antecedent
rainfall, Lee et al. (2015) used daily and 3-day cumulated rainfall.
Moreover, some authors do not use directly the rainfall measures,
but process them to calculate antecedent rainfall indexes, trying to
better account for the degree of saturation of the terrain (Jaiswal
and van Westen 2009; Lee et al. 2014; Ma et al. 2014; Kanjanakul
et al. 2016). Another category well represented in our review uses
the total rainfall accumulated during the event and its dura-
tion (15.9%). This category is more homogeneous than the
previous ones and the only differences can be found in the
approaches used to define the extents of the rainfall events.
As instance, Peruccacci et al. (2012) defined a rainfall event as
preceded/followed by a dry period of 48 or 96 h (in the dry
and wet season, respectively).

Out of these categories, the reviewed literature presents a wide
variety of different parameters used to define rainfall thresholds
(8.7%). As instance, Martelloni et al. (2012) introduced the use of
the standard deviation from the mean rainfall amount accumulat-
ed during progressively increasing time steps. Greco et al. (2013)
used a mobility function defined as the convolution integral of
rainfall intensity with an empirical transfer function. Vallet et al.
(2016) defined a multidimensional threshold that includes ground-
water recharge and several rainfall indexes.

Methods for threshold drawing/definition
We found numerous methods adopted in literature for drawing
the thresholds and we decided to group them into four broad
classes: manual, statistical, probabilistic, and physically based.
The first two were the most adopted classes, both chosen by the
40.9% of the analyzed records (Fig. 2i). In the “manual” class, we
found 47 cases in which the thresholds were actually drawn man-
ually by delimiting the lower bound of the point cloud
representing the triggering rainfall conditions (e.g., Floris and
Bozzano 2008; Li et al. 2011; Ma et al. 2013; Posner and
Georgakakos 2015), or by searching the best fit of the lower part
of the cloud (e.g., Kanungo and Sharma 2014; Althuwaynee et al.
2015; Lainas et al. 2016). Moreover, in 20 cases, a regression was
adopted to manually draw the thresholds (e.g., Marques et al.
2008; Saez et al. 2013; Nikolopoulos et al. 2014, 2015). Among the
47 thresholds defined by means of a statistical method, it is worth
mentioning the frequentist method proposed by Brunetti et al.
(2010) and applied, with further improvements, in several study
areas in Italy (Peruccacci et al. 2012; Vennari et al. 2014; Gariano
et al. 2015; Melillo et al. 2016; Piciullo et al. 2017). Among the
remaining statistical approaches, partial duration series (Palenzuela
et al. 2016) return time calculations (Chen and Huang 2010) or point
density analysis (Garcia Urquia 2016) were used.

Furthermore, five thresholds (4.3%) were defined using proba-
bilistic approaches, among which Bayesian analysis (Berti et al.
2012; Robbins 2016). Finally, in 7.8% of the cases, thresholds were
defined using physically based approaches (e.g., Ruiz-Villanueva
et al. 2011; Salciarini et al. 2012; Papa et al. 2013; Alvioli et al. 2014;
Wu et al. 2015b; Napolitano et al. 2016). Regrettably, in six cases
(5.2%), we were not able to identify the method adopted to draw
the thresholds.

Validation
The validation of the predictive capability of the thresholds
represents one of the most important issues in the process of

rainfall threshold definition. Figure 3 reports, each year, the
number of thresholds for which a validation procedure was
adopted. Deplorably, 46 thresholds (40.0%) are presented with-
out any analysis about their predictive capability. Conversely, 31
(27.0%) works present a validation, despite made by considering
the same dataset used for rainfall calibration, and only in 38
works (33.0%) the validation were correctly evaluated with an
independent dataset. For the latter works, we could assess the
calibration/validation ratio (defined as the ratio between the
time lengths of the two datasets). Usually, most part of the
data are used to calibration, while only a limited part is left for
validation. We found only 5 works with similar duration in calibra-
tion and validation datasets (Tiranti and Rabuffetti 2010; Greco et al.
2013; Martelloni et al. 2013; Staley et al. 2013; Saadatkhah et al. 2015).
On the other side, in 5 works (18%), the thresholds were validated
using a very limited sample (sometimes just a couple of events
pertaining to a very restricted time span). In two circumstances
(7%), we found a validation dataset equal to 40% of the total dataset
available and typically (54% of the occurrences), the validation
period was between 10 and 33% of the total.

The validation process is particularly widespread for
thresholds studies with cogent applicative aims, such as the
implementation in LEWSs. In these cases, the predictive ef-
fectiveness of the threshold is a key point of the research, and
thus should be adequately analyzed in the articles and sup-
ported by data. Indeed, thresholds that were validated were
usually implemented into operational or prototypal LEWS
(75%). Conversely, thresholds that are neither evaluated nor
validated are most commonly found in studies that are not
related with LEWSs (68%).

A common method to validate thresholds performance was not
established yet. The most used method (24.4% of the cases, Fig. 3)
is to compile a contingency matrix and to combine true negatives
(TN), true positives (TP), false negatives (FN), and false positives

Fig. 3 Bar chart showing, each year, the number of thresholds for which a
validation (in green) or a performance evaluation (in blue) procedure was
conducted, as parts of the total number of thresholds published per year (gray,
black-bordered bars). The inset in the top left shows a bar chart reporting the most
used criteria for validation. Key: n.a., not available
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(FP) to calculate different skill scores (Giannecchini et al. 2012;
Martelloni et al. 2012; Staley et al. 2013; Segoni et al. 2014a; Peres
and Cancelliere 2014; Gariano et al. 2015), like threat score (also
named critical success index, Gilbert 1884; Schaefer 1990) or true
skill statistics (Hanssen and Kuipers 1965). This method has a high
degree of objectivity and standardization and provides a quanti-
tative method to assess and compare the performances of different
thresholds. In 5.7% of the cases, ROC analysis is devised and area
under curve or other parameters are computed to assess the
overall performance of the threshold. In 14.6% of the cases, the
evaluation performed is very thorough and includes a quantitative
comparison with different thresholds, aimed to demonstrate ana-
lytically that the threshold presented is the best one possible for
the case of study at hand. The “alternate thresholds” used for
comparison may include thresholds obtained with other configu-
rations of the same threshold model, alternate rainfall threshold
parameters, or even with completely different threshold models.
As an instance, Althuwaynee et al. (2015) compared the perfor-
mances of different antecedent rainfall durations; Frattini et al.
(2009) performed a comparison between physically based and
logistic regression derived ID thresholds; Lagomarsino et al.
(2015) applied two completely different threshold models to the
same datasets in order to define which would be more effective for
a warning system. In 23 (18.7%) circumstances, we found that the
model outputs and real landslide data are compared but a real
confusion matrix was not built, and the work is limited to “count”
only one or two parameters, such as “hits” (Gioia et al. 2015). The
drawback of this method is that it cannot provide an overall
overview of the performance of the threshold. In 5 cases (3.9%),
other methods are used, alone or in addition to one of the afore-
mentioned ones. Martelloni et al. (2012) compared in terms of skill
scores the outputs of their models to the warning levels issued
randomly; Chen and Huang (2010) computed a casualties/event
ratio to demonstrate the effectiveness of the threshold based LEWS
they had implemented. Furthermore, Piciullo et al. (2016,
2017) evaluated the best rainfall thresholds combination to
be employed in a LEWS employing the EDuMaP method
(Calvello and Piciullo 2016). Other works provide visual and
qualitative assessments of threshold performances, e.g., by compar-
ing calculated thresholds and rain paths during representative events
(Papa et al. 2013) or by a visual comparison with the landslide
inventory (Salciarini et al. 2012).

All these standard metrics used to perform validation have
inherent uncertainties, in particular when applied in wide areas,
which must be acknowledged. Gariano et al. (2015) analyzed the
epistemic uncertainty related to the lack of information on land-
slide occurrence at regional scale and found that an underestima-
tion of only 1% in the number of considered landslides can result
in a significant decrease in the performance of validation
procedure.

Major sources of incompleteness
We found many works lacking relevant information about the
data used, the method of analysis, and the definition of the
thresholds. Figure 4 quantifies the degree of incompleteness for
every threshold information. Surprisingly, in about 25% of the
analyzed thresholds, a clear description of the method adopted
for the rain gauge selection is missing. In 12.2 and 10.4% of the
cases, we were not able to found respectively the number of

landslides and rain gauges considered for rainfall/landslides cor-
relations. Even a simple information as the extension of the study
area is missing in 13% of the analyzed cases, even if for several
articles, we appraised it from the figures. Moreover, considering
only the thresholds implemented in a LEWS, we found that, in
10.5% of the cases, some important details, e.g., the targets or the
territorial unit subject of the warnings, were not described. Finally,
the parameter with the highest degree of incompleteness is the
validation: 40.0% of the thresholds were not accompanied by a
validation process, thus making impossible an adequate assess-
ment of their predictive capability and their correspondence with
experimental data.

Concluding remarks: Lessons learnt and advices
The process of rainfall thresholds definition presents critical is-
sues. There are important steps that cannot be neglected in order
to obtain replicable and reliable thresholds with a high predictive
capability, more so if an implementation in a LEWS is proposed.
The description of the criterion used for landslide-rain gauge
association, as well as the clear explanation of rainfall parameters
extraction from the rainfall records, needs particular attention.
Regrettably, a lack of these details was highlighted respectively in
the 25.2 and 7% of analyzed papers. Our review highlights that a
consistent part of the scientific research is progressing towards the
development of methods aiming at automatizing the most relevant
phases of the threshold analysis for reducing uncertainties,
avoiding subjectivity and fostering the full reproducibility of the
method. In the years before 2007, this was one of the drawbacks of
literature on rainfall thresholds, but this gap is going to be filled by
algorithms and standardized procedures that were successfully
tested and consolidated through many cases of study. A standard-
ized procedure is recommended in particular if the thresholds will
be implemented into a LEWS, in order to ensure objectivity and
reproducibility of the proposed method and to foster a rapid and
periodic update of the thresholds.

However, the reliability of a threshold does not depend solely
on the applied method, but also on the quantity and quality of the

Fig. 4 Percentage of unspecified information about threshold features. aThese
percentages are calculated considering only the thresholds implemented in a LEWS,
for which those parameters are evaluable
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input data. Therefore, every research article or technical repot
should define clearly: the number and type of landslides, the
features of the study area (including area extension and geomor-
phological context), the rainfall and landslide data sources, the
period of analysis, the rainfall measurements density and their
temporal resolution. These details are also important in order to
assess the feasibility to apply a threshold, or at least the method
used for its definition, to other case studies.

Regarding the landslide database, only few attempts were made
to establish a minimum number of landslides to be used for
threshold analysis. Thus, we recommend that every possible effort
should be made in compiling the widest and most complete
database possible for the study area. Accessing multiple sources
of information can be very useful in this regard, even if the
validation process of the data, in order to avoid repetition and/
or errors, could be time consuming. In this regard, a branch of the
research has already started to define methods to compile land-
slide inventories with powerful remote sensing instruments, with
datamining on internet news, or with timely and well-planned
post-event field surveys. Unfortunately, most of the data are avail-
able only for a restricted number of scientists, technicians, and
insiders. A consistent progress in the research could be fostered
simply by sharing data and providing open access to local and
governmental databases.

Regarding the landslide type, our review revealed that
thresholds were defined both for landslides of a very specific
kind and for populations of landslides of mixed kind, even if
the latter case was used mainly where not enough information
were available and/or to increase the number of landslides to
consider for rainfall/landslide correlations. Moreover, our re-
view identified some other techniques to increase the reliability
of thresholds, by partitioning the study area into subzones with
geomorphological homogeneity. We recommend a partition of
the study area in particular for the definition of regional thresh-
olds to be employed over large areas.

Another improvement in rainfall threshold research consists
in the use of the most recent technological advances concerning
instruments capable of rain measurements with fine and finer
spatial and temporal resolution. The advances in satellite and
ground-based radar technology are providing a great support to
rainfall threshold research; however, at present, rain gauges are
still the most common instrument used. Rainfall measurements
with very fine temporal resolutions are useful only in case of
thresholds based on peak intensity, while for thresholds based
on total event rainfall or rainfall accumulated over daily (or
larger) intervals, hourly resolution is sufficient. Conversely, re-
garding spatial resolution, the highest possible density of mea-
surements is desirable, because it is possible to better account
for the spatial variability of rainfall patterns, especially during
convective rainstorms striking a complex orographic system.
Even if approaches exist to define a single reference rain gauge
for large areas, the possibility of selecting the best instrument
among many different ones helps obtaining good results. In
case a rain gauge network does not guarantee an adequate
spatial and temporal resolution of measurements, we suggest
considering the possibility of using satellite data, whose avail-
ability has greatly increased worldwide.

Finally, a critical key point in the scientific papers regarding
rainfall thresholds published in the period 2008–2016 concerns

the validation procedure. Indeed, only in 38 works (33.0%) out
of 115 analyzed herein, a validation was performed against an
independent dataset, and for the 40.0% of the thresholds
reviewed, the validation process was not carried out at all.
Validation is an essential part of the scientific research, neces-
sary to verify the results of a method, and rainfall thresholds
cannot be an exception, especially if used for applicative pur-
pose in LEWSs. Thus, we recommend a quantitative validation
based on single or multiple parameters that could easily mea-
sure the predictive capability of the thresholds. Concerning the most
used criteria for validation, our review revealed that ROC curves and
skill scores derived from confusion matrixes are becoming a stan-
dard. Comparisons with different thresholds present in literature are
useful to comment the physical and geomorphological meaning of
the rainfall-landslide correlation, but cannot be considered as a
method of validation. On the contrary, a robust method to demon-
strate the reliability of the thresholds is the application of a different
method (i.e., different rainfall variables, alternate approaches or
different statistical models) to the same data set and to compare
the results obtained.

Lastly, we point out that the research on rainfall threshold is
still ongoing and there is need to define objective and reproducible
thresholds, and to strengthen the societal perception of their
reliability in managing landslide hazard. The analysis of the recent
literature allowed defining some standards and good practices,
which we propose to use as guidelines both for further research
and for technical applications.
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