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Probabilistic forecasting of landslide displacement
accounting for epistemic uncertainty: a case study
in the Three Gorges Reservoir area, China

Abstract Accurate and reliable displacement forecasting plays a
key role in landslide early warning. However, due to the epistemic
uncertainties associated with landslide systems, errors are un-
avoidable and sometimes significant in traditional methods of
deterministic point forecasting. Transforming traditional point
forecasting into probabilistic forecasting is essential for quantify-
ing the associated uncertainties and improving the reliability of
landslide displacement forecasting. This paper proposes a hybrid
approach based on bootstrap, extreme learning machine (ELM),
and artificial neural network (ANN) methods to quantify the
associated uncertainties via probabilistic forecasting. The hybrid
approach consists of two steps. First, a bootstrap-based ELM is
applied to estimate the true regression mean of landslide displace-
ment and the corresponding variance of model uncertainties.
Second, an ANN is used to estimate the variance of noise. Reliable
prediction intervals (PIs) can be computed by combining the true
regression mean, variance of model uncertainty, and variance of
noise. The performance of the proposed hybrid approach was
validated using monitoring data from the Shuping landslide, Three
Gorges Reservoir area, China. The obtained results suggest that the
Bootstrap-ELM-ANN approach can be used to perform probabi-
listic forecasting in the medium term and long term and to quan-
tify the uncertainties associated with landslide displacement
forecasting for colluvial landslides with step-like deformation in
the Three Gorges Reservoir area.
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Introduction
Landslide hazards are common in China, especially in Southwest
China and the Three Gorges Reservoir area. For instance, there are
over 4200 landslides distributed throughout the Three Gorges
Reservoir area (Yin et al. 2010). The movement and failure of
landslides can cause substantial damage and loss of life. Forecast-
ing the displacement of continuously deforming landslides is
considered an important and economical way of avoiding or
reducing losses (Ma et al. 2017c).

Landslide displacement forecasting is complex and remains a
key challenge in natural hazard research. This challenge arises
because landslides are nonlinear, dynamic systems (Qin et al.
2002), and the associated movements can be induced by differ-
ent causes, such as geological factors, morphological factors,
and human activities (Ma et al. 2017b). To date, various growth
theories and models have been proposed to predict landslide
displacement. In additional, these studies can be divided into
three categories: deterministic models, statistical models, and
computational intelligence models (Ma et al. 2007c). Determin-
istic models, such as the Saito model (Saito 1965) and Fukuzono

model (Fukuzono 1985), involve creep theory and physical
mechanisms and provide clear physical explanations of land-
slides. However, they can be applied only in limited cases.
Statistical models, such as the Verhulst model (Yin and Yan
1996) and autoregressive integrated moving average (ARIMA)
(Carlà et al. 2016), have been applied to predict slope displace-
ment. Because statistical models are inherently linear, the non-
linear characteristics of landslide processes are ignored. Other
techniques are generally integrated with these approaches to
improve the prediction performance (Du et al. 2013; Zhou
et al. 2016). Computer intelligence methods, such as artificial
neural networks (ANNs) (Du et al. 2013), extreme learning
machines (ELMs) (Lian et al. 2013, 2014; Cao et al. 2016), and
support vector machines (Ren et al. 2014; Zhou et al. 2016), have
become increasingly popular approaches to driving forecasting
models of landslide displacement. Among these methods, ANNs
have been found capable of approximating arbitrary, nonlinear,
and dynamic systems with high precision (Kilian and
Siegelmann 1996). ANNs have been successfully applied to pre-
dict landslide displacement in a variety of cases (Neaupane and
Achet 2004; Chen and Zeng 2012; Du et al. 2013; Lian et al. 2015).

However, most studies of landslide displacement forecasting
mainly focused on deterministic point forecasting and did not
consider the random variability in the predictions of displacement,
nor do they consider the epistemic uncertainty in landslide sys-
tems. Different types of uncertainties exist in landslide systems
(Wu et al. 2013), and these uncertainties represent considerable
obstacles to landslide displacement forecasting. Determining how
to evaluate the uncertainty in landslide displacement forecasting
remains a problem that must be solved.

Probabilistic forecasting can be used to quantify the uncertainty
associated with deterministic point forecasting (Wan et al. 2014). It
can offer prediction intervals (PIs) and measure the confidence
that we have in the output of a model for future inputs (Khosravi
et al. 2010). Recently, probabilistic forecasting has attracted in-
creased research interest and has been successfully applied to
construct PIs in a variety of fields, including electricity market
price prediction (Shrivastava and Panigrahi 2013; Khosravi et al.
2013; Wan et al. 2014), baggage handling system prediction
(Khosravi et al. 2010), hydrologic river flow prediction (Shrestha
and Solomatine 2006), and industrial equipment degradation pre-
diction (Lins et al. 2015).

However, only a few studies have built probabilistic forecasting
models of landslide displacement. Lian et al. (2016) applied an
ANN with random hidden weights for the probabilistic forecasting
of landslide displacement. The bootstrap approach is the simplest
and most frequently used technique to evaluate uncertainties since
it does not require complex computations (Srivastav et al. 2007).
However, to the best of our knowledge, the bootstrap approach has
yet to be used to evaluate the epistemic uncertainties in landslide
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displacement prediction. In this study, we propose a hybrid ap-
proach based on bootstrap, ELM, and ANN methods to construct
PIs and evaluate the epistemic uncertainties that exist in landslide
displacement forecasting. The Shuping landslide in the Three
Gorges Reservoir area has been chosen as a case study to explore
the usefulness of the Bootstrap-ELM-ANN-based approach.

Sources of epistemic uncertainty in landslide deformation analyses
Epistemic uncertainty is associated with imperfect or inadequate
knowledge (Walker et al. 2003) and pervades all aspects of the
natural and physical environment (Regan et al. 2002). Based on
the classification of Regan et al. (2002), epistemic uncertainty in
landslide deformation analyses can be divided into six categories:
measurement error, systematic error, natural variation, inherent
randomness, model uncertainty, and subjective judgment.

Measurement error is caused by imperfections in measuring
instruments or techniques. This type of uncertainty can be man-
aged by reporting measurements with bounds or using statistical
methods if multiple or repeated measurements are taken.

Systematic error results from the bias in measuring instruments
or sampling procedures, such as the erroneous calibration of
measuring instruments or consistently incorrect recordings. Sys-
tematic error can be reduced by recognizing and removing the bias
in an experimental procedure. However, this type of uncertainty is
notoriously difficult to discern.

Natural variation exists in natural systems, such as landslides.
A landslide system changes temporally and spatially (Ma et al.
2017a), as do the associated parameters of interest, such as the
density, friction angle, and cohesive strength of landslide mate-
rials. This type of uncertainty can be qualified statistically.

Inherent randomness in a natural system occurs not due to the
limited understanding of the driving processes of patterns but
because the system is inherently random.

Model uncertainty results from the abstractions of a natural
system. This type of uncertainty occurs in two main forms. First,
only relevant and major variables and processes are included in
models. However, less important variables and processes are ex-
cluded. For example, although snowmelt might have some effect
on landslide movements in the Three Gorges Reservoir area, the
effect is sufficiently weak as to be ignored when evaluating many
problems. In the landslide area, the average number of days with
precipitation that falls as snow per year is 3.9, i.e., there is very
little snow in the winter in the landslide area. Thus, the ANN
models currently used to predict landslide deformation do not
explicitly include parameters that describe snowmelt. Second,
model uncertainty results from the abstract methods of
representing observed processes. For instance, curve fitting is a
common approach used to build landslide forecasting models and
provides a mathematical expression given empirical data points.
Such abstraction and extrapolation are always associated with
model uncertainty.

Subjective judgment results from the interpretation of data, and
this is especially the case when insufficient data are available.

The abovementioned epistemic uncertainty in landslide sys-
tems is often compound, and impossible to distinguish or separate
conclusively (Regan et al. 2002; Uusitalo et al. 2015). However, a
clear understanding of the sources of epistemic uncertainty in
landslide deformation analyses helps researchers identify, treat,
and account for compound uncertainty.

Probabilistic forecasting of landslide displacement based on the
Bootstrap-ELM-ANN method

Probabilistic forecasting
Probabilistic forecasting can provide PIs to quantify the uncer-
tainty associated with traditional point forecasting. A PI con-
sists of upper and lower limits (Shrestha and Solomatine 2006).
These limits are called the upper bound and lower bound
(Fig. 1). The future targets are expected to fall within the con-
structed PIs based on the nominal probability (1 − α) × 100%,
which is deemed the PI nominal confidence (PINC). The α level,
or significance level, represents the Black of confidence^ and is
the probability of not capturing the value of the parameter.

The uncertainty in ANN prediction includes the model uncer-
tainty and noise. Model uncertainty is mainly caused by the
misspecification of the neural network structure and parameters,
while noise is mainly caused by the stochastic characteristics of
regression data (Wan et al. 2014).

Given a time series Xi; tið Þf gNi¼1, such as landslide displacement,
the prediction target can be expressed as follows:

ti ¼ g Xið Þ þ ε Xið Þ ð1Þ

where ti is the ith prediction target, g(Xi) is the true regression mean,
Xi is the vector of inputs, and ε(Xi) is the noise, which is assumed to be
normally distributed with mean zero and variance σb2

ε (Shrestha and
Solomatine 2006; Shrivastava and Panigrahi 2013; Wan et al. 2014).

In practice, the output of the ANN, gb Xið Þ, can be regarded as an
estimate of the true regression g(Xi). Thus, the prediction error can
be expressed as follows:

ti−gb Xið Þ ¼ g Xið Þ−gb Xið Þ
h i

þ ε Xið Þ ð2Þ

where ti−gb Xið Þ is the total prediction error and g Xið Þ−gb Xið Þ is the
error of the ANN estimate with respect to the true regression.

Assuming that the estimation error and the noise are statisti-
cally independent, the variance of the total prediction error,
σb2t Xið Þ, can be expressed as follows:

σbt2 Xið Þ ¼ σb2g Xið Þ þ σbε2 Xið Þ ð3Þ

where σ̂2g Xið Þ and σ̂2ε Xið Þ are the variance of the model uncertainty
and the variance of the noise, respectively.

Fig. 1 Schematic diagram of PI construction
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PIs with a prescribed confidence level of (1 − α) × 100% can be
constructed as follows:

L αð Þ
t Xið Þ ¼ gb Xið Þ−zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σbt

2 Xið Þ
q

ð4Þ

U αð Þ
t Xið Þ ¼ gb Xið Þ þ zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σbt2 Xið Þ

q
ð5Þ

where L αð Þ
t Xið Þ and U αð Þ

t Xið Þ are the lower bound and the upper
bound, respectively, and zα/2 is the critical value of the standard
normal distribution.

The prediction interval coverage probability (PICP) and aver-
age coverage error (ACE) are two indices used to evaluate the
correctness of the approximated PIs.

The PICP reflects the degree of reliability of PIs and is defined
as follows:

PICP ¼ 1
Nt

∑
i¼1

Nt

I αð Þ
i ð6Þ

where Nt is the number of test samples. I αð Þ
i is defined in Eq. (7):

I αð Þ
i ¼

1 ti ∈ L αð Þ
t Xið Þ;U αð Þ

t Xið Þ
h i

0 ti ∉ L αð Þ
t Xið Þ;U αð Þ

t Xið Þ
h i

8<
: ð7Þ

The ACE reflects the difference between the PICP and PINC
and is defined by Eq. (8):

ACE ¼ PICP‐PINC ð8Þ

For high-quality PIs, the value of the PICP should be as close to
100% as possible, and the value of ACE should be as close to zero
as possible (Wan et al. 2014).

Bootstrapping
Bootstrapping (Efron 1979) is a general and robust statistical
reference technique. The idea behind bootstrapping is to perform
random sampling with replacement to estimate the unknown
distribution. This technique allows the sampling distribution of
almost any statistic to be estimated by uniform sampling of the
original time series (Wan et al. 2014). Bootstrap sampling can be
based on pairs or residuals (Lins et al. 2015). Paired bootstrapping
involves sampling the observations from an original data set with
replacement. Additionally, residual-based bootstrapping involves
sampling the residuals determined via a regression model adjusted
over the original data set with replacement. Paired bootstrapping
was used in the present study.

Extreme learning machines
An ELM (Huang et al. 2006) is a novel feedforward neural network
with a single hidden layer. The input weights in ELMs are ran-
domly assigned, and the output weights are analytically deter-
mined using a simple matrix computation. An ELM-trained
model can produce good prediction results and learn thousands
of times faster than a neural network using backpropagation

(Huang et al. 2006). Formally, the ELM algorithm can be stated
as follows.

Given a time series with N samples Xi; tið Þf gNi¼1, such that Xi∈
Rn and ti∈ Rm, a standard ELM with L hidden nodes and an
activation function ψ(⋅) can be mathematically modeled as fol-
lows:

f L X j
� � ¼ ∑

L

i¼1
βiψ ai⋅X j þ bi

� � ¼ t j; j ¼ 1; ⋯;N ð9Þ

where ai = [ai1, ai2, ⋯, ain]T is the weight vector connecting the ith
hidden node and the input nodes, βi = [βi1, βi2, ⋯, βin]T is the
weight vector connecting the ith hidden node and the output
nodes, bi is the threshold of the ith hidden node, and ψ(ai ⋅ Xi +
bi) is the output of the ith hidden node with respect to the input Xi.

For simplicity, the above equation can be written as follows:

Hβ ¼ T ð10Þ

where H is the output matrix of the hidden layer, β is the matrix of
the output weight, and T is the matrix of targets. These variables
can be expressed as follows:

H ¼
h a1⋅X1 þ b1ð Þ ⋯ h aL⋅X1 þ bLð Þ

⋮ ⋮ ⋮
h a1⋅XN þ b1ð Þ ⋯ h aL⋅XN þ b1ð Þ

2
4

3
5
N�L

ð11Þ

β ¼
βT
1
⋮
βT
L

2
4

3
5
L�m

and T ¼
tT1
⋮
tTN

2
4

3
5
N�m

ð12Þ

The ELM training process is used to find a least squares solu-

tion, β̂, of Eq. (10). The least squares solution with the smallest
norm is expressed as follows:

β* ¼ HþT ð13Þ
where H+ is the Moore-Penrose generalized inversion of matrix H.
Using the Moore-Penrose inverse method, an ELM can achieve a
good generalization performance and an extremely efficient learn-
ing speed.

Bootstrap-ELM-ANN-based method for PIs construction
The overall framework of PIs construction based on the bootstrap,
ELM, and ANN methods is shown in Fig. 2. This framework
consists of four stages: (1) bootstrap sampling and ELM training,
(2) estimation of model uncertainty, (3) estimation of noise, and
(4) PIs construction.

(1) Bootstrap sampling and ELM training

A bootstrap sample set B1, B2, ⋯, BB with N samples is chosen by
random sampling with replacement from the original time series

Xi; tið Þf gNi¼1. After the generation of each bootstrap set, ELM
training is performed. A total of B ELMs are trained.
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(2) Estimation of the true regression mean and model
uncertainty

After the ELM models have been trained, it is possible to use
the input data Xi in the trained models. The true regression mean,
gbq Xið Þ, can be calculated by averaging the outputs of B trained
ELMs as follows:

gb Xið Þ ¼ 1
B

∑
B

q¼1
gbq Xið Þ ð14Þ

where gbq Xið Þ is a prediction value of input sample Xi generated by
the qth bootstrapped ELM. The variance in the model uncertainty,
σb2g Xið Þ, can be estimated from the variance in the outputs of the

trained B ELMs using Eq. (15):

σb2g Xið Þ ¼ 1
B−1

∑
B

q¼1
gbq Xið Þ−gb Xið Þ

� �2
ð15Þ

(3) Estimation of noise

According to Eq. (3), σ̂2
ε Xið Þ can be obtained as follows:

σb2ε Xið Þ∼E ti−gb Xið Þ
� �� �

−σb2g ð16Þ

Then, a set of squared residuals, r2(Xi), is determined using
Eq. (17):

r2 Xið Þ ¼ max ti−gb Xið Þ
h i2

−σb2g Xið Þ; 0
� �

ð17Þ

After the squared residuals r2(Xi) are obtained, a new data set,
Dr2 , is generated using the residuals and corresponding inputs:

Dr2 ¼ Xi; r2 Xið Þf gNi¼1 ð18Þ

A new ANN can be trained using the data set Dr2 to estimate the
variance in the noise σ̂2

ε Xið Þ. To ensure a positive variance, an
exponential activation function is used in the new ANN.

(4) PIs construction

After the true regression mean ĝq Xið Þ, the variance in the

model uncertainty σ̂2
g Xið Þ, and the variance in the noise σ̂2ε Xið Þ

are obtained, PIs with (1 − α) × 100% PINC can be obtained from
Eqs. (3), (4), and (5).

Application to the Shuping landslide, Three Gorges Reservoir, China

Geological setting
The Shuping landslide, a colluvial landslide (Yin et al. 2016), is
situated on the right bank of the Yangtze River, approximately
47 km northwest of the Three Gorges Reservoir Dam (110°37′00″ E,
30°59′37^ N; see Fig. 3a for location). The landslide is an ancient
landslide (Wang et al. 2005, 2008) composed of two blocks
(Fig. 3b, c). The landslide is approximately 800 m long and
700 m wide. The thickness of the landslide body varies from 30
and 70 m. The entire planar area of the landslide is approximately
0.55 million square meters, and the landslide volume is

Fig. 2 The overall framework of PIs construction for landslide displacement based on the Bootstrap-ELM-ANN approach
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approximately 27 million cubic meters. The planar area of block 1
is 0.35 million square meters and the volume of block 1 is approx-
imately 15.75 million cubic meters. The landslide itself extends
from approximately 65 to 400 m in elevation (Fig. 4). The mean
inclination of the landslide surface is 22°.

Site investigation and borehole analysis (Wang et al. 2007)
showed that the landslide materials are colluvial gravel soil
(Fig. 4). The colluvial gravel soil is composed of yellow and
brown silty clay and gravel clasts, with diameters varying from
1 to 15 cm. These clasts represent as much as 30–50% of the
deposit by weight. The thickness of the sliding zone varies
from 1.0 to 1.2 m. It is composed of approximately 70% ma-
genta silty clay and 30% gravel clasts (Wang et al. 2005, 2007;
Lu et al. 2014). The Quaternary deposit is underlain by argil-
laceous siltstone and marlstone of the Triassic Badong forma-
tion, with an average dip direction of 170° and a dip angle of
10–30° (Fig. 4).

Deformation characteristics
The Shuping landslide was reactivated by the initial impound-
ment of the Three Gorges Reservoir Dam in June 2003 (Huang
et al. 2014). Cracks have been observed by the locals since the
initial impoundment. The cracks were mainly distributed in
block 1 between elevations of 310 and 370 m (Fig. 3b). Based
on the distribution of the surface cracks, we can assume that

block 1 is the main deformation zone. The surface cracks can be
divided into transverse and longitudinal cracks. The transverse
cracks (Fig. 5a) are perpendicular to the sliding direction, while
the longitudinal cracks (Fig. 5b) are parallel to the sliding
direction. Crack Cl1 was first observed by the locals in January
2004 and reached approximately 100 m in length. According to
local reports, major transverse crack Ct appeared between ele-
vations of 310 and 355 m in January 2004. Major crack Ct

consists of a series of minor cracks that are approximately 20
to 50 m long and 5 to 10 cm wide.

Nine GPS survey monuments were installed on the landslide
slope (see Fig. 3b for locations): seven in the main deformation
zone (block 1), one in the second deformation zone (block 2), and
one on stable ground outside the deformation area. The GPS
monuments were surveyed monthly.

Figure 6 shows the rainfall intensity as obtained from the
Shazhenxi Meteorological Station near the Shuping landslide, the
reservoir level before and after the initial impoundment of the
Three Gorges Reservoir Dam, and the displacement from GPS
survey monuments ZG87, ZG85, and SP2 over the 10-year period
between October 2003 and October 2013. The available data indi-
cate that the landslide is unstable and had continuously deformed
during the entire monitoring period. The landslide exhibits step-
like deformation behavior due to the periodic fluctuations in water
level and heavy precipitation.

Fig. 3 a Location of the Shuping landslide, Three Gorges Reservoir area, China. b Topographic map of the Shuping landslide. c Overall view of the Shuping landslide
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Driving factors of landslide movements
The step-like deformations shown in Fig. 6 represent two primary
types of motion: short periods of rapid movements and longer
periods of suspended activities. Rapid movements occurred at the
end of reservoir drawdown (June and July of each year) and at the
beginning of the rainfall season, from May to September. However,
the rapid movement period ended before the end of the rainfall
season. These findings indicate that rapid drawdown of the reser-
voir and prolonged heavy rainfall are the two main driving factors
affecting movement in the Shuping landslide. Landslide move-
ment was especially pronounced under prolonged periods of res-
ervoir level decline; prolonged heavy rainfall had a weaker effect
on landslide movement.

PIs construction
The proposed probabilistic forecasting approach was tested for the
Shuping landslide to validate its effectiveness and efficiency. The
PIs construction process for the Shuping landslide is as follows.

(1) Data splitting

In the Three Gorges Reservoir area, rainfall and water level
fluctuations are generally considered the two main hydrological
causes of landslide movements. Landslide displacement was sur-
veyed monthly, whereas reservoir water level and rainfall were
monitored daily. Because of the different monitoring frequencies,
the raw data were preprocessed on a monthly basis. Based on

previous studies of landslide displacement prediction in the Three
Gorges Reservoir area (Du et al. 2013; Cao et al. 2016; Zhou et al.
2016), seven indicators were chosen as inputs (Xi): the rainfall
intensity over the past month (x1i), the rainfall intensity over the
past 2 months (x2i ), the average reservoir level in the current
month (x3i ), the variation in reservoir level in the current month
(x4i ), the displacement over the past 1 month (x5i ), the displacement
over the past 2 months (x6i ), and the displacement over the past
3 months (x7i ). Additionally, displacement in the current month (ti)

was chosen as the output. A data set Xi; tið Þf gNi¼1 was generated
based on the inputs and corresponding outputs.

Data from October 2003 to December 2012 were treated as the
training set, and the data from January 2013 to October 2013 were
regarded as the testing set. The training data set was used to train
the ELM and ANN models, and testing data were used to evaluate
the performance of the proposed method.

(2) Bootstrap sampling

The training data set was resampled B times based on the
paired-based bootstrap method. The bootstrap replicate number
was set to 100 in the paired bootstrap method.

(3) ELM training

B bootstrap data sets were used to train B ELM models. The
original data were normalized in the range of [0,1] to eliminate
dimensional effects. Then, the outputs of the ELM were
denormalized to yield the correct values.

(4) Estimation of the true regression mean and model uncertainty

The predicted value ĝq Xið Þ of input sample Xi can be obtained

using the qth bootstrapped ELM. The true regression mean ĝ Xið Þ
and the variance in the model uncertainty σ̂2g Xið Þ can be estimated

using Eqs. (14) and (15).

(5) Estimation of noise

Data set Dr2 ¼ Xi; r2 Xið Þf gNi¼1 was used to train a single ANN
and estimate the variance in the noise.

(6) PIs construction

The final PIs were obtained through Eqs. (3), (4) and (5). The
PINC was set to 95% in this study.

Results and analysis
The constructed PIs with a nominal confidence level of 95% are
shown in Fig. 7. The corresponding performance indices PICP and
ACE are shown in Table 1. Figure 7 shows that the constructed PIs
based on the bootstrap, ELM, and ANN methods encompass the
majority of the observed samples, with percentages all greater than

Fig. 4 Geological profile along sections A-A’ and B-B′ with monitoring instruments
and reservoir level range
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90%. For example, the constructed PIs for monitoring point ZG87
have a PICP of 97.5%, which is close to the corresponding nominal
confidence PINC of 95%. The ACE of the obtained PIs was 2.5%.
The constructed PIs for monitoring point ZG85 have a PICP of
96.69% and an ACE of 1.69. Additionally, the constructed PIs for
monitoring point SP2 have PICP and ACE values of 93.38% and −
1.62, respectively. These results indicate that the proposed ap-
proach provides satisfactory performance. Additionally, the pro-
posed approach appropriately accounts for all existing
uncertainties and can construct reliable PIs.

Figure 7 shows that the widths of constructed PIs vary from one
sample to another. This result reflects one potential and important
aspect of the proposed Bootstrap-ELM-ANN approach: how they
respond to different levels of uncertainty in the constructed pre-
diction model. Because the driving factors of landslide movements
(e.g., water level or rainfall intensity) change over time, the level of
uncertainty consequently changes. These variations are quantified
by PIs and reflected in their widths. Figure 7 shows that incorrect
predictions, or observations that do not fit predictions, occurred
for some samples. In practical application, incorrect predictions
cause underestimates or overestimates of risk and response. These
failed predictions should not be interpreted as a criticism of those
involved in the decision making process (Hungr et al. 2005).

Instead, they demonstrate the inherent difficultly in landslide
prediction, in which the controlling processes and deformation
mechanisms are far from completely understood (Hungr et al.
2005; Yao et al. 2015).

In general, the proposed hybrid approach needs B + 1 neural
network models to construct the PIs. Computational time is an
important issue that should be considered. Table 1 shows that an
average computation time of 5.30 s is required to train B (100)
ELMs and a single ANN. Thus, the approach is computationally
efficient. Simulations using the proposed approach and all the data
sets were performed in MATLAB R2016b running on a Core I7-
4700MQ @2.40 GHz CPU with 16-GB RAM. This significant com-
putational efficiency benefits from the fast learning speed of the
ELM. Therefore, the proposed probabilistic forecasting approach
based on bootstrapping and ELM is practically applicable.

Discussion: deterministic point prediction versus probabilistic
forecasting
Landslide deformation prediction is inherently uncertain. Evaluating
the epistemic uncertainty and transforming the deterministic point
prediction into probabilistic forecasting have several potential ben-
efits. First, probabilistic forecasting is scientifically more Bhonest^

Fig. 6 Time series of rainfall intensity, reservoir level and landslide displacement
spanning the period of October 2003 to October 2013

Fig. 7 PIs with a nominal confidence level of 95% for landslide displacement
obtained using the Bootstrap-ELM-ANN approach

Fig. 5 a Transverse crack on the west boundary of block 1. b Longitudinal crack on the west boundary of block 1
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and more realistic than is deterministic point prediction because it
allows researchers to acknowledge uncertainty. Second, this ap-
proach enables users to make informed and appropriate decisions
by explicitly considering risk. Variations in the widths of PIs are of
practical importance in decision making and provide scientists and
key officials with information about the accuracy and credibility of
forecasting, while no additional information is available in tradition-
al pointwise decision-making methods. Awide PI suggests that there
is a high level of uncertainty in the forecasting, and sufficient atten-
tion and additional measures should be taken by scientists and key
officials, especially when using certain types of point predictions. For
insurance reasons, alternative options should be evaluated and
established beforehand to mitigate risks. Alternatively, a narrow PI
reflects low uncertainty in sample data, and decisions can be made
more confidently based on point predictions. Thus, PIs constructed
using the Bootstrap-ELM-ANN method can be employed as a com-
plementary source of information along with point predictions to
improve the efficiency and reliability of decision-making processes.

Although the benefits of probabilistic forecasting are many, the
disadvantages can be considerable. The main disadvantage of the
Bootstrap-ELM-ANN approach is that the computational cost of
this method can become overly expensive with large data sets.
Another disadvantage of probabilistic forecasting is that it can be
difficult to understand and implement. An important aspect of
deterministic point prediction is that it can offer a single number
that is easy to comprehend and apply. In certain scenarios, e.g., for
practical, more immediate, and operational-level planning, a
quantitative input may be needed for decision making (Bijak
et al. 2015). In contrast, probabilistic forecasting offers a prediction
band instead of a single number. Thus, the results of probabilistic
forecasting need to be reorganized in an approximate way that is
more useful for end-users decision making. If a single number is
needed, it can be obtained from quantiles determined from pre-
dictive distributions.

Conclusions
Probabilistic forecasting, which can be used to evaluate the
epistemic uncertainties associated with landslide displacement
forecasting by providing PIs, plays a critical role in the con-
struction of reliable early warning systems. A probabilistic fore-
casting approach that combines bootstrap, ELM and ANN
methods was used to construct PIs of landslide displacement.
The proposed probabilistic forecasting approach is applied to a
case study in the Three Gorges Reservoir area. The constructed
PIs include the majority of the observed samples and appropri-
ately account for all existing uncertainties. These results indi-
cate that the proposed approach is effective and efficient. The
successful implementation of this probabilistic forecasting ap-
proach suggests that the Bootstrap-ELM-ANN approach is valu-
able for landslide displacement forecasting in the medium term

and long term, and can be used to quantify existing uncer-
tainties for colluvial landslides with step-like deformation in
the Three Gorges Reservoir area.

In practical application, PIs constructed with the Bootstrap-
ELM-ANN approach can be efficiently used as a complementary
source of information along with point predictions for informed
and appropriate decision making. As the uncertainties associated
with landslide displacement prediction are quantified and
reflected in the varying widths of sample PIs, scientists and key
officials have an indicator of the confidence or risk level associated
with using point predictions.
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