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Three-dimensional, time-dependent modeling
of rainfall-induced landslides over a digital
landscape: a case study

Abstract Physically based approaches for the regional assessment
of slope stability using digital elevation model (DEM) topography
usually consist of one-dimensional (1D) descriptions and often
include more simplifying assumptions than realistic, three-
dimensional (3D) analyses. We investigated a new application of
the well-known, publicly available software TRIGRS (Transient
Rainfall Infiltration and Grid-Based Regional Slope-Stability Mod-
el) in combination with Scoops3D to analyze 3D slope stability
throughout a digital landscape in a time-dependent fashion, typ-
ically not implemented in three-dimensional models. TRIGRS
simulated the dynamic hydraulic conditions within slopes induced
by a rainstorm, and Scoops3D used the resulting pore water
pressure for 3D stability assessment. We applied this approach to
the July 2011 landslide event at Mount Umyeon, South Korea, and
compared the results with the landslide initiation locations report-
ed for this rainfall event. We described soil depth in the study area
by three different simple models. Stability maps, obtained by the
1D (TRIGRS only) and 3D (TRIGRS and Scoops3D) time-
dependent approaches, were compared with observations to assess
the timing and locations of unstable sites via a synthetic index,
previously developed specifically for dealing with point landslide
locations. We highlight the performance of the 3D approach versus
the 1D method represented by TRIGRS alone, as well as the
consistency of the time dependence of the results obtained using
the combined approach with the observations.

Keywords TRIGRS . Scoops3D . Landslide . Slope stability . Soil
depth . Rainfall-induced . Infiltration . Pore water pressure

Introduction
Three-dimensional (3D) slope stability assessment on a regional scale
has not been widely implemented because of its complexity, computa-
tional requirement, and the scarcity of required data. Most approaches
assess slope stability using a one-dimensional (1D) infinite slope model
on a raster cell-by-cell basis (Montgomery and Dietrich 1994; Pack et al.
1998; Baum et al. 2008; Valentino et al. 2014; An et al. 2016) or a two-
dimensional (2D) slope stability model based on a series of cross-
sections cut through the digital elevation model (DEM) (Miller and
Sias 1998; Gu et al. 2014). Many researchers have stated that 1D and 2D
analyses are acceptable in slope engineering not only because they are
simpler, but also because they provide more conservative results than
3D models. As a matter of fact, 1D and 2D slope stability analyses
typically provide results that suggest lower stability than that of 3D
methods (Hungr 1987; Lam and Fredlund 1993; Okimura 1994; Arellano
and Stark 2000; Huang and Tsai 2000; Xie et al. 2006b; Kalatehjari and
Ali 2013; Chakraborty and Goswami 2016). These approaches, among
other aspects of 1D or 2D assessments, may fail to model the actual
mechanism of landslides (Bromhead et al. 2002). Indeed, natural slopes
are not infinitely wide and, sometimes, it is difficult to accurately
represent complex topography, evenwith 2Dmethods (Reid et al. 2000).

The simplifications implemented in 1D and 2D models typically
correspond to a worst-case situation (Kalatehjari and Ali 2013) and
thus have limitations. For example, it is difficult to estimate po-
tential failure volumes, a factor of major relevance in debris flow
modeling. Moreover, 1D or 2D analyses do not consider the direc-
tion of the slip surface. The sliding body is forced to move in an
assumed direction (downslope), neglecting lateral, out-of-plane
variations not only of the slope geometry, but also of geology,
loading, water pressure, shear strength, and shape of the slip
surface (Bromhead et al. 2002). Eventually, it is often assumed
that the slip surface extends indefinitely, and 3D structure or end
effects are considered negligible (Gens et al. 1988; Yu et al. 1998;
Askarinejad et al. 2012). Therefore, the use of a 1D or 2D method
may oversimplify the actual 3D mechanism and may result in non-
conservative values of soil strength parameters obtained from the
back analysis (Huang and Tsai 2000).

In this study, we applied the Transient Rainfall Infiltration and
Grid-Based Regional Slope-Stability model (TRIGRS) (Baum et al.
2008), v2.1 (Alvioli and Baum 2016), and Scoops3D (Reid et al.
2015) for the 3D prediction of potential landslides caused by
dynamic pore pressure changes resulting from the July 2011 rain-
storm event at Mout Umyeon, Seoul, South Korea. The adopted
method is a combination of a 1D, time-dependent infiltration
model implemented in TRIGRS and a 3D slope stability assess-
ment implemented in Scoops3D. The time-dependent 3D distribu-
tions of pressure head resulting from the 2011 rainstorm event
were simulated using TRIGRS. The latest implementation of
TRIGRS, version 2.1 (Alvioli and Baum 2016), is able to save an
output containing 3D information on pressure head and soil
saturation, readily usable in Scoops3D, which was then applied
for a 3D assessment of landslides in the study area. To our knowl-
edge, this is the first time that TRIGRS and Scoops3D are used in
combination to obtain an overall time-dependent 3D slope stabil-
ity assessment.

Park et al. (2013) analyzed the same rainfall event considered
in this work. Their purpose was twofold: (1) simulation with
TRIGRS to assess model performance in predicting failure loca-
tions via a custom performance index %LRclass (explained in Eq.
(7),BA performance index for point-like landslide data^ section)
and (2) use of a water runoff model bundled with TRIGRS to
quickly select the path of the fluid masses mobilized by the
triggering landslides. In particular, Park et al. (2013) concluded
that the proposed %LRclass index is a valuable tool for assessing
the performance of pixel-based landslide predictions against
empirical point landslide locations. In this study, we make use
of a modified performance index, %LRclass, and extend the
TRIGRS-based slope stability assessment with additional 3D
modeling using Scoops3D. The description of the subsequent
movement of the whole mass characterizing debris flow is
governed by well-defined dynamics (Hürlimann et al. 2008;
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Iverson 1997) and requires additional data, assumptions (Hungr
1995), and tools (Chianga et al. 2012; Gomes et al. 2013); these
are beyond the scope of this work.

An important step in the procedure adopted here is the
selection of input data and initial conditions: DEM, geotechnical
and hydraulic parameters, initial soil water content, and cell-by-
cell soil depth. In particular, we analyzed three simple existing
soil depth models to compare the resulting accuracy in land-
slide prediction before selecting the most suitable one. To assess
model performance, we used the observed landslide map that
includes the initiation point locations of 25 sliding sites (Park
et al. 2013; Baek and Kim 2015). Next, we compared the factor-
of-safety (Fs) maps predicted by both the 1D and 3D approaches
(hereafter referred to as Fs1D and Fs3D, respectively), in order to
assess the accuracy in predicting the timing and location of
failures.

This manuscript is organized as follows: the BStudy area and
available data^ section describes the study area and the corre-
sponding data required to run TRIGRS and Scoops3D. The
BMethods^ section describes relevant features of TRIGRS and
Scoops3D, including a determination of the soil depth map,
important input data for a physically based simulation, and
the method adopted for dealing with point-like landslide data.
Results are reported in the BResults and discussion^ section,
where we discuss the performance of the combination of
TRIGRS and Scoops3D in predicting landslide occurrence
timing and location, comparing the predicted stability maps
achieved by the 1D approach (using TRIGRS) and the 3D ap-
proach (using Scoops3D). Conclusions are presented in the
BConclusions^ section.

Study area and available data
Mount Umyeon is located in the southern part of Seoul (Fig. 1a).
The coordinates are 37° 27′ 00″–37° 28′ 55″ N latitude and 126° 59′
02″–127° 01′ 41″ E longitude. The area is characterized by steep
hills, gullies, and valleys with an average slope of 15° (slopes
usually less than 40°). Elevations range from 50.0 to 312.6 m. The
mountain is primarily composed of highly weathered banded
gneiss with subordinate granitic gneiss. Also, with the existence
of multiple faults combined with geomorphological defects caused
by military activities, Mount Umyeon is highly susceptible to slope
instability and sliding (Baek and Kim 2015).

The study site (Jeonwon-maul) (Fig. 1b) is located in the west
part of Mount Umyeon. In this area, 25 slope failure locations were
reported on the morning of July 27, 2011. Although the precise
timing of the landslide observation data is not available, it was
reported by local people that these mass movements occurred
between 07:00 and 09:00 KST (Korean Standard Time). The loca-
tions of the head scarps of all the landslides (Fig. 1b) were recorded
using portable GPS and verified with field survey. Figure 2 presents
a closer look of the landslide initiation zone in the study area. In
the gneiss, most foliations are seen coming from the southeast
direction, opposite the slope gradient.

Digital elevation model and slope map
The DEM resolution for landslide modeling should be chosen
depending on the quality and resolution of the input data, the size
of the study area, the resolution required for the output maps, and
the relative size of the landslide scars. For most 1D grid-based
approaches, a rigorous relationship between cell size and the

Fig. 1 Location of the study area. a Location of Umyeon Mountain. b The study site. Each dot represents a slide site, and the stars show the sampling locations
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performance of landslide prediction models is yet to be established
(Viet et al. 2016). In the case of Scoops3D, the DEM resolution
must have sufficient resolution to characterize the topographic
conditions that influence stability. Increasing the resolution of
the DEM provides more active columns for a given trial surface
and thereby increases the accuracy of the calculated landslide
volume and area (Reid et al. 2015), provided that the additional
available data is of comparable resolution and adequate accuracy.
According to Reid et al. (2010), a trial failure should encompass at
least 200 columns to produce both the 3D Fs map and potential
failure volume results within 1% of failures represented by thou-
sands of columns.

The 1-m spatial resolution DEM (Fig. 3) data was computed
from light detection and ranging (LiDAR) data collection (Tran
et al. 2017). Other input maps such as the slope map and the flow
direction map required for TRIGRS and Scoops3D were created
from the DEM using ArcMap.

Soil parameters
According to Kim et al. (2014), the topsoil is classified as SM (sand
and silt) in the Unified Soil Classification System. However, the
weathering production of gneiss, which is dominant in the study
area, is enriched with fine particles and clay minerals. Therefore, a
thin clayey layer was observed at the transition layer between the
colluvium and the gneiss bedrock (Baek and Kim 2015). Regarding
the input data required for TRIGRS and Scoops3D, field investi-
gations, field tests, and laboratory tests were conducted to define
the unit weight, shear strength, saturated hydraulic conductivity,
and soil water retention parameters. Figure 1b shows the sampling
locations, and Fig. 4 shows the results of tests performed to define
the soil water retention curve, which was used to characterize the
unsaturated behavior of the soil. The soil shear strength, which
plays an important role in slope stability, was measured using the
consolidated undrained tests. To reduce uncertainty, three tests on
samples from three different locations were conducted, and the
most critical value was conservatively selected. Table 1 lists all the
soil geotechnical values used in the simulations.

Supplementary parameters, including the diffusivity D0 and the
initial surface flux Iz, cannot be defined by testing. These

parameters were determined using empirical equations from the
literature. In the study area, as suggested by Park et al. (2013) and
Viet et al. (2016), D0 was assumed to be 100 times the value of Ks

based on the soil type, and Iz was assumed to be 0.01 of the Ks

because of the hot, dry conditions during the month of July.
The issue of soil variability (Raia et al. 2014; Mergili et al. 2014)

is not addressed in this study because it is beyond the scope of this
work.

Rainfall information
Mount Umyeon is located in the temperate monsoon zone. The
area is usually hot and humid, with abundant rainfall in summer
and with cold and dry conditions in winter. The average annual
precipitation ranges from 1100 to 1500 mm, with 70% of the annual
average recorded between June and September. The event of Ju-
ly 27, 2011, is the most catastrophic of all recorded debris flows,
due to its high intensity and long rainfall duration. This particular
event was reported not only in the Umyeonsan region but also
across most of Korea (Jeong et al. 2015).

According to Baek and Kim (2015), the main factor causing
landslides in the study area is precipitation, which can be divided
into two different domains based on temporal variations: anteced-
ent rainfall and daily rainfall. Indeed, based on rainfall records,
Baek and Kim (2015) showed that landslides might be triggered by
high-intensity daily rainfalls following long-term antecedent pre-
cipitation. Before the landslide events, the antecedent rainfall
reached 463.0 mm within 2 weeks, and then, heavy daily rainfall
reached 342.5 mm. In this study, we used the rainfall data that

Fig. 2 A typical landslide initiation zone at the study site (data from Baek and Kim,
2015)

Fig. 3 Digital elevation model. The circles show the observed slide sites
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triggered the landslides in Mount Umyeon as recorded at the
Namhyeon station between July 26 and 27, 2011. The analyzed
duration is a period of 24 h, from 16:00 KST on July 26 to 16:00
KST on July 27 (Fig. 5).

Methods
The methodology adopted in this work is a chain of two models.
We first executed the 1D model TRIGRS to calculate pore water
pressure (PWP) values in a spatially distributed and time-
dependent manner. Then, we conducted Scoops3D for the subse-
quent 3D slope stability assessment, using PWP information pro-
vided previously. The 1D and 3D definitions of the factor of safety,
FS1D and FS3D, respectively, are described below. Crucial for
TRIGRS execution, in addition to DEM and soil parameters
discussed in the BStudy area and available data^ section, is the
determination of the initial groundwater table and spatially dis-
tributed soil depth. Crucial requirements of the Scoops3D program
are the spatial constraints on potential sliding surfaces, namely,
the search grid for random trials. The methodology adopted here
to determine such quantities is described in this section. Eventu-
ally, we discussed an adaptation of an existing synthetic index that
we used to assess the performance of model predictions, both 1D
and 3D, against point landslide data.

The transient rainfall infiltration and grid-based regional slope stabil-
ity model
The TRIGRS model was developed to model the timing and dis-
tribution of rainfall-induced shallow landslides (Baum et al. 2008).
In the model, the time variable is represented by time-dependent

rainfall infiltration, resulting from storms that can have durations
ranging from hours to days, potentially resulting in simulations of
considerable time and computing requirements (Alvioli and Baum
2016). TRIGRS combines an analytical solution to assess the re-
sponse of PWP to rainfall infiltration into the unsaturated soil,
with an infinite slope stability simulation to predict the spatial and
temporal occurrences of landslides (Baum et al. 2010). PWP and
Fs1D are correspondingly simulated on a cell-by-cell basis and can
be displayed in a geographical information system (GIS) (Baum
et al. 2008). Different outputs of the model can be saved at
multiple times during the simulation, and an additional output
file containing PWP information directly readable by Scoops3D
can be exported.

In TRIGRS, four options for infiltration modeling are available:
(1) saturated soil with infinite basal boundary depth, (2) saturated
soil with finite basal boundary depth, (3) unsaturated soil with
infinite basal boundary depth, and (4) unsaturated soil with finite
basal boundary depth. In this study, based on the characteristics
related to the geological and initial conditions of the study site
discussed previously, the unsaturated, finite-depth model was se-
lected. The boundary conditions assumed in the selected infiltra-
tion model for our study area are sketched in Fig. 6.

Rainfall infiltration and vertical flow fluxes through the unsat-
urated zone are described in TRIGRS by the Richards equation.
The equation is implemented in the linearized form of Gardner
(1958), which makes use of an exponential ansatz for the saturated
hydraulic conductivity and the moisture content.

Slope stability is assessed in TRIGRS within the infinite-slope
approximation assuming failure planes parallel to the ground
surface (Taylor 1948). Forces acting between neighboring grid cells
in the sliding mass are neglected. The stability condition of the
slope is characterized by a factor of safety, Fs1D, which is the ratio
of the resisting basal Coulomb friction to the gravitationally in-
duced downslope basal driving stress. The ratio is calculated at an
arbitrary depth Z for each grid cell as follows:

Fs1D Z; tð Þ ¼ tanϕ
0

tanδ
þ c

0−ψ Z; tð Þγwtanϕ
0

γsZsinδcosδ
; ð1Þ

where c′ is the effective soil cohesion, ϕ′ is the soil effective friction
angle, ψ is the pressure head as a function of depth Z and time t, δ
is the slope angle, and γw and γs are the unit weights of water and
soil, respectively. As usual, failure is predicted when Fs1D < 1, and
stability holds when Fs1D ≥ 1. Additional details about the

Fig. 4 Graph showing the soil water characteristic curve of soils in the study area

Table 1 Geotechnical and hydraulic parameters of the soil used for the simulations in the study area

Parameters Symbol Unit Value range Selected value

Hydraulic conductivity Ks ms−1 8.0 × 10−6 8.0 × 10−6

Unit weight of soil γs kN m−3 17.5–18.5 18

Soil cohesion c′ kN m−2 9.6–11.5 9.6

Apparent root cohesion C kN m−2 0 0

Soil friction angle ϕ′ Degrees 25.5–26.4 25.5

Saturated volumetric water content θs – 0.5 0.5

Residual volumetric water content θr – 0.18 0.18
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assumptions and operation mode of TRIGRS can be found in
Baum et al. (2008) and Alvioli and Baum (2016).

The TRIGRS model was used in conjunction with GIS software.
GIS is a powerful tool for spatially distributed data processing, a
technology that has recently shown vast improvement and that is
widely used in landslide assessment (Trigila et al. 2010; Jia et al.
2014; Quiu et al. 2007). TRIGRS works on a cell-by-cell basis, and
GIS software is a natural choice for preparing the necessary input
gridded data in ASCII format. This feature is particularly useful
when an analysis requires repeated runs with different input data,
as is the case here for the selection of different soil thickness
models, described below.

GIS software is a valuable working tool to prepare input data
for exploring different combinations of input geotechnical

parameters, which can be provided in TRIGRS either as uniform
values across the study area or as grids with different zones in
which parameters assume different values. The latter case is typ-
ically the result of the intersection of geological, lithological, and
land use layers in a GIS environment. Exploration of various
random combinations of input parameters is also used to account
for the variability of parameters in the real world, thoroughly
investigated by Raia et al. (2014). This approach was not pursued
in this work, as our aim is to assess the validity of time-dependent
3D slope stability modeling. We maintain that the probabilistic
approach could be included, and the variability of soil character-
istics would be reflected somewhat in the 3D modeling results.

3D slope stability with the Scoops3D model
The Scoops3D program (Reid et al. 2015) uses the 3D Bmethod of
columns^ to determine the stability of potential slip surfaces,
assumed to be the intersections of spherical trial surfaces with
the soil columns defined by the DEM grid cells. For each potential
failure, Scoops3D calculates the stability against the rotation along
the portion of the spherical surface, using the 3D version of either
Bishop’s simplified method or the ordinary limit equilibrium
method (LEM) (Reid et al. 2015).

An analysis of the literature shows that most 3D slope stability
LEMs are derived from 2D LEMs with similar assumptions
(Chakraborty and Goswami 2016). There are three popular ap-
proaches for column-based 3D slope stability analyses: (1) the
ordinary column-based model of Hovland (1977), (2) the 3D ex-
tension of Bishop’s simplified method (Hungr 1987), and (3) the 3D
extension of Janbu’s simplified method (Hungr et al. 1989). Among
these three methods, the extension of Bishop’s method typically
provides reliable Fs3D results that are close to more recent and
rigorous LEMs (Spencer 1967; Hungr 1987; Lam and Fredlund 1993;
Reid et al. 2015).

The Scoops3D model was originally developed to assess the
stability of volcano edifices and has been successfully tested at
several locations including the Casita and San Cristobal Volcanoes
of Nicaragua (Vallance et al. 1998); Augustine Volcano, Alaska
(Reid et al. 2010); southwestern Washington (Brien and Reid
2007); and Mount St. Helens, Washington (Reid et al. 2010). As
compared to many 3D models, the advantage of Scoops3D is that it
considers the topography described by the DEM to locate various
potential sliding masses throughout the landscape, not only for an
individual landslide on a predefined hillslope.

Scoops3D examines the overall force balance of a rigid mass
potentially sliding along a predefined failure surface (Reid et al.
2015). The equilibrium of forces and moments are ensured for each
column as well as for the total slip surface mass. In general, all
LEMs define Fs3D as the ratio of the average shear resistance
(strength), s, to the shear stress, τ, needed to maintain the limiting
equilibrium along a predetermined trial surface:

Fs3D ¼ s
τ
: ð2Þ

As usual, in Eq. (2), Fs3D ≥ 1 results in limiting equilibrium, and
Fs3D < 1 suggests that the slope is theoretically unstable. For the
present analysis, we selected the 3D extension of Bishop’s simpli-
fied method of slices for LEMs (Bishop 1955) because it offers a
simple and efficient approach which is applicable to a wide range

Fig. 5 Rainfall intensity and cumulative rainfall from 12:00 KST July 26 to 12:00
KST July 28, 2011, as recorded at the Namhyeon station. The study period is from
July 26, 16:00 KST, to July 27, 16:00 KST

Fig. 6 Boundary conditions assumed in TRIGRS for Mt. Umyeon. The initial
groundwater table coincides with the bedrock layer; du is the thickness of the
unsaturated layer, and Zmax is the depth of the basal boundary, modeled in three
different ways in this study
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of practical problems (Hungr et al. 1989; Yu et al. 1998). This
method assumes that the side forces on soil columns are horizon-
tal (with no net shear stress between slices), and can, therefore, be
dismissed. In Scoops3D, the same assumptions are made for col-
umns, following the method presented by Hungr (1987). The
average shear resistance τ, acting on a potential failure surface, is
defined by the Coulomb-Terzaghi failure law (Brien and Reid
2007):

τ ¼ c
0 þ σn−uð Þtanϕ0

; ð3Þ

where c′ is the soil cohesion, ϕ′ is the angle of internal friction, σn
is the total normal stress acting on the failure surface, and u is the
PWP acting on the shear surface.

In unsaturated soil media, PWP is negative, thus increasing
shear resistance (Eq. (3)). Scoops3D has an option to allow the
incorporation of partially saturated PWP. However, in this study,
since the data used for simulation is limited, the impact of negative
PWP was ignored, and all negative values were replaced with
zeroes (Reid et al. 2015). Summing for all columns within the
potential slip surface, the factor of safety FS3D for the 3D analysis
can be calculated as follows:

Fs3D ¼
∑Ri; j ci; jAhi; j þ Wi; j−ui; jAhi; j

� �
tanϕi; j

h i
=mαi; j

∑Wi; j Ri; jsinαi; j þ keqei; j
� � ; ð4Þ

where Ahi; j is the horizontal area of the trial surface at the base of
the column (i, j), Ri, j is the resisting force arm or the failure
surface radius, Wi, j is the weight of the column (i, j) above the
slip surface, ui, j is the PWP acting on the shear surface, αi, j is the
apparent dip of the column base in the direction of rotation, keq is
the horizontal pseudo-acceleration coefficient from earthquake
shaking, ei, j is the horizontal driving force moment arm for a
column (equal to the vertical distance from the center of the
column to the elevation of the axis of rotation), and mαi; j ¼ cosεi; j
þ sinαi; jtanϕi; j

� �
=Fs3D, with εi, j as the true dip of the trial

surface. Note that in 3D, the value of all the parameters with
subscripts (i, j) may vary from column to column. Additional
details explaining Eq. (4) are described in Reid et al. (2015).

Spatial distribution of soil depth
Spatial patterns in soil depth arise from the complex interac-
tions of many factors such as topography, parent material,
climate, and biological, chemical, and physical processes
(Tesfa et al. 2009). Also, the thickness of the soil can vary as
a function of many different and interplaying factors, such as
the underlying lithology, the slope gradient, the hillslope
curvature, the upslope contributing area, and the vegetation
cover. As a result of the high variability in these parameters,
soil thickness distribution is challenging to model. Due to the
substantial increase in the use of soil depth in hydrological
models, numerous approaches for estimating the spatial
patterns of soil thickness have been proposed. Salciarini et al.
(2006) proposed an exponential soil thickness model linking
soil thickness to slope angle. Tesfa et al. (2009) developed
statistical models to predict the spatial patterns of soil depth

over complex terrains from topographic and land cover
attributes. Pelletier and Rasmussen (2009) used high-
resolution topographic data to model soil thickness assuming
a long-term balance between soil production and erosion.
Catani et al. (2010) proposed an alternative methodology
linking soil thickness to the gradient, horizontal and vertical
slope curvatures, and relative position within a hillslope pro-
file. In all cases, however, detailed data on soil properties and
thickness can be difficult to obtain for a large area. Thus, it
remains frequently challenging to acquire the complete set of
input data necessary to use analytical GIS-based landslide
models (Salciarini et al. 2006). Another possible approach is
the random determination of soil thickness, provided that
suitable probability distribution functions can be modeled
(Raia et al. 2014). The dependence of TRIGRS results on soil
thickness was also investigated by Alvioli et al. (2016). In this
study, soil thickness was assigned by comparing the landslide
results predicted by three common simple models as described
below:

1. U model: Soil depth is assumed to be uniformly distributed
with a thickness of 2.0 m, as suggested by Park et al. (2013).

2. S1 model: Soil depth is assumed to be linearly distributed with
the slope angle. In this approach, as suggested by Viet et al.
(2016), the relationship imposes the maximum slope angle
corresponding to the minimum soil depth (0.1 m), and the
minimum slope angle is related to the maximum soil depth
(3.5 m). These minimum and maximum soil depths of the
colluvium followed the fieldwork report of the Korean Society
of Civil Engineers (2011). Following this approach, the soil
depth of an arbitrary pixel (y) can be interpolated using its
slope angle (x) by the function y = − 0.0486x + 3.5. The
resulting soil depth map is presented in Fig. 7a.

3. S2 model (Saulniera et al. 1997): The effective soil depth is
assumed to be expressed by

yi ¼ ymax 1−
tan xið Þ−tan xminð Þ

tan xmaxð Þ−tan xminð Þ 1−αð Þ
� �

; ð5Þ

where α = ymin/ymax, ymin and ymax are the minimum and maxi-
mum values of effective soil depth, and xi is the slope angle at
point i. Using Eq. (5), the soil depth of an arbitrary pixel (yi) is
interpolated using its slope angle (xi) by the function yi = 3.5–
1.2415tan(xi). The resulting soil depth map is presented in Fig. 7b.

Determination of initial conditions, pore water pressure, and slip
surfaces
Before simulating the temporal dependency of hydraulic condi-
tions induced by the rainstorm, the initial groundwater table was
set. For the use of TRIGRS, initial conditions include the initial
flow field throughout the study area and the initial groundwater
table depth (Baum et al. 2008). The initial flow field can be
characterized by DEM data, while field observations are often
required to characterize the initial groundwater table depth. Since
soil water observations related to the initial conditions of the
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groundwater level were not available for this study area, the
groundwater table prior to the rainstorm was assumed to coincide
with the bottom of the colluvium layer following the same as-
sumption for this study area from Kim et al. (2010), Park et al.
(2013), Viet et al. (2016), and Tran et al. (2017). In this scenario,
rainfall caused the initial groundwater level to rise and changed
the distribution of the pressure head.

The difficulty in determining the PWP field stems from the
complex and spatial- and time-dependent groundwater flow.
Scoops3D allows selecting from different methods to account for
the PWP effects in the 3D slope stability evaluation. Each of these
options includes different assumptions regarding the use of PWP
for stability assessment that can cause small variations in the
stability equation used in Scoops3D. In this study, we conducted
an analysis using the 3D description of the pore pressure head,
using TRIGRS to simulate the dynamic hydraulic conditions ex-
perienced during a rainstorm. Scoops3D, then, used the resulting
PWP for the 3D stability assessment.

In 3D slope stability analysis, a search with many (ideally,
infinite) trial surfaces is needed due to the variations in local
topography, material properties, and PWP (Reid et al. 2015).
Scoops3D thoroughly examines the DEM for potential sliding
masses based on well-defined size criteria and a user-defined
search grid (Fig. 8). The former is defined as the range of failure
volume or the area of potential sliding masses specified, possibly
based on field observations. The latter is determined by input
parameters, including the vertical and horizontal extents of the
search lattice (Fig. 8).

The average volume and the total area of all observed landslides
in the study area are available from Baek and Kim (2015). However,

since soil depth data is lacking, in this work, the area criteria were
used with some limitations. The total sliding areas in the Jeonwon-

Fig. 8 3D overview of the study area DEM with several potential sample trial slip
surfaces. A layer of the search grid is shown above the DEM. Each point on the grid
denotes the center of multiple spherical trial surfaces with differing radii. Hmax is
the maximum elevation of the search grid, and hi is the elevation of the ith search
grid center

Fig. 7 Soil depth map. a S1 model and b S2 model, described in the BSpatial distribution of soil depth^ section. The U model corresponds to uniform soil depth and is not
depicted in the figure
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maul and Bodeok-sa regions, overlapping our study site, are
431.2 m2 (with 22 sliding sites) and 274.2 m2 (with 14 sliding sites),
respectively (Baek and Kim 2015). Testing Scoops3D using multiple
values of the maximum area criteria, we noted that the unstable
areas were unchanged when this maximum value was larger than
305 m2 (about 15 times the average size of landslides in the study
area) and that the area of predicted unstable areas decreased with
a reduction in this maximum size criteria. Therefore, although
data related to the specific size of the observed landslides was
unavailable, we managed to constrain potential landslide areas to
a range of 20 m2 (4 m × 5 m) to 305 m3 to evaluate the performance
of the model in predicting the timing and location of the landslide
initiation points.

Another relevant parameter here is the elevation range of the
search grid used to specify the centers of the trial sliding surfaces
located above the DEM (Fig. 8). The grid is defined by input
parameters including the vertical and horizontal extents of the
search lattice, the minimum of which was assumed to correlate
with the elevation of the observed sliding sites. We increased the
maximum elevation until no change was found on the predicted
Fs3D map. Following this procedure, the vertical extent of the
search lattice was set from 87 to 195 m in all Scoops3D runs. The
horizontal extent of the search grid was the same as that of the
DEM. The radius of the spherical trial surface at each search grid
point was incremented by 1 m until the area of the corresponding
potential landslides reached the maximum specified value (305 m2

in our case) of the input area.
By default, the program performs a search for the least stable

failure mass at many depths. During the search, the least stable
potential failures are identified through an extensive comparison
of all potential failures that fall within the specified size criteria
(area/volume). The analysis results in maps representing the rela-
tive stability of each cell in the study area, along with the locations
and volumes of the overall least stable potential landslides (Reid
et al. 2015). Moreover, unlike 1D approaches, Scoops3D always
computes Fs3D for the slip direction in the overall slide direction,
defined as the average ground surface for each DEM cell
encompassed by the potential failure mass (Reid et al. 2015).

A performance index for point-like landslide data
In this study, we needed to overcome the mismatch between the
outcome of the physically based simulation (given on a cell-by-cell
basis by construction) and the available landslide data (known
only in point-like locations). This is a common situation, especial-
ly if the simulation concerns large areas, for which the collection of
accurate landslide data is difficult or impossible. We performed a
comparison with the observed landslide locations using the
%LRclass index (Park et al. 2013), developed specifically to deal
with situations when the boundaries of observed landslides are not
available, but where their locations are known. The Fs maps were
classified into different classes: an intermediate quantity, LRclass, is
defined as the ratio of the number of sliding sites contained in
each Fs class to the total number of actual landslide sites (25 sites
in our case), according to the predicted percentage of area in each
class of Fs (Eq. (6)). The %LRclass index for the Fs class i (%LRi

class)
is the corresponding percentage with respect to the total value of
LRclass of all the i classes of Fs (Eq. (7)).

The advantage of using the %LRclass index is that it considers
both the predicted stable and unstable areas and thus significantly
decreases over-prediction. The %LRclass index indicates that if a
slope failure occurs, the predicted unstable area (Fs < 1) has a
chance equal to the %LRclass of including an actual slope failure.
A larger value of %LRclass corresponds to a lower over-prediction
by the model (Park et al. 2013). We improved the definition of
%LRclass suggested by Park et al. (2013) as follows:

LRclass ¼ %of contained slope failure locations in each Fs class
%of predicted areas in each Fs class

;

ð6Þ

%LRi
class ¼

LRi
class

∑n
i¼1LR

i
class

: ð7Þ

In the original definition of LRclass by Park et al. (2013), the
denominator reads as B% of predicted slope failure areas in each

Table 3 LRclass (Eq. (6)) and %LRclass (Eq. (7)) evaluation of the TRIGRS model as a function of the U, S1, and S2 soil depth models. The relationships between the various
columns (a, b, c, d) from Table 2 and columns (e) and (f) below are shown for clarity

Fs class LRclass (e) = (c)/(d) %LRclass (e)/(f)
U S1 S2 U S1 S2

Fs < 1 2.434 2.98 3.31 79.95 85.64 80.18

Fs ≥ 1 0.610 0.50 0.82 20.05 14.36 19.82

Sum 3.044 (f) 3.48 (f) 4.13 (f) 100.0 100.0 100.0

Table 2 LRclass (Eq. (6)) evaluation of the TRIGRS model as a function of the U, S1, and S2 soil depth models described in the BSpatial distribution of soil depth^ section.
The corresponding soil depth maps are shown in Fig. 7, and the resulting Fs1D maps are shown in Fig. 9. The relationships between the various columns (a, b, c, d) are
shown for clarity. Note that columns (a) and (c) both make use of empirical data, while column (d) does not

Fs class Observed sites (a) Observed sites (%) (c) = (a)/25 × 100 Predicted area (%) (d)
U S1 S2 U S1 S2 U S1 S2

Fs < 1 13 15 6 52.0 60.0 24.0 21.36 20.10 7.24

Fs ≥ 1 12 10 19 48.0 40.0 76.0 78.64 79.90 92.76

Sum 25 25 25 100 100 100 100 100 100
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class of Fs.^ This is not accurate since not all the area is a slope
failure. Therefore, we revised it to B% of predicted areas in each Fs
class^ as presented in Eq. (6). Moreover, while some authors
distinguish the factor-of-safety values in many classes (e.g.,
Mandal and Maiti (2015)), we consider only the two classes fol-
lowing directly from the very meaning of Fs: stable cells (Fs ≥ 1.0)
and unstable cells (Fs < 1). Our choice is motivated by the fact that
both definitions of the factor of safety, Eq. (1) for 1D modeling and
Eq. (4) for 3D modeling, describe a quantity built as the ratio of
destabilizing and resisting forces. As such, there is no room for
interpreting Fs in more than two classes, since the balance of forces
can only result in either stability or instability. We acknowledge
that numerical values of the indexes defined by Eqs. (6) and (7)
depend on the number of classes used in the analysis. Neverthe-
less, we believe that the indexes of Eqs. (6) and (7) provide a
reasonable tool for comparing the 1D and 3D models, so long as
the comparison is performed in a consistent manner. The appli-
cation of Eq. (6) and Eq. (7) in validating the predicted landslide
results is also explained in Tables 2 and 3.

Results and discussion
The approach adopted in this work aims at assessing the perfor-
mance of the combined application of the TRIGRS and Scoops3D
slope stability models, amounting to an overall spatially distribut-
ed and time-dependent prediction of landslide occurrence. We
investigated independently the timing and locations of model
predictions against data consisting of rainfall measurements of a

particular event known to have triggered landslides, whose loca-
tions were known as points. For this reason, we used a synthetic
index to compare the pixel-based model output and points ap-
proximately representing individual landslides. We could not fur-
ther investigate the spatial extent of model predictions.

A choice of a specific soil depth map was mandatory to perform
meaningful physically based modeling. We choose a specific soil
depth map by analyzing the predicted Fs maps obtained using
three different soil depth models, as described in the BSpatial
distribution of soil depth^ section, within TRIGRS and without
additional 3D modeling (Fig. 9). A comparison with the observed
landslide locations was performed using the %LRclass index (Park
et al. 2013), as discussed in the BA performance index for point-like
landslide data^ section. We used this index to analyze stability
maps corresponding to the three different soil depth models.
Tables 2 and 3 present results for %LRclass using the three soil
depth models. The final results for %LRclass are presented in
Table 3, while Table 2 shows intermediate results useful to under-
stand how the synthetic index was calculated. Results in Fig. 9 and
Tables 2 and 3 show that soil depth model S1 provided the best
performance of TRIGRS in landslide prediction, since it accurately
predicted the highest percent of all the sliding sites (60%) with the
largest chance of including those landslides (85.64%). Therefore,
we use the S1 model hereafter, suggesting in our case a linear
relationship between the slope angle and the soil depth.

We analyzed the results obtained from the 1D (TRIGRS only)
and 3D (TRIGRS plus Scoops3D) models at 09:00 on July 27, i.e.,

Fig. 9 Fs1D maps simulated at 09:00 on July 27, 2011, using a the U model, b S1 model, and c S2 model for the soil depth, described in the BSpatial distribution of soil
depth^ section. The maps are classified in four Fs1D intervals for illustration purposes, while the performance assessment is based only on the Fs1D < 1 and Fs1D ≥ 1
classes, as discussed at the end of the BA performance index for point-like landslide data^ section
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the time when most landslides and debris flows occurred. This
allowed us to assess the ability of the two approaches in predicting
the landslide locations caused by the observed rainstorm. The
resulting map of the former is illustrated in Fig. 10a, and the
map corresponding to the latter is in Fig. 10b. The figures show
that the 3D approach gives a visually more reasonable result than
the 1D method, in terms of slip surface. This is expected since it
reflects the fact that all soil columns in the slip surface slide at
once. In the 1D method, each pixel (soil column) in the Fs1D map
has its own Fs1D value and is independent of other cells. In
addition, in the case of the Fs3D map, slip surfaces tend to occur
in individual blocks, which makes them readily observable. This
differs from the 1D approach, where only the unstable areas are
seen, but not the slip surfaces, and assumptions have to be made
to cluster unstable pixels together and to define landslide bodies
(Alvioli et al. 2016). Lastly, the 1D approach presents scattered
unstable cells even in places far from sliding sites, which is not
the case for the 3D results.

To gain more insight regarding the comparison between
stability maps simulated by 1D and 3D methods, we analyzed
the %LRclass index corresponding to the results at 09:00 for
both cases, as presented in Table 4. We see that even when
ignoring the influence of negative pore water pressure, the 3D
approach seems to lessen the over-prediction of TRIGRS as
anticipated in the BIntroduction^ section. Note that in both
approaches, the same number of observed sites was accurately
predicted (15 sites). The unstable areas predicted were 17.72%
by the 3D method and 20.10% by the 1D method. Consequent-
ly, the %LRclass is higher in the 3D case compared to the 1D
method, reaching 87.44 versus 85.64%, respectively. These re-
sults are acceptable for both approaches given that accurate
input data for modeling the initial conditions is not fully
available.

Regarding the timing evaluation of the predicted Fs maps,
we evaluated two issues: (1) the time dependence of the percent
of the unstable area as predicted by the two approaches during

Table 4 Comparison of LRclass (Eq. (6)) and %LRclass (Eq. (7)) obtained within the 3D (Scoops3D) and 1D (TRIGRS) approaches, both calculated at 09:00 for spatial
assessment (see the BResults and discussion^ section). The Fs1D and Fs3D maps that correspond to the results listed in this table are shown in Fig. 10

Fs class Observed sites
(a)

Observed sites (%)
(c) = (a)/25 × 100

Predicted area (%)
(d)

LRclass (e) = (c)/(d) %LRclass (e)/(f)

3D 1D 3D 1D 3D 1D 3D 1D 3D 1D

Fs < 1 15 15 60.0 60.0 17.72 20.10 3.38 2.98 87.44 85.64

Fs ≥ 1 10 10 40.0 40.0 82.28 79.90 0.49 0.50 12.56 14.36

Sum 25 25 100 100 100 100 3.87 (f) 3.48 (f) 100.0 100.0

Fig. 10 Factor-of-safety maps calculated at 09:00 on July 27, 2011, within the TRIGRS approach, Fs1D (a), and the coupled TRIGRS-Scoops3D approach, Fs3D (b). The maps
are classified in four Fs intervals for illustration purposes, while the performance assessment is based only on the Fs < 1 and Fs ≥ 1 classes, as discussed at the end of the
BA performance index for point-like landslide data^ section. The %LRclass values summarizing the results shown in the figure are listed in Table 4
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the rainfall and (2) the Fs map predicted at the time step right
before the critical period when most of the landslides were
observed. Figure 11 shows the time dependence of the percent
of unstable area predicted by the 1D and 3D approaches during
the rainfall event. Both models produced results consistent
with the observations since the unstable area is smaller at the
beginning of the storm and it increases significantly to the
maximum during the critical period (07:00 to 09:00 on July 27
as discussed in the B3D slope stability with the Scoops3D
model^ section) and stays almost constant after that. The 3D
model provides unconditionally unstable areas (a few cells
with Fs < 1 at t = 0, when no rainfall was presented), which
can be explained by the assumptions about no negative pore
pressure in the 3D model or the assumptions of the soil depth
model or the initial groundwater table. The main conclusion,
however, is that the timing of both the 1D and 3D models is
correct, in that most of the landslides are predicted to occur at
the appropriate time.

Thus, to assess quantitatively the timing of the predictions,
we analyzed the predicted Fs maps at 06:00 on July 27, the
time step right before the critical period of the rainstorm. The
number of sliding sites falling within the unstable area in the
06:00 stability map was predicted to occur earlier than expect-
ed. The extent of the mismatch provides a measure of the
inaccuracy in timing prediction. Figure 12a, b shows the sta-
bility maps simulated at 06:00 on July 27 by the two ap-
proaches, while Table 5 lists the stability classes extracted
from the two figures. We conclude that before the critical

period, the unstable area predicted by Scoops3D is slightly
lower than that of TRIGRS (6.04 compared to 10.2%). The
observed sliding sites detected by the former are also lower
than those of the latter (five sites, as compared to six sites).
This means that Scoops3D results help to overcome the over-
prediction problems of landslide prediction that are known in
1D landslide models.

In an effort to integrate GIS and 3D column-based slope stabil-
ity analysis, a few models exist in the literature such as 3DSlopeGIS
(Xie and Esaki 2004; Xie et al. 2006a; Xie et al. 2006b) and
r.slope.stability (Mergili et al. 2012; Mergili et al. 2014) in GRASS
GIS (Neteler and Mitasova 2007). Time dependence is not taken
into account in existing 3D models, so their results are typically
interpreted as landslide susceptibility (Mergili et al., 2012). We
have shown that the time dependence implemented by the soft-
ware combination used for the present work, by means of pressure
head variations in response to time-varying rainfall infiltration at
different depths calculated by TRIGRS, is consistent with observa-
tions and provides better performance than the 1D approach
alone.

Lastly, we stress that the use of 3D approaches to find the slip
surface is usually time-consuming. It is worth noting that the
issue of long computing time is addressed in the r.slope.stability
model, which can be run in parallel on multi-core machines.
Scoops3D does not run in a GIS environment nor can it be run
in parallel, but the latest TRIGRS v2.1 has built-in parallel
processing capabilities, allowing the simulation of very large
areas in a short time.

Fig. 11 Time dependence of the percent of unstable area predicted by the 1D and 3D approaches during rainfall

Table 5 Stability classes of the observed and predicted landslides at 06:00 calculated within the 3D (Scoops3D) and 1D (TRIGRS) approaches, both calculated at 06:00 for
timing assessment (see the BResults and discussion^ section). The FS < 1 class provides a percentage of predicted unstable area that is substantially smaller than the
corresponding results at a later time, 09:00, listed in Table 4. The Fs1D and Fs3D maps that correspond to the results listed in this table are shown in Fig. 12

Fs class Observed sites Observed sites (%) Predicted area (%)
3D 1D 3D 1D 3D 1D

Fs < 1 5 6 20.0 24.0 6.04 10.2

Fs ≥ 1 20 19 80.0 76.0 93.96 89.8

Sum 25 25 100.0 100.0 100.0 100.0
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Conclusions
In this study, we applied a 3D, time-dependent slope stability
method, using the well-known TRIGRS model combined with
Scoops3D, thanks to the possibility of integrating the two softwares
included in the latest TRIGRS, v2.1. We used the TRIGRS infiltra-
tion model to simulate the time-varying hydraulic conditions
induced by a rainstorm. We ran Scoops3D using the calculated
hydraulic conditions, with the modeling chain amounting to an
overall spatially distributed and time-dependent 3D slope stability
assessment. We used the information available regarding the land-
slide event of Mount Umyeon in July 2011 for comparison. We
make use of a slightly modified performance index specifically
introduced in the literature for comparing pixel-based predictions
with point locations for observed landslide initiation, such as the
data available for this study. We compared Fs maps predicted by
the 1D (TRIGRS) and 3D (TRIGRS plus Scoops3D) approaches with
existing landslide data, within the limitations imposed by the
different kinds of landslides described by the two models.

The TRIGRS and Scoops3D models have different purposes and
scopes, with the former intended to predict shallow landslides,
while the latter was developed to describe rotational landslides,
although a truncation of the ellipsoidal shape can be requested to
mimic shallow landslide mechanisms. Our comparison is under-
stood to be valid within the limitations dictated by the mentioned
differences. These limitations can be reconciled considering that in
landslide data, only the initiation locations of landslides were
known to us, and no attempt was made to describe the downslope
movement of the mobilized material after the rainfall-triggered

slope failures. We found that the 3D method is clearly more
realistic than the 1D method with respect to slip surface definition,
as expected. From the results obtained within this approach, pre-
sented in the BResults and discussion^ section, several conclusions
can be drawn:

1. TRIGRS allows the choice of a specific soil depth model.
Among three approaches, a soil thickness linearly proportional
to the slope angle showed the best performance of TRIGRS in
landslide prediction within the %LRclass index assessment.

2. Concerning landslide location assessment, although some in-
put data was not available (including soil depth and soil
diffusivity, among others), Fs3D maps predicted almost
87.44% of the observed landslides (that is, if a landslide occurs,
the predicted unstable area (Fs < 1) has an 87.44% chance of
including the actual landslides). Out of the 25 observed sliding
sites, 60% were accurately detected.

3. Concerning landslide timing assessment, Scoops3D combined
with TRIGRS proved to be a valuable tool in our case study.
The results indicate that most of the predicted landslides tend
to occur in the correct period of time (from 07:00 to 09:00 KST
on July 27). Before the critical period (07:00 to 09:00), only
6.04% of the whole area was predicted as unstable. However,
the unstable area increased to 17.72% at 09:00. Almost 67% the
observed sliding sites are predicted to occur at the right time,
as the other 33% took place before 06:00.

4. It is shown that Scoops3D has the potential to overcome the
over-prediction problems of landslide prediction in terms of

Fig. 12 Factor-of-safety maps calculated at 06:00 on July 27, 2011, within the TRIGRS approach, Fs1D (a), and the coupled TRIGRS-Scoops3D approach, Fs3D (b). Note that
a is identical to Fig. 9. The maps are classified in four Fs intervals for illustration purposes, while the performance assessment is based only on the Fs < 1 and Fs ≥ 1
classes, as discussed at the end of the BA performance index for point-like landslide data^ section. The %LRclass values summarizing the results shown in the figure are
listed in Table 5
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both location and timing of the occurrence, known to be
present in 1D landslide models. A moderate improvement in
the %LRclass index is also observed in the 3D method as
compared to the 1D method (87.44 versus 85.64%). We suggest
the %LRclasss, introduced by Park et al. (2013) for pixel-based
versus point-like modeling, be used with the only two Fs < 1
and Fs ≥ 1 classes in agreement with the Fs definition and
meaning.

In conclusion, it is convinced that this combined TRIGRS-
Scoops3D approach is an effective tool for 3D, spatially distrib-
uted and time-dependent assessment of rainfall-induced land-
slides. Further developments of this work include expert
mapping of the orthophotographs, as in, e.g., Guzzetti et al.
(2012), of the study area to determine the actual size and shape
of each landslide. Such improvement will help provide a de-
tailed evaluation of the sizes of landslide-triggering areas, thus
allowing a cell-by-cell comparison between model predictions
and field reality. Furthermore, future research in the Mount
Umyeon study area should also provide modeling and valida-
tion of the downslope movement of the mobilized material with
advanced tools, such as the ones proposed by Chianga et al.
(2012), Gomes et al. (2013), or the recently proposed open-
source model r.awaflow (Mergili et al. 2012), also operated in a
GIS framework.
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