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A method for slope stability analysis considering sub-
surface stratigraphic uncertainty

Abstract The accuracy of stability evaluation of a natural slope
consisting of multiple soil and rock layers, regardless the adopted
analysis methods, can be highly dependent upon a precise descrip-
tion of the subsurface soil/rock stratigraphy. However, in practice,
due to the limitation of site investigation techniques and project
budget, stratigraphy of the slope cannot be observed completely
and directly; therefore, there remains a considerable degree of un-
certainty in the interpreted subsurface soil/rock stratification. There-
fore, estimating and minimizing the uncertainty of the computed
factor of safety (FS) due to the uncertain site stratigraphy is an
important issue in gaining confidence on the stability evaluation
outcome. Presented in this paper is a practical analysis approach
for evaluating the stability of slopes considering uncertain strati-
graphic profiles by incorporating a recently developed stochastic
stratigraphic modeling technique into a conventional finite element
simulation approach. The stochastic modeling techniques employed
for simulating the stratigraphic uncertainty will be briefly described.
The main efforts are focused on elucidating the additional benefits
from the proposed analysis approach, including a more reasonable
probabilistic estimation of FS with consideration of stratigraphic
uncertainty, as well as an effective approach for finding the optimum
location of additional borehole logs to reduce the uncertainty of FS
due to uncertain subsurface stratigraphy.

Keywords Probabilistic analysis . Slope stability . Stratigraphic
uncertainty . Uncertainty quantification . Stochastic geological
model

Introduction
Acquiring accurate geotechnical site characteristics is crucial and
essential for stability evaluation of a slope. However, due to the
strong heterogeneity of geomaterials and limited site investigation
data constrained by exploration techniques and project budget,
subsurface information used in subsequent slope stability analysis
typically involves various degrees of uncertainty. Consequently, it
is well recognized that such uncertainties can exert significant
effects on the accuracy of the slope stability evaluati on outcome
(Cho 2007, Elkateb et al. 2003, Fenton and Griffiths 2008, Griffiths
et al. 2009, Phoon and Kulhawy 1999, Tang et al. 2015).

To provide reasonable and confident estimates of slope stabil-
ity, substantial efforts have been conducted for incorporating
probability and statistic theories into the conventional slope sta-
bility evaluation methods, in order to take the subsurface uncer-
tainty into account. Most of the existing probabilistic slope
stability analysis approaches (Cho 2009, Griffiths and Fenton
2004, Hicks et al. 2014, Ji et al. 2012, Jiang et al. 2014, Li et al.
2015) focused on describing the inherent variability of soil prop-
erties within one statistically homogeneous soil layer (i.e., a soil
mass belongs to the same material type); hence, they are applicable
only for slopes consisting of the same or very similar soil forma-
tions. It is worth noting that, for a natural slope consisting of

multiple soil/rock layers, there exists another significant source
of uncertainty—the uncertainty of the spatial distribution of the
different soil/rock formations/strata and the location of their
boundaries (Evans 1982, Hansen et al. 2007), referred to as strat-
igraphic uncertainty. In a sense, it seems that such stratigraphic
uncertainty requires more attention, due to the fact that the
differences in material properties among multiple soil/rock forma-
tions can be much larger than the variation of material properties
within a single soil/rock formation.

However, studies of the effects of stratigraphic uncertainties on
the evaluation outcome of slope stability problems are relatively
limited in the past (Elkateb et al. 2003, Li et al. 2016a). In most
practical cases, the soil stratification is determined according to
engineering judgment grounded on local experience (Elkateb et al.
2003) or deterministic interpretation approaches based on
geostatistical methods or interpolation methods (Auerbach and
Schaeben 1990, Blanchin and Chilès 1993, Calcagno et al. 2008,
Mallet 1989, Wellmann et al. 2010). Recently, Li et al. (2016a) pro-
posed a probabilistic slope stability evaluation approach considering
the stratigraphic uncertainty, in which the uncertain subsurface
stratigraphic profiles were simulated using a coupled Markov chain
(CMC) model (Elfeki and Dekking 2001). Although the CMC model
has been proven to be able to generate multiple stratigraphic profiles
required by the subsequent probability-based analysis, it may suffer
certain limitations for simulating the stratigraphic profiles of natural
slopes, in which the dip angles of soil formations are typically
variable, due to various geological processes during the formation
of the slopes. To be specific, in the CMC model, the correlation
between spatial distributions of different soil formations, which are
governed by the stationary transition probability matrix, is only
defined along the horizontal and vertical directions. This makes
the boundaries of soil formations generated using the CMC model
tend to be linear (i.e., horizontal, vertical, or at a constant angle),
thereby limiting the performance of the CMC model for describing
the complex geological settings reflected by the stratigraphic profile
of a natural slope. Therefore, it seems desirable to improve the
description of the uncertain slope stratigraphic profile by employing
more advanced stratification modeling techniques, so that the strat-
igraphic uncertainty can be quantified more reasonably and that the
slope stability evaluation error caused by such uncertainty can be
estimated more accurately.

In this paper, focusing on quantifying and reducing the effects
from uncertain stratigraphy on the stability evaluation outcome,
we present a finite element analysis (FEA)-based probabilistic
approach for slope stability analysis. In the proposed approach, a
stochastic geological modeling technique (Li et al. 2016b) recently
developed by the authors, which is proven to be capable of simu-
lating complex geological structures based on available site inves-
tigation data and geological knowledge, is employed to generate
samples of the uncertain stratigraphic profile. Incorporating the
employed stochastic geological modeling technique with the FEA
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simulations allows for performing a Monte Carlo simulation of
thousands of possible subsurface stratigraphic profiles in deter-
mining the probability distribution of computed FS of the slope.
Moreover, in practice, once the uncertainty or error of the com-
puted FS can be quantified, there may be a need for subsequent
steps to reduce the uncertainty or error to a desired level by
conducting additional site investigation. As will be shown later,
the proposed approach is able to provide an optimized layout
scheme for additional borehole logs or in situ tests, based on the
existing probabilistic analysis and uncertainty quantification re-
sults. This paper will provide a brief description of the stochastic
modeling technique. Emphasis will be given to demonstrate the
practical benefits of the proposed analysis approach in the slope
stability evaluation problems: (1) obtaining a reasonable estimate
of factor of safety (FS) in a probability manner, taking into account
the stratigraphic uncertainty and (2) finding optimum locations of
additional boreholes to efficiently reduce the uncertainty (in terms
of standard deviation) of the computed FS.

The remaining content of this paper is organized as follows.
The BStochastic stratigraphic modeling based on Markov random
field^ section provides a brief review of the employed stochastic
stratigraphic modeling technique (Li et al. 2016b), which allows
for generation of thousands of realizations of soil profiles con-
ditional on the limited, spatially distributed observation data,
such as borehole logs. In the BStratigraphic realizations and
uncertainty quantification^ section, an example of the applica-
tion of the stochastic modeling technique for a natural slope
problem is presented to demonstrate the detailed process for
generating stratigraphic realizations and subsequent quantifica-
tion of stratigraphic uncertainty. The BSlope stability evaluation^
section demonstrates the use of the modeling results of strati-
graphic profiles in finite element analysis to evaluate the stability
of the slope with the attendant statistical analysis of computed
FS. Additional discussion was given to elucidate the use of the
simulation results to allow engineers to make informed decisions
on the optimum locations of additional boreholes to improve the
confidence level of the computed FS. Concluding remarks are
presented at the end of this paper.

Stochastic stratigraphic modeling based on Markov random field
As one of the most sophisticated spatial statistical models, the
Markov random field (MRF) model provides a convenient and
consistent way for analyzing the spatial dependencies of physical
phenomena (Li 2009, Li et al. 2016b, Zhang et al. 2001). In
geostatistics, Markov priors have been widely used to describe
various geological processes, including synthesizing stratigraphic
sequences and sediment layering structures (Carle and Fogg 1996,
1997, Dai et al. 2005, Elfeki and Dekking 2001, Li 2007, Li et al.
1999, Wang et al. 2017, Weissmann et al. 1999). However, the
Markov priors in most existing geological modeling methods
based on Markov models are isotropic or stationary; such as-
sumptions may limit the performance of these models for re-
producing real stratigraphy with complex geologic settings. In
this section, a recently developed MRF-based stochastic strati-
graphic modeling technique using an anisotropic and non-
stationary Markov prior will be introduced, which can incorpo-
rate various types of site investigation data and thereby provide
more informed and realistic modeling results for the stratigra-
phy of natural slopes.

Adequate stratigraphic realizations of a slope and overview of the
modeling process
In most practical slope stability evaluation problems, the direct
observations of the subsurface stratigraphy of a slope, provided by
common geotechnical site investigation such as borehole drillings,
are typically sparsely located. Therefore, before further stability
analysis can be implemented, the unobserved regions in the strat-
igraphic profile need to be interpreted reasonably, according to the
available observations and the knowledge of the slope structures.
Under this condition, the interpreted slope stratigraphy can be
regarded as realistic, only if the following two characteristics of the
real subsurface stratigraphy are adequately reflected. The first
aspect is the general trends or the global characteristics of the
stratigraphy of a slope, including its anisotropic (i.e., sequenced
soil/rock layer structures) and non-stationary (i.e., spatially vari-
ant stratigraphic dips) nature, which are generally derived from
and constrained by the available borehole logs, geophysical survey,
and relevant geological knowledge. The second aspect is the local
characteristics regarding the shape of the local boundaries (i.e.,
small patches and fluctuations between different soil/rock forma-
tions); MRF prior is suitable for describing such spatial transition
of soil/rock formations, as a result of stratification or sedimentary
processes, in a probabilistic manner (Elfeki and Dekking 2001,
Norberg et al. 2002, Li et al. 2016b). To ensure that the generated
slope stratigraphic realizations fulfill both the global characteris-
tics and the local characteristics of the real stratigraphy simulta-
neously, we design a stochastic modeling approach consisting of
two stages as follows:

In the first stage, a Monte Carlo simulation (MCS) using the
single-side Markov property (i.e., sampling is extrapolated from
borehole locations to the unobserved regions) is employed to
generate initial configurations of stratigraphy. This stage is
intended to generate a sufficient number of rough estimates
of the real slope stratigraphy, whose global shapes and trends
are in accordance with the available borehole logs and knowl-
edge of stratigraphic dips, but local shapes may vary. To be
more specific, the general idea of such simulation is somehow
similar to the one of the conventional interpretation processes
followed by geologists, in which curves indicating the bound-
aries of different soil formations are extended from one bore-
hole location as start points and then are connected with the
curves from other borehole locations according to the strati-
graphic dips. However, significant differences in the implemen-
tation processes need to be noticed: (1) instead of the use of
individual experience, the spatial correlation between soil units
in the employed modeling method is explicitly defined using
conditional probability (i.e., see the BMarkov random field and
equivalent Gibbs distribution^ section) and implemented
through sampling processes; (2) in addition to the borehole
logs, available information of local stratigraphic dips indicated
by various geophysical surveys can be incorporated; (3) the
stratigraphic uncertainty is spontaneously considered in the
MCS process, due to its stochastic nature. During this stage,
large-scale global characteristics are completely honored, since
the borehole information and the known knowledge of strati-
graphic dips are fully exploited. Whereas, the local character-
istics, governed by the defined MRF prior, is only partially
honored (i.e., sampling is conducted using an MRF prior, but
it has not been fully optimized).
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In the second stage, sites in the generated initial configuration,
other than the borehole locations, are optimized using a Markov
Chain Monte Carlo (MCMC) algorithm. During this stage, the
defined MRF prior (see the BPrior energy^ section) is fully
exploited and the local characteristics derived from it can be well
presented in the generated stratigraphic realizations, indicated by
that local modeling defects in the initial configurations are
corrected and eliminated. It is worth mentioning that
overcorrection lead by MRF prior also damages the large-scale
characteristics of the real slope stratigraphy in the initial configu-
rations, as the large-scale trend is formed by complicated physical
processes and hence may not be perfectly expressed by the
employed MRF prior for describing local spatial correlation. One
of the known negative impacts is oversmoothing (Tolpekin and
Stein 2009). To avoid such overcorrection, the initial stratigraphic
configuration generated in stage no. 1 should be considered as a
constraint during the following optimization process in stage no.
2. Therefore, we design a likelihood function (see the BLikelihood
energy^ section) as a similarity measure between the initial con-
figuration and the corresponding optimized configuration in
terms of energy. Combining the two aforementioned modeling
stages, the generated stratigraphic realizations can reasonably
reflect both the global and local characteristics according to both
available observations and our geological knowledge; thereby, they
can be regarded as an adequate estimate of the real stratigraphy of
a slope. Sampling of stratigraphic configurations in both modeling
stages is implemented by using a Gibbs sampler according to the
prior function (see the BPrior energy^ section) and the likelihood
function (see the BLikelihood energy^ section) introduced in the
following paragraphs. Detailed explanations of a Gibbs sampler
and the detailed modeling procedure can be found in Casella and
George (1992) and Wang et al. (2016), respectively.

Markov random field and equivalent Gibbs distribution
Herein, only the basic concepts necessary for understanding the
employed modeling technique in the present work are introduced.
A complete introduction to MRFs and the equivalence between an
MRF and the corresponding Gibbs distribution can be found in
existing literature (Geman and Geman 1984, Li 2009). To conduct
the modeling under the framework of MRF, the stratigraphic
domain of interest is discretized into a finite set of cells denoted
by R. Each cell r∈ R has eight neighboring cells s∈ R, denoted as
s∈ ∂r. Next, a label xr∈ L (representing the set of all soil/rock
formations in the modeled subsurface stratigraphy) is associated
with each cell r∈ R, and we let x = (xr|r∈ R)∈Ω represent a
subsurface stratigraphic configuration, where Ω is the set of all
possible configurations. Under this condition, x is said to be an
MRF with respect to a given neighborhood system if the prior joint
probability P(x) > 0 for all x∈Ω and the conditional probability
are fulfilled with the following term:

P xr x−rjð Þ ¼ P xr x∂rjð Þ ð1Þ

We further denote the likelihood for measuring the similarity
between an initial profile xi and an updated configuration x as
P(xi|x). Such a likelihood function is intended to make an updated
configuration have a higher chance to occur if it agrees more with
the large-scale characteristics; the posterior probability for strati-
graphic configuration x, given the initial estimate xi, is denoted as

P(x|xi). According to the Bayes theorem, there exists a relationship
among these probabilities:

P x xi
�
�

� �

∝P xð ÞP xi xj� � ð2Þ

Due to the equivalence of MRF and Gibbs functions (Clifford 1990),
P(x) and P(xi|x) can be further specified by means of energy functions:

P xð Þ ¼ 1
Zp

exp −U xð Þf g ð3Þ

P xi xj� � ¼ 1
Zl

exp −U xi xj� �� � ð4Þ

in which Zp and Zl are normalizing constants and U(x) and U(xi|x)
are referred as prior and likelihood energy, respectively.

Prior energy
We model the prior energy as the sum of pairwise interactions
between cells:

U xð Þ ¼ ∑
c∈C

Vc xð Þ ð5Þ

where c represents a clique containing soil labels (xr, xs) of a pair of
neighboring cells (r, s), C is the set of all the cliques in the MRF,
and Vc is referred to as prior potential for each clique c. A classical
Potts model (Wu 1982) is then employed for Vc:

Vc xr ; xsð Þ ¼ −ρ r; sð Þ if xr ¼ xs
0 if xr≠xs

�

ð6Þ

in which ρ(r, s) is the spatial correlation between soil labels of a
pair of neighboring cells (r, s).

To reflect the anisotropic (i.e., strength of the spatial correlation
is directionally dependent) and the non-stationary (i.e., local strat-
igraphic dips differ from one location to another) nature of the
modeled stratigraphy, ρ(r, s) is designed to be related to two
features: (1) the soil label of the neighboring cell xs and (2) the
relative direction of cell s to cell r, represented by polar angle θs→ r

from the centroid of cell r to the centroid of cell s in a given global
polar coordinate system O-XY, as shown in Fig. 1. Specifically, ρ(r,
s) is defined as the radius length along the polar angle θs→ r of an
ellipse centered at the centroid of cell r. The major axis of this
ellipse has a polar angle φr∈ − π

2 ;
π
2

� �

, which can be defined ac-
cording to the available information of the stratigraphic dips, in
the defined global polar coordinate system O-XY, as shown in
Fig. 1. The length of the minor axis of the ellipse is set to 1.0; the
length of its major axis a is defined as the correlation strength
parameter. Hence, ρ(r, s) can be calculated using the following
equation:

ρ r; sð Þ ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 θs→r−φrð Þ þ a2sin2 θs→r−φrð Þ
p

ð7Þ

The anisotropy of the developed spatial correlation model (i.e.,
in terms of MRF prior) is reflected by the directionally variable
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radius length of the ellipse. The direction of the major axis indi-
cates the tangential direction of the interface between soil forma-
tions (i.e., the local extension direction of the soil layer or the local
stratigraphic dip). Meanwhile, the non-stationarity of the model is
represented by the various polar angles φr of different cells, which
allow the local stratigraphic dips varying from one location to
another to represent complex geological structures.

Likelihood energy
As mentioned in the previous sections, MRF prior may lead to
deterioration of the large-scale characteristics of the stratigraphy

in the initial configurations xi. Therefore, we introduce the likeli-
hood energy U(xi|x) to prevent such overcorrection. As a measure
of similarity between the initial configuration xi and its corre-
sponding updated realization, U(xi|x) can be represented as the
accumulation of the likelihood potential Vr relating to the soil label
assignment of each element r in the current configuration x and
the initial estimate xi:

U xi xj� � ¼ ∑
r∈R

Vr x; xi
� � ð8Þ

Since the soil labels are discrete variables, the following form of
Vr is employed in the proposed model:

Vr xr ; xir
� � ¼ −μ if xr ¼ xir

0 if xr≠xir

�

ð9Þ

in which μ is referred to as a smoothing factor. In this study,
μ is set as 0.2; detailed parametric study of μ can be found in
the authors’ previous study (Wang et al. 2016). It can be
noted from Eqs. (3–4) and (8–9) that amendment of soil label
assignments in the initial configuration xi, which results in an
increase of prior probability P(x), accordingly leads a decrease
of likelihood probability P(xi|x). In other words, during the
MCMC process in the second modeling stage for maximizing
the posterior probability P(x|xi) in Eq. (2), a balance is
achieved between the prior part and the likelihood part. Such
balance allows local amendments leading significant increase
of prior probability with a reasonably smoothed boundary but
rejects global changes that damage the overall shape of the
slope stratigraphy determined by borehole logs and geological
knowledge.

Fig. 1 Elliptical correlation model
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Stratigraphic realizations and uncertainty quantification

Geology and available investigation data
In this section, we provide an example of stratigraphic modeling
for a natural slope located near the city of Longyan in Fujian
province, China. According to the geological map and the available
borehole information, the slope of interest is located at an alluvial
fan, the subsurface stratigraphy of which consists of depositional
overburden Quaternary soils over Carboniferous limestone. There
are four available borehole logs in the studied two-dimensional
slope cross section as shown in Fig. 2, identifying a total of six
major types of soil/rock formations in the slope. The bedrock
consists of intact or decomposed limestone; the overburden

material is variable—it contains alluvial clay, silt, sand, and gravel
of weathered sandstone. For conducting the employed geological
modeling technique, the slope cross section of interest is
discretized into an MRF using a square lattice with 11,793 cells,
with the cell size as 1.0 m × 1.0 m.

The general trend of the stratigraphic dip of the slope is
predefined using a set of curves given in Fig. 2, which is derived
from borehole logs (i.e., checking the depths of each soil/rock layer
in all the borehole logs) and the knowledge of the local geological
settings. The polar angles φr indicating local stratigraphic dips for
all the cells in the random field, as an input of the employed
modeling method to reflect and incorporate the available knowl-
edge of the general trend of the stratigraphic dip of the studied
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slope, are then computed based on this set of curves through a
deterministic kriging interpolation. The model parameter a, re-
ferred to as the correlation strength, is used to control the pattern
of the generated stratigraphic profile. Methodology for selecting a
proper value of a for a project site can be carried out by a Bayesian
inferential framework, if sufficient borehole logs are provided (Li
et al. 2016b). Alternatively, in the previous studies (Li et al. 2016b,
Wang et al. 2016), the authors also provided an empirical and
rough estimate of a that can be selected in accordance with one’s
judgment based on local geological settings. In this example, a
model parameter a of 3.0 is selected, which typically gives a
moderately layered pattern.

Generating subsurface stratigraphic realizations
Following the modeling procedure described previously in the
BStochastic stratigraphic modeling based on Markov random
field^ section, initial configurations of the stratification are firstly
generated; three of them are shown in Fig. 3a. It can be noted that
the overall shapes of all three slope stratigraphic profiles are in
general agreement with the available borehole data and the
predefined stratigraphic dips. However, there are some local
modeling defects, such as sharp corners or discontinuous contact
boundaries, which are due to those local characteristics governed
by MRF prior. Such defects indicate that the energy function is far
from optimized. To maintain the general shape as well as to
eliminate the local defects, subsequent MRF evolutions are per-
formed until a stable equilibrium state is reached. The correspond-
ing stratigraphic realizations (i.e., which are the final outcomes of
the employed stratigraphic modeling technique) of the three initial
configurations are shown in Fig. 3b. As can be seen, most of the
local defects have been eliminated in the final modeling outcome.
Moreover, it can be noted that the predefined dip angles are kept
in the obtained realizations of the stratigraphic profiles; the spatial

distributions of soil formations follow the predefined concave
shape, which is the typical geomorphology of a depositional slope.

Quantification of stratigraphic uncertainty
After generation of a large number of stratigraphic profiles
through the modeling process described above, we can measure
the uncertainty of modeling results using the concept of informa-
tion entropy, which was introduced previously by Wellmann and
Regenauer-Lieb (2012) for uncertainty quantification in the con-
text of geological simulation. For each cell in the MRF, its infor-
mation entropy can be calculated as

Hi ¼ −∑
n

k
pklogpk ð10Þ

in which n is the total number of the possible soil labels the cell
can have and pk are the corresponding probabilities for each
possible soil label, which are calculated according to the number
of assigning this cell with soil label k for all the generated strati-
graphic realizations. The definition of information entropy in Eq.
(10) implies that the higher uncertainty in soil label a cell possesses
(i.e., having equal possibility of being assigned with any of the
possible soil labels), the higher information entropy value it will
have, and vice versa. The map of the normalized information
entropy calculated from 1000 stratigraphic realizations for this
example is shown in Fig. 4, which provides a clear visualization
of the stratigraphic uncertainty associated with each discretized
cell in the slope. It can be noted that the stratigraphic uncertainty
of the cells located close to the borehole locations is negligible,
since the borehole data has a strong influence on the soil label
assignment of the nearby cells. On the other hand, for those cells
far from the boreholes, the contact boundaries between soil layers
become more uncertain.
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Slope stability evaluation
The effects of uncertain stratification of the slope on the outcome of
slope stability evaluation can be examined by performing stability
analysis for each of the generated stratigraphic profiles, using either
limit equilibrium-based analysis methods or finite element analysis
(FEA). In this study, we use a commercial software ABAQUS
(ABAQUS 2013) to compute the FS of the studied slope.

Probabilistic analysis of slope stability
An unstructured mesh consisting of 7212 triangular elements with
unequal sizes is used to discretize the slope domain for the FEA of
the slope stability, due to the convenience of triangular elements in
depicting the irregular boundaries of the slope domain and the
computational efficiency led by using locally refined mesh. Mate-
rial type of each FEA element is assigned using the soil label of the

nearest MRF cell (i.e., according to the distance between the
centroid of an FEA element and the centroid of an MRF cell). The
dimension of FEA elements in the potential failure zone is smaller
than the dimension of cells in the MRF; hence, the information loss
in the potential failure zone during the material assignment can be
avoided. In this way, each of the stratigraphic realization generated in
the previous section can be converted to an FEA simulation case. The
constructed FEA models corresponding to the three stratigraphic
realizations in Fig. 3b are shown in Fig. 5a.

In FEA, the factor of safety of each simulation case is computed
by using a shear strength reduction technique (Dawson et al. 1999).
The Drucker-Prager (DP) model embedded in ABAQUS is adopted
as the constitutive model for the six soil formations due to its
advantage over the Mohr-Coulomb (MC) model in computational
convergence for granular materials and that the required strength
parameters of DP model can be computed according to the MC
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Fig. 5 a Converted FEA simulation cases. b Slip surface represented by equivalent plastic strain (PEMAG denotes the plastic strain magnitude, which is a scalar measure of
the accumulated plastic strain)
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parameters (ABAQUS 2013). Since this study focuses on the impact
of stratigraphic uncertainty on the stability evaluation outcome,
the spatial variability of material properties within a single soil/
rock formation is not considered. Hence, the material properties
of the six soil formations used in the FEAs are set as deterministic,
as listed in Table 1.

FEA for the 1000 simulation cases yields a total number of 1000
corresponding factor of safety (FS) values. Figure 6a presents the
histogram formed by the computed FS values, which vary in a
considerable wide range from 1.267 to 1.729. The mean and stan-
dard deviation of the computed FS values are 1.554 and 0.0713,
respectively. The cumulative probability function of FS values is
then plotted in Fig. 6b, which allows one to acquire the corre-
sponding FS value for a certain confidence level. For each simula-
tion case, the map of plastic strain magnitude obtained from FEA
can be used to identify the slip surface, as shown in Fig. 5b for the
three simulation cases shown in Fig. 5a. By normalizing the over-
lying maps of plastic strain magnitude of all the simulation cases, a
new contour indicating the potential failure zone of the studied
slope can be obtained, as shown in Fig. 7. According to the analysis
results, it appears that the uncertain subsurface stratigraphic pro-
file can exert significant effects on the slope stability evaluation
results, in terms of both the computed FS and the location of the
slip surface. Therefore, instead of computing a single FS by using a
deterministic stratigraphic profile, it is necessary and highly rec-
ommended to obtain a more comprehensive understanding of the
slope stability by taking stratigraphic uncertainty into
consideration.

Identifying additional borehole location
In some slope stability analysis problems, the borehole informa-
tion from existing boreholes may not be sufficient to limit the
stratigraphic uncertainty to a desired level. Statistical analysis of
computed FS showing large standard deviation indicates the need
for additional borehole log information. Therefore, identifying the
optimum locations of the additional boreholes, which lead to a
most significant reduction of the uncertainty of computed FS, is
an important issue. Since the uncertainty of FS is mainly caused
by the uncertainty of stratigraphic profile in the potential failure
region, as marked in Fig. 7, it seems reasonable to assume that the
locations and depth of additional borehole drillings should be
geared towards reducing the stratigraphic uncertainty in the po-
tential faliure zone to a maximum extent. To assist making in-
formed decisions, we compute the sum of the information
entropy values of all cells in each vertical column and then plot
this against the horizontal coordinates in Fig. 8a. It can be noted

that the curve of information entropy values has three peak
points, which indicates that the stratigraphic uncertainty at

Table 1 Material properties of the six soil/rock formations

Young’s
modulus (MPa)

Poisson’s ratio Cohesion (kPa) Friction angle (°) Dilatancy
angle (°)

Unit weight
(kN/m3)

Alluvial clay 30.0 0.3 18.3 13.9 0.0 20.0

Silt 30.0 0.3 9.0 20.2 0.0 20.0

Coarse and fine sand 50.0 0.3 3.2 24.5 0.0 20.0

Weathered sandstone 30.0 0.3 10.7 25.1 0.0 20.0

Decomposed limestone 80.0 0.3 33.2 32.6 0.0 25.0

Limestone 100.0 0.3 120.0 36.0 0.0 30.0

Fig. 6 a Histogram of the computed FS values obtained using four boreholes. b
Cumulative probability function of the computed FS values obtained using four
boreholes
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region (color legend represents the normalized information entropy)
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these three corresponding locations is the largest. Therefore, ad-
ditional boreholes at these locations should be considered if one
would like to reduce the stratigraphic uncertainty and improve
the confidence level of computed FS.

Considering the magnitude of uncertainty at these three peaks
and the previous analysis results shown in Fig. 7 that the potential
starting points of the critical slip surface at the slope toe is more
uncertain than the potential ending point of the critical slip sur-
face at the slope crest (i.e., indicating that the strength of the soils
near the slope toe may yield more significant impact on the

stability of the studied slope), we introduce two additional bore-
holes, shown in Fig. 9a, at the locations corresponding to the first
two peak points in Fig. 8a. Stratigraphic profile modeling results,
in terms of information entropy map, using both the original four
boreholes and the two additional virtual boreholes, are presented
in Fig. 9b. It can be noticed that by adopting two additional
borehole log information, the extent of uncertain zones for soil
type assignment has been greatly reduced. The histogram and
cumulative probability function of the newly computed FS values
for the case with two additional borehole information are shown
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Fig. 9 a Additional virtual boreholes. b Corresponding information entropy map (color legend represents the normalized information entropy)
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in Fig. 10a, b, respectively. The mean value of the newly computed
FS values is 1.594. The standard deviation of FS is 0.0464, which is
significantly lower than the previously computed values. In con-
trast, it can be noted from Fig. 8 that drilling at the location at
x=60 m leads to less decrease of stratigraphic uncertainty in the
potential failure regions than the optimum drilling location
(x=66 m). Therefore, it seems that the conventional way of
selecting borehole drilling at the mid-way points of the existing
borehole locations may not always yield the optimum results for
reducing the uncertainty of the inferred stratigraphic profile and
its effects on the computed FS.

The presented case demonstrates the use of the proposed
analysis approach to suggest optimal locations of additional
borehole drillings for slope stability evaluation, based on quan-
tification of its stratigraphic uncertainty. It is worth to empha-
size that since the main purpose of such borehole drillings is to
minimize the uncertainty of the computed FS, focuses should be

given to the stratigraphic uncertainties associated with certain
soil formations, the spatial distributions of which may exert
significant impacts on the slope stability. Selection of these
critical soil formations varies with different slopes and may
require local experience. Specifically, in this study, instead of
the stratigraphic uncertainty of the entire slope domain, only
the stratigraphic uncertainty associated with the potential fail-
ure regions, which was estimated in previous FEAs using
existing borehole logs, was taken into consideration for identi-
fying the desired drilling locations. In practice, if such previous
analysis of the potential failure regions of a slope (i.e., the
possible location of the critical slip surface) is unavailable, local
experience may be needed to predict the soil formations that
the critical slip surface may pass through (i.e., very soft soils in
a slope). Subsequently, while identifying new drilling locations,
attentions should be given to the stratigraphic uncertainty as-
sociated with these soil formations, since their extensions may
be very critical to the safety of a slope.

Concluding remarks
Effects of uncertainty in subsurface stratigraphic profile on the
computed factor of safety of a natural slope can be significant
and have not been quantified in the past. In this paper, we
have demonstrated the use of a recently developed stochastic
geological modeling technique, together with the conventional
finite element analysis method, to compute the probability
distribution of the factor of safety (FS) of a slope due to
uncertain stratigraphic profile. The algorithm of the stochastic
geological modeling technique based on the Markov random
field was briefly explained, with a highlight of a novel correla-
tion structure for assigning the soil labels for the unknown
areas. Using the realizations of subsurface stratigraphic profiles
generated from the stochastic geological modeling results, we
further introduced the use of information entropy as a mea-
sure for quantifying the uncertainty of the generated subsur-
face stratigraphy.

As an illustrative example, a natural slope with four available
borehole logs was used to generate 1000 stratigraphic profiles,
which then were used in finite element analysis via strength
reduction technique to compute the corresponding FS and the
probability distribution. The example clearly demonstrated that
both FS and the failure surface can vary considerably as a result
of different subsurface soil stratigraphic realizations. Conse-
quently, for slope stability evaluation, it is highly recommended
that uncertainties related to the subsurface soil stratification be
properly accounted for. To increase the confidence level or to
reduce the standard deviation of the computed FS, the proposed
probabilistic approach was further utilized to identify the opti-
mum locations of additional borehole drilling. The presented
example demonstrates that, compared with the conventional
way of selecting borehole drilling at the mid-way points of the
existing borehole locations, the proposed approach is able to
provide a more efficient and targeted borehole layout for re-
ducing the uncertainty of the inferred stratigraphic profile and
its effects on the computed FS. As shown in the present exam-
ple, the proposed computational methodology provides a prac-
tical and effective means to evaluate the stability of slopes with
consideration of the influence of uncertain subsurface
stratigraphy.

Fig. 10 a Histogram of the computed FS values obtained using additional virtual
boreholes. b Cumulative probability function of the computed FS values obtained
using additional virtual boreholes
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