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Prediction of landslide displacement with step-like
behavior based on multialgorithm optimization
and a support vector regression model

Abstract Landslide prediction is important for mitigating
geohazards but is very challenging. In landslide evolution, dis-
placement depends on the local geological conditions and varia-
tions in the controlling factors. Such factors have led to the Bstep-
like^ deformation of landslides in the Three Gorges Reservoir area
of China. Based on displacement monitoring data and the defor-
mation characteristics of the Baishuihe Landslide, an additive time
series model was established for landslide displacement predic-
tion. In the model, cumulative displacement was divided into three
parts: trend, periodic, and random terms. These terms reflect
internal factors (geological environmental, gravity, etc.), external
factors (rainfall, reservoir water level, etc.), and random factors
(uncertainties). After statistically analyzing the displacement data,
a cubic polynomial model was proposed to predict the trend term
of displacement. Then, multiple algorithms were used to deter-
mine the optimal support vector regression (SVR) model and train
and predict the periodic term. The results showed that the land-
slide displacement values predicted based on data time series and
the genetic algorithm (GA-SVR) model are better than those based
on grid search (GS-SVR) and particle swarm optimization (PSO-
SVR) models. Finally, the random term was accurately predicted
by GA-SVR. Therefore, the coupled model based on temporal data
series and GA-SVR can be used to predict landslide displacement.
Additionally, the GA-SVR model has broad application potential
in the prediction of landslide displacement with Bstep-like^
behavior.

Keywords Baishuihe Landslide . Displacement prediction . Time
series . Three Gorges Reservoir . Support vector regression . Step-
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Introduction
Landslides are one of the worst types of natural disasters, and they
occur frequently around the world, particularly in mountainous
regions (Hong et al. 2016a). Landslides are very typical in the
Three Gorges Reservoir area of China (Du et al. 2013). The geolog-
ical processes and conditions required for landslide formation are
complex, making the collection of landslide evolution data an
extremely difficult task. The landslide predication field has devel-
oped rapidly and relied on incomplete kinematic monitoring data
and unreliable landslide prediction theories. A reasonably accu-
rate prediction could avoid human loss, reduce damages to prop-
erty, and provide adequate countermeasures for design (Federico
et al. 2012).

The prediction of landslide deformation started with the Saito
model in the 1960s. Over the past 50 years, studies of landslide
deformation prediction have yielded great achievements
(Newcomen and Dick 2016). Currently, the prediction models
based on deformation or displacement can be roughly classified
into four types. The first type is empirical models, which are

mainly based on creep theory and use observed displacement
monitoring data from landslides. These models generally describe
the rheological functions of landslides, and the function variables
include the displacement value or displacement speed.
Representative empirical models include the Saito model (1965),
Fukuzono model (1985), Hayashi model (1988), Voight model
(1989), and other models (Crosta and Agliardi 2012; Mufundirwa
et al. 2010). These models are derived from a wide range of actual
observations and laboratory creep experiments and have a solid
physical basis; therefore, they can be effectively applied for the
prediction of landslides, volcano eruptions, earthquakes, and oth-
er disasters. However, the models have strict application condi-
tions. The second type is statistical models, which are based on
mathematical statistical methods and other prediction theories.
These models include the gray system model (Deng 1988),
Verhulst model (Yin and Yan 1996), plant growth model, and gray
displacement vector angle model (Yang 1992). From displacement
information, statistical trends can be obtained to determine the
unknown displacement. These types of models can address land-
slide problems when the physical mechanisms of the landslide are
too complicated to decode. Statistical models are most effective for
addressing individual impact factors. However, the deformation of
a landslide is affected by many factors that are not easily addressed
using statistical models. The third type is nonlinear models, which
are based on nonlinear theories, such as catastrophe theory (Qin
2005) and synergetic theory (Huang and Xu 1997). These models
include the traditional nonlinear model (Liu et al. 2014; Yao et al.
2015), neural networks (Du et al. 2013; Lian et al. 2015), support
vector regression (Pradhan 2013; Jebur et al. 2015; Zhou et al. 2016),
the Newmark model (Chousianitis et al. 2014; Du and Wang 2016;
Hwang and Chen 2013), and extreme learning machines (Cao et al.
2015). The fourth type is comprehensive models, which are com-
bined with multifactor models to forecast landslide hazards. These
models represent a new direction in temporal landslide prediction.
For instance, autoregressive integrated moving average-based
model is applied to landslide prediction (Carlà et al. 2016).

From the displacement monitoring curve (Fig. 1), landslides can
be divided into four categories: steady-type landslide, which
means the landslide displacement monitoring curve shows a
steady growth trend. Exponential-type landslide: the landslide
displacement monitoring curve shows an exponential growth
trend, and the transition rate increases. Step-like landslide: due
to the large increase and periodic fluctuation of the water level, the
shape of the cumulative displacement-time curve of landslides in
the special geological environment of the Three Gorges Reservoir
shows the trend described as Bstep-like^. Convergent-type land-
slide: at first, the displacement speed of landslide is large and then
gradually stabilized. Landslides with Bstep-like^ deformation be-
havior experience several distinct acceleration phases followed by
periods of relative stability before failure. The velocity of the
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displacement fluctuation combined with the rainfall quantity and
water level in the reservoir are the major factors that contribute to
these phases. The displacement curve consists of Bpower law^
acceleration phases during external loading periods that are sep-
arated by phases of decreasing velocity during nonloading periods.

In this paper, considering the internal and external factors that
affect landslide deformation and using the Baishuihe Landslide,
which has a typical Bstep-like^ behavior, as an example, the rela-
tionship between landslide development and the external influenc-
ing factors is investigated based on landslide deformation
monitoring data. Through time series analysis, the accumulative
displacement of a landslide is divided into three parts: trend terms,
periodic terms, and random terms. Then, the displacement of each
part can be predicted using a cubic polynomial and support vector
regression based on multialgorithm optimization. The displace-
ment prediction accuracy of each part can be analyzed quantita-
tively according to the goodness of fit (R2) and mean square error
(MSE) of the predicted values.

Methodology

Time series theory
The time series theory of nonstationary landslide displace-
ment can be assumed by three parts (Yang 1992): a trend
term that is controlled by the internal factors and geological
conditions themselves, such as the geomorphology and geo-
logical structure; a periodic term that is affected by external
factors, such as the reservoir water level and the rainfall
intensity; and a random term that corresponds to random
causal factors. Because multiple factors are involved in land-
slide deformation, the nonstationary time series theory is used
to establish a dynamic model based on displacement observa-
tions and reflect the relationship between the evolution of
landslide displacement and the impact factors. Therefore, the
additive time series model can be generalized in the following
form:

X tð Þ ¼ ϕ tð Þ þ η tð Þ þ ε tð Þ ð1Þ

where t is time, X(t) is time series displacement, ϕ(t) is the trend
term function, η(t) is the periodic term function, and ε(t) is the
random term function.

Each function of the model corresponds with a part of landslide
displacement theory; thus, the displacement prediction has clear
physical and mathematical significance. In this study, the additive

time series model is used as the basic prediction model for the
landslide with Bstep-like^ behavior.

Support vector regression
The support vector regression (SVR) model was proposed by
Vapnik (2000) and has been widely used in nonlinear prob-
lem solving (Bui et al. 2016a; Hong et al. 2015). In SVR
models, sample data are divided into a training sample and
test sample. Then, the input vector (training sample) chosen
in advance is mapped to a high-dimensional feature space.
Next, the best fitting effect is obtained in the space of the
optimal decision function model, and the training sample is
used to validate the analytical model results (Bui et al. 2016b;
Hong et al. 2016b). The focus of this approach is forecasting
analysis (Hong et al. 2016c; Bui et al. 2016c). A schematic
diagram of SVR is presented in Fig. 2 (Zhou et al. 2016).

{xj, yj} is a characteristic vector of sample data, where xj = {xj1,
xj2, ⋯ , xjp} is the impact factor of yj and p is the number of values
in yj. The regression estimation function of the support vector
machine (SVM) is as follows:

f xð Þ ¼ WTφ xð Þ þ b ð2Þ

where φ(x) is the nonlinear mapping function of the sample data,
which are mapped to the feature space; WT is the coefficient of the
independent function; and b is the offset. WT and b can be obtain-
ed by minimizing the following equation:

D fð Þ ¼ 1
2

Wk k2 þ C
n

∑
n

j¼1
Rε y j; f x j

� �h i
ð3Þ

where D(f) is the generalized optimal classification plane function,
which considers the minimum number of incorrect sample points
and the largest classification interval; ‖W‖2 is the complexity of the
model; C is the penalty parameter; and Rε is the insensitive loss
(error control function) function of ε. Hence, the optimization
problem can be expressed as follows:

minQ W ; ξð Þ ¼ 1
2

Wk k2 þ C ∑
n

j¼1
ξ j þ ξ*j

WTφ xj
� �þ b−y j≤εþ ξ j

y j−W
Tφ x j

� �
−b≤εþ ξ*j

ξ j≥0; ξ
*
j ≥0 j ¼ 1; 2; ⋯; nð Þ

9>>>>>=
>>>>>;

ð4Þ

where ξ j; ξ
*
j are relaxation factors.

Fig. 1 Landslide classification based on the displacement monitoring curve. a Steady-type landslide. b Exponential-type landslide. c Step-like landslide. d Convergent-type landslide
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Setting the partial derivatives of W; b; ξ j; and ξ*j to 0 and using
the Lagrange equation and duality theory, a dual optimization
problem can be formed:

L W ; a; b; ε; yð Þ ¼ min
1
2

∑
n

r; j¼1
ar−a*r
� �T

Hr; j*

ar−a*r þ ε ∑
n

r; j¼1
ar−a*r
� �þ ∑

n

r¼1
yr ar−a*r
� �

∑
n

r¼1
ar−a*r
� � ¼ 0; 0≤ar ; a*r ≤C

� �

Hr; j ¼ K xr ; x j
� � ¼ φ xrð ÞTφ xj

� �
; r ¼ 1; 2; ⋯; nð Þ

9>>>>>>>>>=
>>>>>>>>>;

ð5Þ

where K(xr, xj) is the kernel function, which is a polynomial func-
tion in this paper. The SVR model can then be established as
follows.

f xð Þ ¼ ∑
n

j¼1
a*j−aj

� �
K xj; x
� �þ b ð6Þ

The model, which is based on statistical learning theory, has
numerous advantages. Notably, it requires a small sample size for
learning, has a simple statistical structure, and performs better
than traditional models of back propagation (BP) neural networks.
Therefore, this model is advantageous for landslide displacement
prediction.

The grid search algorithm
A grid search (GS) is a simple and straightforward method of
finding the optimal parameter values for the SVM classifier.

Because the two parameters C and γ are independent, the GS
process can be conducted in parallel. Specifically, a set of candi-
dates is selected for both γ and C. Then, each pair of γ and C is
evaluated by cross-validation, and the pair with the highest accu-
racy is considered the optimal solution (Gao and Hou 2016). The
process involves a search within a certain range of the grid space in
accordance with the relevant values of parameters in each step.
Then, all points within the grid space are iteratively considered,
and the performance of each parameter set is evaluated. Finally,
the optimal parameter set that yields the optimal performance is
selected. The disadvantage of the method is that when the range of
the grid space is large and the step size is small, a long processing
time is required.

The genetic algorithm
The genetic algorithm (GA) was inspired by the hypothetical
mechanism of natural selection, in which the fittest individuals
in a generation are more likely to survive and produce the next
generation. GA is used to search for optimal solutions when the
evaluation of all possible solutions is too costly in terms of the
computational time (Taskin K et al. 2015). GA method is very
robust, and implicit parallelism and global search capabilities are
two important features of GAs. In a GA, each feasible solution is
first encoded. Then, the solution space is transformed into a
chromosome space, and the fitness of each chromosome is de-
fined. Specifically, the fitness values of Bpreferred^ individuals are
higher than those of other individuals, i.e., individuals with large
fitness values are more fit. Based on genetic operators such as
selection, crossover, and mutation in a population, the group
constantly evolves in the direction of the optimal solution. The

Fig. 2 Schematic diagram of algorithm optimization for SVR: (a) model creation, (b) model validation, and (c) AO–SVM model construction
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two-parameter GA and the three-parameter GA (cpg) are com-
monly used.

Particle swarm optimization
The particle swarm optimization (PSO) algorithm is a global opti-
mization algorithm that was proposed by Eberhart and Kennedy
(1995). In PSO, every particle is regarded as a solution to the
optimization problem, and each particle acquires Bflying
experience^ based on its experiences and those of other particles.
A fitness function is defined to determine the superiority of each
particle and search for the optimal solution in the entire solution
space. The search principle is that each particle in the solution
space approximates two points at the same time. The first point
represents the best value obtained by any particle in the popula-
tion in the process of searching for the global optimal solution
qbest. The other point represents the optimal solution pbest
achieved during the search process. Then, through iterations, the
position and speed of the particle can be updated.

Case study: Baishuihe Landslide

Geological conditions
The Baishuihe Landslide is located on the right bank of the
Yangtze River, 56 km from the Three Gorges Dam site (Fig. 3). As
a large thick layer of sloping soil, the main sliding direction of the
landslide is 20° with respect to N. The landslide has a 500-m length
from north to south, a 430-m width from east to west, and an
approximately 30-m average thickness. The volume of the land-
slide is 645 × 104 m3, covering an area of 21.5 × 104 m2. The rear

elevation is 450 to 500 m, and the front elevation is 120 to 130 m
(Fig. 4). The Baishuihe Landslide formed in a nearly north-south
gully with the south higher than the north, and it spread into the
Yangtze River. The gradients of the leading edge and trailing edge
of the landslide are large, and the central portion is flat. The
morphology of the area shows irregular concave terrain on both
sides of the landslide, and these areas are slightly higher than the
middle of the landslide. Because the Baishuihe Landslide has been
in an unstable state for several years, landslide warnings have been
issued many times, especially since intense deformation occurred
during the flood season in 2003. By the end of July 2012, the
cumulative maximum displacement of the Baishuihe Landslide
reached 3108.5 mm. Additionally, the deformation of cross-
section 2–2′ has considerably increased (Fig. 5).

The materials of the landslide are quaternary deposits, includ-
ing silty clay and fragmented rubble with a loose and disorderly
structure. The lithologies of the bedrock and strata that outcrop
around the landslide are mainly Jurassic siltstone, arenaceous
shale, and quartz sandstone, with dip directions of 15° and dip
angles of 36° (Fig. 5).

Based on surface displacement monitoring, the Baishuihe
Landslide can be divided into 2 major areas. The first area is the
warning zone (sector A), which is the front part of the landslide
that has undergone serious deformation. Because of the increase in
reservoir storage when the Three Gorges Dam was built, the
landslide has experienced obvious displacement, and multiple
transverse tension cracks can be observed in the eastern part of
the landslide (Fig. 4). Notably, large cracks have formed on the east
side and rear boundary of the landslide, and weathering cracks

Fig. 3 a Location of the study area. b Location of the Baishuihe Landslide. c Geomorphology of the Baishuihe Landslide.
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Fig. 4 Topographical map of the Baishuihe Landslide with the location of the monitoring network

Fig. 5 Schematic geological cross-section (2–2′) of the Baishuihe Landslide
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have formed on the western boundary. On the morning of June 30,
2007, approximately 100,000 m3 of a highway landslide piled on
the road in the posterior of the warning area, which is sector C
(Fig. 4). The second area is relatively stable (sector B) and located
at the back of the landslide. Cumulative deformation is small in
this area, and the rate of deformation is slow at only 1.5 ~ 4.0 mm/
year.

Deformation mode of the landslide
The Baishuihe Landslide is an old landslide that frequently
reactivates. Landslide deformation monitoring began after obvi-
ous deformation was observed due to the initial impoundment of
Three Gorges Reservoir in June 2003. Surface displacement mon-
itoring was performed using a global positioning system (GPS).
And the lateral displacement was monitored by inclinometer. The
monitoring points are shown in Fig. 4. A total of seven GPS and
three inclinometer deformation monitoring points were initially
established on the surface of the landslide. In addition, four GPS
deformation monitoring points were added in May 2004 and
October 2005.

According to a report (Three Gorges University 2013), several
landslides occurred at an elevation of approximately 220 m be-
tween August 2005 and August 2006. These landslides were small,
generally on the order of tens of cubic meters. Additionally, sink-
ing cracks appeared over a large area of the landslide surface. On
the morning of June 30, 2007, the trailing edge of the warning area
boundary was mainly connected. After August 2009, landslide
displacement continued in a Bstep-like^ process, and the western
boundary cracks spread as intermittent plumes. The macroscopic
deformation of the Baishuihe Landslide is shown in Fig. 6.

Evolution mode of the landslide
The Baishuihe Landslide is a typical retrogressive landslide; thus,
the failure began at the bottom of the slope (Fig. 7). The sliding

surface is an approximately straight line, and the upper part of the
landslide has a relatively steep slope and shallow depth.
Deformation has mainly occurred in areas below 250 m of eleva-
tion. The displacement rates at the monitoring points in the front
part of the landslide (XD-02, XD-03, and XD-04) were much
higher than those at monitoring points ZG93 and ZG118 (Du
et al. 2013).

The short-term deformation of the landslide with step-like
behavior in the Three Gorges Reservoir area is triggered by the
periodic fluctuation of the reservoir level and rainfall, as discussed
in the next section. However, the influence of these triggers on the
deformation is closely related to the evolutionary state of the
landslide. Under the influence of the same triggers, landslides in
various states deform differently. Therefore, it is difficult to accu-
rately forecast landslide deformation by considering only the
triggers and ignoring the evolutionary state of the landslide
(Zhou et al. 2016). The progress of the landslide from beginning
deformation to global sliding failure generally includes the prima-
ry creep, secondary creep, and the tertiary creep (Fig. 8). The

Fig. 6 Macroscopic deformation of the Baishuihe Landslide

Fig. 7 Sketch of the deformation mechanism of the retrogressive Baishuihe
Landslide
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displacement of the Baishuihe Landslide reflects a step-like change
in the cumulative displacement curve from May to December of
every year since 2003, corresponding to rainfall in the annual flood
season. Therefore, rainfall in the flood season is the main factor
that contributes to the steps in the landslide monitoring curves.
However, in 2007, the landslide was not only influenced by rainfall
in the flood season but also by the change in the normal water
level of Three Gorges Reservoir at the same time. Thus, the cumu-
lative displacement increase in June 2007 was one of the largest
deformations due to the joint actions of rainfall and water level
scheduling (Fig. 9). Landslide failure did not occur after the major
deformation in 2007. Thereafter, a step-like change still existed in
the annual cumulative displacement curves from May to October,
and the range of the step decreased each year. Therefore, by
observing the displacement over a multiyear period, it can be
inferred that the landslide remained in a constant creep stage at
the end of 2011.

Analysis of the monitoring data
Inclinometer QZK1 (ZG118) indicated that the main sliding zone
was located at a depth varying from 12 to 21.5 m (Fig. 10). The deep
sliding zone was located 0.6 to 1 m above the siltstone bedrock.

Due to differences in the displacement monitoring periods, the
monitoring cycles of ZG118 and XD-01 are longer than those of
other stations. Therefore, this paper selects both sites for detailed
analysis.

The rainfall, reservoir water level, and displacement data from
the Baishuihe Landslide area from January 2008 to December 2011
(Three Gorges University 2013) are shown in Fig. 11. The main
characteristics of the monitoring data are as follows:

(1) Different monitoring points on the Baishuihe Landslide ex-
hibit similar rates of displacement. Additionally, the landslide
has the tendency to undergo intact slip. The landslide velocity
is generally highest from May to August, which is the end of
the period of decreasing water level. From September to April
of the following year, the landslide displacement remains
stable, which suggests that the change in landslide displace-
ment is highly correlated with the reservoir water level, in this
case, the increase in water level. In addition, landslide dis-
placement exhibits a Blag effect^. Notably, the water level
began to decline 1~2 months before landslide displacement
began to gradually increase, and when the water level stopped
decreasing, landslide displacement continued for 1~2 months.

(2) Rainfall in Zigui County is concentrated from May to
October. The results show that monthly displacement ex-
hibits good agreement with variations in the monthly rainfall
intensity. Additionally, the shape of the monthly rainfall
curve is generally coincident with that of monthly
displacement.

In conclusion, when the reservoir stores water, the slope floods
and the groundwater level of the landslide gradually increases;
however, the slope is affected by hydrostatic pressure from the
water, and the force is orthogonal to the slope surface and in the

Fig. 8 Illustration of the three phases of slope deformation

Fig. 9 Displacement monitoring curve of the Baishuihe Landslide
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direction of the slope. Thus, this force increases the slope stability
of the landslide. When the water level drops, a hydraulic gradient
is formed because the groundwater level below the slope decreases
more slowly than the water level in the reservoir. When the
groundwater level and the reservoir level are equal, the hydraulic
gradient disappears, and a pressure force forms that is not orthog-
onal to the slope. Therefore, the stability of the slope decreases.
Additionally, rainfall forms surface runoff, which causes erosion
on the slope surface, and infiltration that reaches the groundwater
table increases the weight of the slope and softens the rock mass.
These processes are not conducive to the stability of the slope.
Hence, the reservoir level and rainfall are the most important
factors that affect landslide displacement.

Calculations and results
In this paper, the cumulative displacement series of the Baishuihe
Landslide from January 2008 to December 2011 is adopted as the

original time series. The cumulative displacement series from
January 2008 to June 2011 is considered the training sample, and
the cumulative displacement series from July 2011 to December
2011 is the test sample.

Trend term prediction
The trend term represents the main mode of the development of
landslide deformation. Considering the characteristics of the cu-
mulative displacement curves, the displacement in the flood sea-
son exhibit Bstep-like^ growth over an annual period. Therefore,
the moving average method was used to smooth the displacement
curve, and the moving average is regarded as the trend term of
landslide displacement. This method can reflect the abrupt chang-
es in the displacement curves caused by the cyclical reservoir water
level fluctuations and rainfall. The original displacement time
series can be expressed as follows: Xi = {x1, x2, x3,……, xt}.

Based on this expression, the trend term of displacement can be
written in the following form:

ε ið Þ ¼ xi þ xi−1 þ…þ xi−nþ1

n
; i ¼ n; nþ 1; nþ 2;…; t
� �

ð8Þ

where the n is the periodic value. In this paper, we set n = 12. Based
on the cumulative displacement curves, the extracted trend term is
shown in Fig. 12.

The model of trend term prediction can be constructed based
on the shape of the growth curve of displacement. The least
squares method was used to fit the curve when it was in linear
or power function form, and the GM (1, 1) model was used to
describe the curve when in exponential function form.

The GM (1, 1) model andVerhulst growthmodel were used to fit the
trend term of displacement. However, the accuracies of these methods
were low in this case. Because these two models are not applicable to
the Baishuihe Landslide, the least squares method of polynomial
fitting was adopted, and a cubic polynomial form was used.

ε tð Þ ¼ at3 þ bt2 þ ct þ d ð9Þ

The calculation results are shown in Table 1.

Fig. 10 Lateral displacement versus depth from inclinometer QZK1 (ZG118)

Fig. 11 Rainfall, reservoir water level, and cumulative displacement monitoring data from the landslide area
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The parameters of polynomial fitting (Table 1) were used to
predict the trend term, and the results are shown in Fig. 13. Overall,
the results of trend term prediction are good, mainly because the
moving average method can eliminate the influence of the Bstep^
in the cumulative displacement curve.

Periodic term prediction

Periodic term extraction
According to the additive time series model, cumulative displace-
ment includes a periodic term and random term after removing
the trend term. The extraction results of detrended displacement
are shown in Fig. 14a. The fluctuations in the detrended displace-
ment at the two monitoring points show that the displacement
fluctuates periodically with changes in the reservoir water level
and rainfall.

Factors that influence periodic displacement
The selection of the factors that influence displacement will di-
rectly affect the training capacity of the model. As noted above in
the analysis of landslide monitoring data, the periodic displace-
ment of the landslide is controlled by rainfall and the reservoir
water level.

Precipitation Rainfall is one of the major external forces that
trigger landslides in the Three Gorges Reservoir area (Tomas
et al. 2014). Landslides are liable to occur in areas with continuous
and torrential rainfall (Bernardie et al. 2015; Bordoni et al. 2015;
Segoni et al. 2015). Additionally, rainfall infiltration can cause soil
water changes, such as increasing the hydrodynamic and

hydrostatic pressures due to seepage. These processes can desta-
bilize slopes by decreasing stabilizing forces and matrix suction.
Moreover, rainfall infiltration causes chemical reactions in the soil.
For example, rainfall infiltration can reduce the cohesive force and
internal friction angle of a slope as a result of argillization and soil
softening, disintegration, and dissolution due to reactions between
soluble and hydrophilic minerals and infiltrated rainwater (Liu
et al. 2003). Previous research on the relationship between land-
slides and rainfall suggests that precipitation 1 or 2 months before
failure strongly promotes landslide deformation (Du et al. 2013).
Because rainfall infiltration is a relatively slow process, the cumu-
lative antecedent precipitation in the past 1 month and over the
past 2 months was adopted as the rainfall factor to predict the
periodic displacement of the landslide (Fig. 14)b.

The reservoir level Periodic fluctuations in the reservoir water
level can lead to the step-like deformation of landslides in the
Three Gorges Reservoir area (Jiao et al. 2014). Because water level
fluctuations affect the distribution of the hydrodynamic field, the
shear strength of the rock and soil slope decreases, the permeabil-
ity changes, and the hydrostatic or dynamic pressure changes,
causing slope instability (Li et al. 2004). Moreover, the effect of
the reservoir level varies with the size of the fluctuation.
Additionally, the influence of a fluctuation on landslide deforma-
tion varies based on the initial reservoir level. Considering the
Bdelay effect^ of the water level, 1- and 2-month base-level changes
were adopted to represent the influence of reservoir scheduling on
the deformation of the Baishuihe Landslide (Fig. 14)c.
Cumulative displacement increment per year: because of periodic
variations in the reservoir water level and rainfall, the cumulative

Fig. 12 Extracted trend term of displacement over time

Table 1 The parameters of the trend term of displacement based on polynomial fitting

Point Parameters Accuracy (R2)
a b c d

ZG118 0.0089 −0.9901 48.73 1103.6 0.996

XD-01 0.0114 −1.2771 69.17 1211.9 0.9929
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displacement curve of the landslide exhibits periodic steps.
Therefore, the annual rate of landslide displacement is inherently
periodic (Fig. 14) d.
Using the gray correlation analysis method (Deng, 1988), a
resolution coefficient of 0.5 was obtained, and the relational
degree rk between the impact factors and the periodic dis-
placement is shown in Table 2. The impact factors are

closely related to the periodic displacement, as rk > 0.6, sug-
gesting that the parameters were properly selected (Wang
et al. 2004).

Parameter setting in the models
GS-SVR model parameter setting In sample data preprocessing,
all the factors and the periodic term of displacement must be
converted to [−1, 1] format. In GS parameter setting, the penalty
factor c = [0, 100], the kernel function parameter g = [0, 100], the
principal component is set to 95%, the grid range of c is [−8, 8] and
the grid step is 0.5, and the grid range of g is [−8, 8] and the step is
0.5.

GA-SVR model parameter setting In sample data preprocessing,
all the factors and the periodic term of displacement are converted to
[−1, 1] format. In GS parameter setting, the penalty factor is c= [0,
100], the kernel function parameter is g = [0, 100], the principal
component is set to 95%, and the cross-validation value is v= 5.

PSO-SVR model parameter setting In sample data preprocessing,
all the factors and the periodic term of displacement are converted
to [−1, 1] format. In GS parameter setting, the penalty factor is
c = [0, 100], the kernel function parameter is g = [0, 100], the prin-
cipal component is set to 95%, and the cross-validation value is
v = 5. The population of the particle swarm is 20, the maximum
number of evolutionary iterations is 100, and the inertia weight
isw = 1.

Fig. 13 Prediction and comparison of the trend term of displacement

Fig. 14 a Detrended displacement. b Relationship between rainfall and periodic displacement. c Relationship between reservoir level change and periodic displacement.
d Relationship between annual displacement and periodic displacement
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GA(cpg)-SVR model parameter setting In sample data prepro-
cessing, all the factors and the periodic term of displacement are
converted to [−1, 1] format. In GS parameter setting, the penalty
factor is c = [0, 100], the kernel function parameter is g = [0, 100],
p = [0, 1], and the principal component is set to 95%.

Forecasting comparison of each model
Using the GS, GA, PSO, and GA (cpg) algorithms to search for the
optimal penalty factor c, the kernel function parameter g is shown
in Table 3. The training sample was assessed using the parameters
obtained, and the model of periodic displacement prediction was
constructed. The prediction accuracy and error of each model are
shown in Table 4. Periodic displacement prediction and a com-
parison of results are shown in Fig. 15.

When predicting the periodic term of ZG118, the R2 of each
model and the root mean square error (RMSE) reflect similar
trends. When predicting the periodic term of XD-01, the R2 values
of GA-SVR and GA (cpg)-SVR are much larger than those of GS-
SVR and PSO-SVR. In October 2008, the predicted periodic dis-
placement exhibited large fluctuations, especially at the XD-01
monitoring points, likely because October is the end of the peak
rainfall period, and the heavy rain influences the slope displace-
ment with a certain Blag effect.^

The comparison of the performance of the displacement predic-
tion models shows that the GA-SVR model performs better than the
GS-SVR and PSO-SVM models. Therefore, when performing ran-
dom displacement prediction, the GA-SVR model is preferred.

Random term prediction
After removing the trend term and the periodic term from the
cumulative displacement series, the remaining part is the random
term. The results are shown in Fig. 16.

The random term is trained by the displacement prediction
model based on GA-SVM. In sample data preprocessing, all
impact factors and periodic term displacements are converted
to [−1, 1] format. The GA algorithm parameters are set as fol-
lows: the punishment factor is c= [0, 100], the kernel function
parameter is g = [0, 100], the principal component is 95%, and
the cross-validation value is v= 5. The optimal parameters and
accuracy of the model are shown in Table 5. Random term
prediction is shown in Fig. 17.

Cumulative displacement prediction
Similarly, using the additive time series model, the cumulative
displacement at ZG118 and XD-01 from January 2008 to
December 2011 can be determined. The relationship between the
observed and predicted displacement is shown in Fig. 18.

According to Fig. 18, in the early stage of sample training, both
the absolute and relative errors at each point are much larger than
the average values. As the number of training samples increases,
the training effect improves. Additionally, as the number of pre-
diction test samples increases, the absolute and relative errors
increase. Therefore, the method proposed in this study exhibits
high precision in the short-term prediction of landslide with step-
like behavior displacement. However, the prediction accuracy de-
creases as the number of prediction test samples increases.

The comparison of the observed and predicted displacements
at these two monitoring points shows that the curve of the pre-
dicted displacement corresponds well to the curve of the observed
displacement. The predicted values fit the initial sample data and
can predict displacement 6 months into the future. The model
reflects the increasing trend in cumulative displacement, and the
model is adequate for the displacement prediction of the
Baishuihe Landslide.

Discussion
The deformation of the landslide with step-like behavior in the
Three Gorges Reservoir area is triggered by the periodic factors,

Table 2 Relational degree between impact factors and periodic displacement

Point Impact factors
1-month
precipitation

2-month
precipitation

Reservoir
level

1-month level
change

2-month level
change

Annual
displacement rate

ZG118 0.779 0.779 0.827 0.838 0.826 0.794

XD-01 0.791 0.790 0.826 0.840 0.824 0.751

Table 3 Optimal parameters of SVR used for the dataset

Point GS-SVM GA-SVM PSO-SVM GA(cpg)-SVM
C g C g C g C g P

ZG118 45.25 0.125 3.15 26.62 28.74 0.462 58.47 0.41 0.13

XD-01 8.00 0.01 1.27 35.43 5.80 0.01 38.86 0.32 0.18

Table 4 Prediction accuracy and error of each model

Model R2 RMSE
ZG118 XD-01 ZG118 XD-01

GS-SVR 0.940 0.755 16.556 53.461

GA-SVR 0.984 0.982 12.322 19.247

PSO-SVR 0.970 0.760 11.815 54.043

GA(cpg)-SVR 0.971 0.963 11.298 19.073
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such as fluctuation of the reservoir level and the rainfall. But the
influence of the factor triggers on the deformation development of
landslide is closely related to its evolution state. Therefore, it is
inaccurate to predict the deformation of landslide accurately by
only considering the triggers and ignoring the evolution state of
the landslide (Zhou et al. 2016). It can be inferred that the landslide
remained in a constant creep stage from 2008 to 2011. Considering
the primary creep state before 2007, the displacement data before
2007 is not adopted to be trained. In the paper, landslide displace-
ment with step-like behavior is predicted based on multialgorithm
optimization and SVM. And then, the results can be used for other
research. Predicted displacement of Baishuihe Landslide is used to
compute the alert velocity thresholds. Pre-alert, alert and

emergency velocity thresholds of each monitoring point are ob-
tained respectively (Li et al. 2010). Crosta and Agliardi (2003) point
out that surface displacement measurements can be used for
failure forecast. Carlà et al. (2017) propose that displacements
could be provided to establish ultimate alarm thresholds of
impending slope failure risk at mine operations.

Random term of the landslide displacement is caused by
random factors such as the wind load and vehicle load.
Current detection methods are not suitable for accurately
monitoring these random factors. Therefore, it is difficult to
obtain the associated data, and these factors are generally not
considered in studies. Before building a random SVM model
in this paper, we attempted to treat the random term as a
stationary time series and built an M-order autoregressive
model to predict it. However, the results were not optimal.
Therefore, GA-SVR model is chosen to fit this term. Notably,
the accuracy at the two monitoring points reaches 0.771 and
0.741. Although there is a certain gap in accuracy between the
random term and the periodic term, the trend of the random
term can be reflected to a certain extent. In this paper, the
trend term is predicted using a cubic polynomial model, and
the accuracy reaches 0.996 and 0.9929 at the two monitoring
points. The periodic term and the random term are predicted
by GA-SVR, and the accuracy reaches (0.984, 0.982) and
(0.771, 0.741), respectively, at the two points. Additionally,
the overall accuracy of the prediction of Baishuihe Landslide
displacement reaches 0.963 and 0.951, and the predicted dis-
placements agree well with the observed displacements. By
comparison, using the GA algorithm to optimize parameters
can improve the accuracy of the SVM model better.

Although the proposed method yields relatively good re-
sults, if factors as the rainfall quantity or water level suddenly
change, the error of point-based displacement prediction will
inevitably increase. Thus, solving this problem becomes highly
necessary. Therefore, in order to establish a more accurate
causal relationship, the latest monitoring data should gradu-
ally be substituted, while the earlier information should be
removed (Du et al. 2013).

Fig. 15 Prediction and comparison of periodic displacement

Fig. 16 Extraction of the random term of displacement with time

Table 5 Optimal parameters and accuracy of the model

Point C g R2 RMSE

ZG118 1.19 49.74 0.771 5.799

XD-01 1.59 38.37 0.740 9.741
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Conclusions
The following conclusions were drawn from this study:

(1) The general trend of deformation evolution is affected by
internal factors. External factors, such as seasonal rainfall
and reservoir water level fluctuations, directly accelerate the
deformation and failure processes of the landslide. The exter-
nal factors are the main reasons for the developmental of the
Bstep-like^ landslide in the Three Gorges Reservoir area.
Therefore, the relationships between internal and external
factors are important when analyzing the deformation mech-
anisms of a landslide.

(2) The results of the periodic displacement calculations
show that the prediction accuracy of the displacement

prediction model based on GA-SVR is better than the
prediction accuracy of other models based on GS-SVR
and PSO-SVM. Therefore, the GA-SVR model has broad
appl icat ion potentia l for random displacement
predictions.

(3) The displacement sequence of a landslide can be divided
into trend, periodic, and random terms, each with clear
mathematical and physical significance. This approach
was proven effective in this study. The method yields
relatively good results for displacement prediction by
coupling the GA-SVR model and time series data.
However, abrupt changes in the rainfall quantity or water
level will inevitably increase the error of point-based
displacement prediction.

Fig. 17 Prediction and comparison of random displacement

Fig. 18 The curves of the relationship between observed and predicted displacement
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