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A simplified three-dimensional shallow landslide
susceptibility framework considering topography
and seismicity

Abstract Shallow landslides are a prevalent concern in mountain-
ous or hilly regions that can result in severe societal, economic, and
environmental impacts. The challenge is further compounded as the
size and location of a potential slide is often unknown. This study
presents a generalized approach for the evaluation of regional shal-
low landslide susceptibility using an existing shallow landslide in-
ventory, remote sensing data, and various geotechnical scenarios.
The three-dimensional limit equilibriummodel derived in this study
uses a raster-based approach that uniquely integrates tree root rein-
forcement, earth pressure boundary forces, and pseudo-static seis-
mic accelerations. Contributions of this methodology include the
back-calculation of soil strength from a landslide inventory, sensi-
tivity analyses regarding landslide size-pixel size relationships, and
the determination of shallow landslide susceptibility for a landscape
or infrastructure considering various root, water, and seismic con-
ditions using lidar bare-earth DEMs as a topographic input. Using a
distribution of inventoried landslide points and random points in
non-landslide locales, the proposed methodology demonstrated rea-
sonable correlation between regions of high landslide susceptibility
and observed shallow landslides within a 150-km2 region of the
Oregon Coast Range when the water-height ratio was 0.5. The meth-
od may be improved by considering spatial hydrologic conditions
and geology more explicitly.
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Introduction
Landslides are natural hazards that frequently result in major
societal, economic, and environmental impacts on an internation-
al scale (Schuster 1996). Landslides often occur in conjunction
with causative extreme events, such as heavy precipitation, signif-
icant seismic events, and wildfire (Petley 2012). In particular,
shallow landsliding presents a persistent hazard, especially in
mountainous, marginally stable regions with weak, yet critical root
reinforcement (Roering et al. 2003). In seismically active areas,
strong earthquake motions are also capable of destabilizing a slope
that would normally be stable under static conditions (Parker et al.
2011; Barlow et al. 2015; Wang and Rathje 2015). The sizes and
locations of potential landslides are often unknown, which present
significant challenge to planners and engineers (Jibson et al. 2000).
Inability to detect and mitigate potential landslides can result in
significant losses to infrastructure and human life (Schuster 1996).

Landslide susceptibility mapping identifies regions of slope insta-
bility based on probabilities of landslide occurrence. BHazard map^
is often confused as a synonym for Bsusceptibility map^; however,
the two should be distinguished. In particular, hazard maps are
developed by considering the temporal occurrence or recurrence
and magnitude of failure, and susceptibility maps consider whether

conditions would likely lead to failure (Hervás and Bobrowsky
2009). Aside from qualitative susceptibility mapping (i.e., maps
developed by allowing experience and judgment to dictate the spatial
limits of a hazard), two primary types of methods for creating
quantitative susceptibility maps exist in practice: (1) statistical
methods (Ayalew and Yamagishi 2005; Carrara et al. 1991; Dai and
Lee 2002; Ohlmacher and Davis 2003; Xu et al. 2013) and (2) deter-
ministic methods, often calibrated to statistical distributions of geo-
technical inputs and landslide spatial properties (Bellugi et al. 2015;
Dietrich et al. 1995; Milledge et al. 2014; Miller and Sias 1998; van
Westen and Terlien 1996; Xie et al. 2006). Statistical methods typi-
cally utilize the historical links between landslide distribution and
the factors controlling a landslide (e.g., slope), whereas deterministic
methods for creating susceptibility maps utilize mechanical proper-
ties of the soil (e.g., density, friction angle) to express instability as a
factor of safety, defined as the ratio of forces resisting failure to forces
driving failure (Ayalew and Yamagishi 2005).

An integral part of effective landslide susceptibility mapping is
the use of geographic information systems (GIS). Modern remote
sensing techniques, such as light detection and ranging (lidar), have
significantly improved the ability to capture topographic informa-
tion for generating digital elevation models (DEMs) at high resolu-
tion, particularly in locales covered with vegetation (Sithole and
Vosselman 2004; Jaboyedoff et al. 2012; Hopkinson et al. 2016).
Derivative products, such as slope and slope direction (i.e., aspect),
can be calculated for each cell of a DEM. Accordingly, lidar-derived
DEMs enable the extraction of relevant topographic and geomorphic
information at high resolution, which can be used to improve land-
slide susceptibility maps (Burns et al. 2008; Jaboyedoff et al. 2012;
Umar et al. 2014; Youssef et al. 2015; Mahalingam and Olsen 2015;
Mahalingam et al. 2016). A common approach in GIS raster analysis
is to compute slope values by finding themaximum rate of change in
elevation among neighboring cells in the DEM, which is highly
dependent on resolution. Different DEM resolutions can produce
different values for slope, which will ultimately yield differing esti-
mates of landslide susceptibility (Mahalingam and Olsen 2015).

Deterministic methods for assessing shallow landsliding are
usually performed using two-dimensional (2D) limit equilibrium
analyses, such as the infinite slope analysis, which can employ the
raster structure of DEMs (Dietrich et al. 1995; Iida 2004; Tsai and
Yang 2006; van Westen and Terlien 1996; Wu and Sidle 1995). A
fundamental assumption of the infinite slope analysis is that an
infinitely long planar slope surface fails along a single failure plane
parallel to the surface. These kinematics assume that a slope fails
in translation and the landslide mass is sufficiently wide and long
in comparison to depth. This assumption enables omission of
boundary forces at the head, base, and sides of a slide as they
may be negligible in comparison to the gravity-driven forces of the
slide body. Although the infinite slope analysis is a relatively
simple approach to evaluating slope stability, comparison of
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results for infinite slope and finite element methods show that the
infinite slope analysis only becomes suitable for modeling shallow
landsliding on slopes with length to height ratios of 25 or larger
(Milledge et al. 2012). In contrast, three-dimensional (3D) slope
stability methods account for edge effects and yield higher factors
of safety than 2D methods (Duncan 1996), mitigating potentially
conservative estimates of stability from 1D or 2D analyses. An
example of an edge effect considered in 3D methods is the lateral
shear resistance generated by lateral earth pressure acting against
the slope failure’s boundary (Arellano and Stark 2000). In order to
better characterize the differences between traditional infinite
slope analyses and the potential effects of boundary forces on
shallow landslide susceptibility, three-dimensional stability
methods that represent single or multiple, discrete sliding blocks
have been developed (Bellugi et al. 2015; Dietrich et al. 2007a, b;
Milledge et al. 2014). These methods demonstrate potential to
better characterize landslide susceptibility in realistic terrain that
does not broadly meet the aforementioned assumptions implicit in
the infinite slope analysis (Milledge et al. 2014).

Vegetation can enhance slope stability via mechanical rein-
forcement from roots as well as modification of slope hydrology
via moisture extraction. Researchers have investigated the me-
chanical stabilization of roots by modeling root-fiber soil interac-
tion, conducting laboratory tests, and performing in situ tests of
root-permeated soils (Gray and Sotir 1996). The limit equilibrium
theory developed by Waldron (1977) and Wu et al. (1979) focuses
on the tensile strength of root fibers that penetrate the shear zone
where sliding occurs and the associated ratio of root area to soil
area that occurs at the shear zone interface. By accounting for the
angle of shear distortion, the tensile strength is resolved into shear
strength components through a Mohr-Coulomb failure relation-
ship. Initially, tensile root strength was incorporated into the
infinite slope analysis by increasing the shear resistance along
the planar surface at the base of a soil block. However, researchers
have shown that the depth of root penetration remains shallow
(<2 m) and the reinforcement from lateral roots plays a greater
role in stabilizing landslides (Roering et al. 2003; Sakals and Sidle
2004; Schmidt et al. 2001; Schwarz et al. 2010). Despite the many
studies that have measured the influence of roots on soil stability,
spatial variability of vegetation type and density as well as the
associated root structure over a landscape remain a challenge for
DEM-based landslide susceptibility mapping (Schmidt et al. 2001).
Root reinforcement, which enhances static slope stability, may also
provide stabilizing behavior under potentially destabilizing seis-
mic loads (Liang et al. 2015). Seismic influences have also been
applied to slope stability analyses as a driving component of
failure. Pseudo-static analyses are often utilized for evaluating
seismic slope stability, consisting of applying inertial body
forces—horizontal and/or vertical—to the failure mass of soil.

Herein, we present a deterministic, shallow landslide suscepti-
bility framework based on a 3D limit-equilibrium model applied to
single DEM cells, implemented using statistically derived input
parameters from existing landslide inventories. The analysis inte-
grates boundary forces developed from surrounding topography,
seismic pseudo-static coefficients that change in magnitude and
direction when applying an earthquake motion, soil depth and
friction angle calculated from a GIS database of regional shallow
landslides, and a convergence analysis to determine appropriate
pixel dimensions based on observed landslide dimensions and

analysis of DEMs of varying resolution. To demonstrate imple-
mentation of the model, we apply it to a landslide-prone region in
the coastal mountains of Oregon, USA. This research (1) presents
an approach towards three-dimensional, deterministic shallow
landslide susceptibility based on statistical inputs from a given
landslide inventory; (2) investigates the effects of discrete bound-
ary forces in context of topography and seismicity; (3) evaluates
the reinforcing effects of roots in context of seismicity (both
pseudo-static and from scaled earthquake motions); and (4) as-
sesses the impacts of seismicity on infrastructure.

Methodology

Derivation of the three-dimensional topographic limit equilibrium
model
The raster-based model developed herein for determining shallow
landsliding potential, referred to as the three-dimensional topo-
graphic limit equilibrium (3DTLE) model, can be represented by
the free-body diagram shown in Fig. 1. The 3DTLE model formu-
lation employs many common assumptions associated with the
infinite slope analysis: The failure body is a rigid block of homog-
enous soil, landsliding occurs along a planar slip surface, and
seepage is oriented in the slope-parallel direction, and the analysis
evaluates stability for individual DEM cells. However, in contrast
to the infinite slope approach, the slope parallel direction for each
given failure body was determined from an aspect raster (azimuth-
al direction in degrees) derived from a DEM. This consideration of
aspect enables the proposed model to account for failure in direc-
tions other than X or Y as well as lateral boundary forces. This
novel aspect of the work will be discussed in more detail in the
following description of methodology. For the given analysis, slope
rasters at varying resolutions were generated using the ArcGIS
slope algorithm, which calculates the maximum rate of change in
a 3 × 3 cell window (Burrough and McDonell 1998).

Geometric properties of the soil block (Fig. 1) include the width,
X; the slope-parallel length, L; the height, H; the slope angle, β (in
degrees); and the water height ratio, m. Body forces include the
soil weight, Ws, and the horizontal and vertical pseudo-static
seismic forces, Fh and Fv. Boundary forces include the weight of
trees, Wt; the normal force, N; the basal and side shearing forces,
Sband Ss; the root tensile force, Tu; and the lateral earth pressure
forces, Pside, Pup, and Pdown—acting with an inclination angle of δ
(in degrees) on the side, upslope, and downslope surfaces,
respectively.

Summing forces parallel to the basal slip surface results in

Sb þ 2Ss þ Tu þ Pdown−Pup
� �

cos δ−βð Þ
þ Fv−Ws−Wtð Þsinβ−Fhcosβ
¼ 0 ð1Þ

and summing forces perpendicular to the basal plane yields

N þ Fhsinβ þ Fv−Ws−Wtð Þcosβ þ Pdown−Pup
� �

sin δ−βð Þ ¼ 0 ð2Þ

For maintaining static equilibrium, it is assumed that the lateral
earth pressure forces on the side surfaces, Pside, are equal in
magnitude and opposite in direction; therefore, there is no move-
ment in the x-direction. The resultant shear and tensile forces in
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Eq. (1) are expressed as stresses multiplied by the respective area
over which they are applied; i.e.,

Sb ¼ τbXL ð3Þ

Ss ¼ τ sHLcosβ ð4Þ

Tu ¼ σuHX ð5Þ

where τb and τs are the shear stresses on the base and side,
respectively, and σu is the tensile stress on the upslope surface.
The shear stress on the failure plane is expressed as shear strength
divided by a factor of safety, common practice for most limit
equilibrium analyses (Duncan 1996). The effective shear strength,
S, of soil is applied to using the Mohr-Coulomb failure criteria

S ¼ c0 þ σ0tanϕ
0 ð6Þ

where c′ is the effective soil cohesion intercept, and ϕ′ is the
effective soil friction angle.

In contrast to a traditional Mohr-Coulomb failure criterion, the
present model considers the strength of a combined soil-root
system following the theory proposed by Wu et al. (1979). The
theory states that the tension in a root fiber can be resolved into
components parallel and perpendicular to the shear zone and that
a root’s contribution to shear strength is given by

Sr ¼ tr cosθtanϕ
0 þ sinθ

� �
ð7Þ

where tr is the average root tensile strength per soil unit area and θ is
the angle of shear distortion. Sr in Eq. (7) can also be referred to as
root cohesion, cr, which is often used in the analysis of shallow slope
stability (Bischetti et al. 2005; Gray and Sotir 1996; Wu et al. 1979).
Combining Eqs. (6) and (7) with the safety factor produces the
following expressions for the shear stress used in Eqs. (3) and (4),

τb ¼
c
0 þ trbsinθ

� �þ σ
0
b þ trbcosθ

� �
tanϕ0

Fs
ð8Þ

τ s ¼
c
0 þ trssinθ

� �þ σ
0
s þ trscosθ

� �
tanϕ0

Fs
ð9Þ

where trb and trs are the root strength terms corresponding to the
base and side [obtained by solving for tr in Eq. (7)] and σ

0
b and σ

0
s

represent the effective normal stresses on the basal and side
surfaces, respectively. Because the upslope surface is not a shearing
surface, the root fibers do not experience lateral movement and
the roots’ reinforcing strength is purely tensile. The tensile
strength of the roots is defined by

σu ¼ trs
Fs

ð10Þ

The normal stresses, σ
0
b and σ

0
s, in Eqs. (8) and (9) are given by

the following expressions,

σ
0
b ¼

N
XL

−ub ð11Þ

Fig. 1 a Isometric and b profile views of the proposed soil block with associated dimensions and forces. c Example of topographic considerations in analysis
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σ
0
s ¼

Pside

HLcosβ
ð12Þ

where the normal force, N, is obtained by re-arranging Eq. (2) as,

N ¼ Ws þWt−Fvð Þcosβ þ Pup−Pdown
� �

sin δ−βð Þ−Fhsinβ ð13Þ

and the pore water pressure at the base, ub, for seepage parallel
with the slope is

ub ¼ γwmHcos2β ð14Þ

where γw is the unit weight of water.
Next, the body forces, Fh, Fv, and Ws, are defined as

Fh ¼ khWs ð15Þ

Fv ¼ kvWs ð16Þ

Ws ¼ HXLcosβ 1−mð Þγs þmγsat½ � ð17Þ

where kh and kv are the pseudo-static seismic coefficients in the
horizontal and vertical directions, respectively, and γs and γsat are
the soil unit weights for dry and saturated conditions, respectively.
The 3DTLE model ignores the effects of partially saturated soil
(i.e., matric suction) and assumes that the soil below the phreatic
surface is saturated and the soil above is dry.

Finally, by substituting Eqs. (3)–(5) and (8)–(17) into Eq. (1) and
re-arranging, the following closed-form solution is obtained for
the factor of safety against landsliding,

Fs ¼ A1c
0 þ A2XLtrb þ 2A2HLcosβ þ HXð Þtrs þ A3 þ A4ð Þtanϕ0

A5

ð18Þ
where A1 through A5 are defined as

A1 ¼ XLþ 2HLcosβ ð19Þ

A2 ¼ cosθtanϕ
0 þ sinθ ð20Þ

A3 ¼ HXLcosβ 1−mð Þγs þmγsat½ � 1−kvð Þcosβ−khsinβ½ �
þWtcosβ−γwmHXLcos2β ð21Þ

A4 ¼ 2Pside þ Pup−Pdown
� �

sin δ−βð Þ ð22Þ

A5 ¼ HXLcosβ 1−mð Þγs þmγsat½ � 1−kvð Þsinβ þ khcosβ½ �
þWtsinβ þ Pup−Pdown

� �
cos δ−βð Þ ð23Þ

Additionally, the weight of trees can be approximated by the
following equation:

Wt ¼ π
4
Dt

2HtρtNtXLcosβ ð24Þ

in which Dt, Ht, ρt, and Nt are average values for diameter, height,
wood density, and number of trees per unit area, respectively. The

estimation of tree weight in Eq. (24) is similar to the estimation
proposed in Wu et al. (1979), except that Wu et al. (1979) consid-
ered a weight per unit area of root mat instead of a weight per unit
area of slope.

Lateral earth pressure
To characterize the lateral boundary forces, it is assumed that the
earth pressure force acting on the upslope surface results from an
active failure wedge, that the earth pressure force acting on the
downslope surface results from a passive failure wedge, and that
the earth pressure force at the side surfaces can be approximated
by at-rest conditions. Significant movement is necessary to mobi-
lize passive earth pressures (James and Bransby 1970), implying
that assuming at-rest conditions for the downslope margin is a
reasonable alternative assumption. Earth pressure theory is ap-
plied to the vertical surfaces of the soil block following Arellano
and Stark (2000) and Milledge et al. (2014).

The earth pressure theory used in 3DTLE remains unique,
because it includes active and passive seismic earth pressures as
well as earth pressures caused by the influence of adjacent topog-
raphy. The at-rest earth pressure force acting on the side sur-
faces, Pside, is given by

Pside ¼ Lcosβ K0
1
2
γsH

2 þ qH
� �

−
1
2
m2H2γwcos

2β
h i

ð25Þ

where K0 = 1 − sinϕ′ is the at-rest coefficient developed by Jaky
(1944) for granular soil, and q is the estimated soil surcharge at the
lateral boundary, which is a function of adjacent topography. Sur-
charge is computed as the difference between the elevation of each
pixel, and the elevation of the lateral edge is multiplied by the soil
unit weight. The average elevation at each lateral boundary is calcu-
lated by (1) assigning each elevation pixel the coordinates of its
geometric center, (2) drawing a hypothetical cell rotated about the
center of the current pixel so that each side is either parallel or
perpendicular to slope aspect, (3) estimating the elevation of each
vertex of the rotated cell with bilinear interpolation of the elevations
from the four nearest pixel centers, and (4) computing the average
elevation along each of the rotated cell’s lateral edges by averaging
values from the two adjacent vertices (Fig. 1c). Lateral forces at the
sides must be equal in magnitude, so an arithmetic mean is taken of
the two elevation differences. Equation (25) was developed for hor-
izontal soil; accordingly, soil surcharge can result from concave
topography [i.e., when lateral elevations are above a cell’s elevation,
producing a positive surcharge (Fig. 1c)] or convex topography (i.e.,
when lateral elevations are below a cell’s elevation, producing a
negative surcharge). The first and second terms inside the brackets
of Eq. (25) represent the force per unit length due to soil and water,
respectively, and the term outside the brackets is the length over
which the lateral earth pressure force acts.

Shukla (2015) and Shukla (2013) provide a framework for com-
puting pseudo-static active and passive earth pressures for c′- ϕ′
soils assuming a planar failure surface. The presented equations
also include a soil back-slope above the failure wedge. The soil
back-slope is approximated by the slope of the considered
pixel—a positive back-slope for the active wedge and a negative
back-slope for the passive wedge. Adjacent topography increases
active pressures and decreases passive pressures at the upslope
and downslope surfaces, respectively, because the slope of each

Original Paper

Landslides 14 & (2017)1680



pixel is calculated based on the surrounding elevations. The seis-
mic earth pressure equations were developed for dry soil, but
simple modifications can be made for soil with a phreatic surface.
Westergaard (1933), for instance, proposes using an average value
for soil unit weight and adding a hydrostatic thrust term to the
computed soil thrust. The 3DTLE framework does not consider the
dynamic response of pore water or the degradation of soil strength
that can take place during strong ground motions, but presents a
simplified approach as a preliminary investigation. Although the
assumption of a planar failure surface may result in overestima-
tion of passive pressures when the angle of interface friction, δ, is
large (Choudhury et al. 2004), it is necessary to facilitate reason-
able computing times for large datasets. Fortunately, these effects
were also reduced by incorporation of back-slope angles. One
future alternative approach could include implementation of a
curved or composite failure surface, e.g., a log spiral surface
(Milledge et al. 2014).

Evaluating the suitability of raster-based susceptibility analyses and
appropriate pixel sizes
Shallow landslides may occur in a variety of shapes or sizes, some
of which may require more advanced consideration of failure
geometry than can be achieved using a raster-based analysis.
Nonetheless, raster-based approaches may be suitable when rele-
vant, inventoried slope failures exhibit geometry with an aspect
ratio (Lprojected/W) that is close to unity, where Lprojected is the
projected length of the slide (different from L, which is the
slope-parallel length of the landslide body). When a raster-based
landslide susceptibility approach is appropriate, the results will be
sensitive to pixel size (Dietrich et al. 2007a, b), so appropriate pixel
dimensions should be assessed based on the dimensions of the
observed landslides. In this approach, a raster-based analysis is
used to evaluate susceptibility while accounting for varying pixel
dimensions, slope, aspect, and boundary forces. There are varying
approaches to evaluate the dimensionality of inventoried land-
slides; in this study, side lengths of the rectangles were determined
in ArcGIS using the minimum bounding geometry tool, which fits
multiple rectangles to a given polygon and selects the one with the
smallest area. Based on the prevailing slope aspect within the
bounding box, the rectangular dimensions were characterized as
being parallel or transverse to the direction of motion. Using this
technique on a given landslide inventory, the statistical distribu-
tion of aspect ratio and landslide area can be determined as a
probability density function (PDF) and a cumulative distribution
function (CDF) to better assess observed landslide shape. With
these statistical distributions, a mean aspect ratio near unity dem-
onstrates that employing a raster-based analysis may be suitable
for evaluating landslide susceptibility.

Discretization of the DEM and its derivatives is a function of
the distribution of inventoried landslide dimensions—evaluation
of various resolutions better captures the distribution of potential
landslide sizes. Within the 3DTLE model, the failure area is
limited to the size of each pixel in the given DEM (Fig. 1). Critical
landslide sizes, the discretized pixel dimensions that are best
representative of inventoried landslides, are unknown prior to
performing the analysis, so it is necessary to evaluate a range of
failure sizes through the input of several DEM resolutions. CDFs
were developed for a given suite of DEM resolutions to investi-
gate the relationship between pixel size (area of a square pixel),

susceptibility, and observed shallow landslide area. Baseline pixel
dimensions were attained from the landslide inventory by calcu-
lating the square root of the area of each polygon, providing a
distribution of pixel dimensions (Fig. 2). These values deliver a
CDF of pixel dimensions that can be compared against distribu-
tions of pixel dimensions that fail (i.e., FS ≤1) using the 3DTLE
model with a back-analysis of geotechnical properties from the
landslide inventory and other inputs (water table, seismic coeffi-
cient, root reinforcement). The back-analysis of each landslide is
determined by using relevant metadata (slope, observed depth of
failure, area), and discretizing the observed surface into a raster
form (Fig. 2). The distribution of unstable pixel dimensions are
attained by calculating the total failed area for each given reso-
lution normalized to the total failed area for all resolutions,
ultimately producing a CDF when these percentages are cumula-
tively summed. The calculated CDF for resolution can then be
compared to the CDF representative of the landslide inventory
for assessing suitability. Furthermore, a series of pixel sizes rep-
resentative of the majority of observed and calculated slope
failures (e.g., between 10 and 90% of landslides) can be selected
for implementation in evaluating landslide susceptibility. This
requires less computational time for evaluating susceptibility over
large regions than selecting many increments of pixel dimensions
without a priori knowledge of landslide size. A user may elect to
simply select pixel dimensions based on a given landslide inven-
tory; however, in this analysis, the authors have used the com-
parison of pixel dimension CDFs as a means of calibrating
assumed input parameters and evaluating the sensitivity of land-
slide size to the given inputs.

Application of the 3DTLE model

Overview of analyses and associated geospatial data
The flowchart depicted in Fig. 3 provides a simplified illustration
of the various steps of the presented framework. Three main input
sources—a shallow landslide inventory, DEMs, and earthquake
records—enable the primary forms of the 3DTLE analysis present-
ed in this study. To demonstrate the 3DTLE model, a location near
Gales Creek, Oregon, was selected, because the density of the lidar-
derived landslide inventory was robust. Located approximately
50 km west of Portland, the selected area features a narrow valley
flanked by steeper forested slopes. State Highway 8 and Gales
Creek run the length of the valley, and several smaller roads lie
within the valley and upon the hillslopes. Within this study, the
3DTLE model was used to (a) back-analyze 100 inventoried shal-
low landslides in a 40-km2 DEM (analysis A); (b) evaluate land-
slide susceptibility and critical landslide size in the same DEM
under a variety of groundwater, root, and seismic conditions
(analysis B); (c) evaluate landslide susceptibility and effects on
infrastructure for a larger 150-km2 DEM (analysis C); and (d)
assess the landsliding behavior of a 2-km2 tile under an actual,
scaled seismic motion representative of a subduction zone earth-
quake (analysis D), all shown in Fig. 4. An overview of analyses,
purposes, inputs, and outputs are outlined in Table 1. Seismicity is
of particular concern as the Cascadia Subduction Zone lies in close
proximity to the study area, meaning that potential fault activity is
capable of producing earthquakes with larger magnitudes and
earthquake motions with greater durations than shallow crustal
earthquakes (Rong et al. 2014).
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Shallow landsliding is prevalent in the Oregon Coast Range of
the USA. There are tens of thousands of landslide deposits mapped
as part of the Statewide Landslide Information Database for Ore-
gon (SLIDO), provided by the Oregon Department of Geology and
Mineral Industries (DOGAMI). The SLIDO V.3 (Burns et al. 2012)
database contains digitized polygons of past landslide deposits
with various attributes, such as landslide movement type and
depth of failure, that were mapped based on topographic features
(e.g. headscarps, deposits). In addition to the landslide deposit
inventory, the SLIDO database also contains a larger inventory of
landslide points based on observed failures with no shape or depth
data associated with them. Landslide polygons are fewer in num-
ber as the manual mapping and entry of associated metadata is a
slow and painstaking process (Leshchinsky et al. 2015); in the
studied 150-km2 region, these polygons are only available in the
southern reaches and were used for back-analysis. The landslide
point inventory is far more extensive, as it is populated by obser-
vations from the state transportation department, geologic sur-
veys, and land management agencies and therefore could be used
to assess model agreement with the larger region that does not
have a full polygon inventory. The point-based inventory lacks
associated metadata for landslide shape and size—they do, how-
ever, provide information regarding the approximate time of oc-
currence. DOGAMI manages bare earth lidar DEMs for much of
Western Oregon (supported by the Oregon Lidar Consortium),
which exclude vegetation, with a resolution of 0.9 m.

Calculation with the 3DTLE model was performed with
MATLAB R2015b software, and the ArcGIS 10.2.2 software was
used for visualization and manipulation of spatial data. All of
the analyses took place on a computer with 128 GB of RAM and

two processors running at 2.6 GHz, using the Windows 7 operating
system. Computation time varied for each susceptibility mapping
procedure, requiring approximately 1.5 min per analyzed square
kilometer.

Soil and root properties
A critical component of evaluating slope stability is the use of
appropriate soil shear strength parameters. The 3DTLE model
was applied to the landslide inventory to characterize soil
strength for the regions of interest. To investigate back-
calculation of representative soil strengths, the following assump-
tions were made: (1) landslide deposit attributes such as failure
depth, slope, and area are representative of pre-failure conditions;
(2) the polygon area representing shallow landslide deposits can
be approximated as a square shape for a given body of rupture
(Fig. 2); (3) selected landslide records failed under static condi-
tions (i.e., kh and kv are zero); and (4) the soil is unconsolidated
and mobilized drained soil strength conditions at failure (i.e.,
only ϕ′ was used, c′ = 0). Then, the soil strength was back-
calculated by assuming a factor of safety of unity for a set of
landslide dimensions. Soil unit weights for dry and saturated
conditions are assumed to be 15 and 16 kN/m3, respectively, based
on values published in Wu and Sidle (1995) for a study site near
Mapleton, Oregon. The assumptions are an idealized representa-
tion of regional soil conditions, but present a means of using the
regional slope stability model to attain meaningful data for sus-
ceptibility mapping; that is, a user may select appropriate soil
conditions based on site investigations or back-calculated fail-
ures. Future modifications of this susceptibility framework could
benefit from information regarding causative factors and timing

Fig. 2 Projection and conversion of inventoried landslides into 3DTLE analysis
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of landslide occurrence. For example, back-analysis of shallow
landslides that were caused by past seismic motions may be
better analyzed with an approximation of past seismic peak
ground accelerations. However, due to the lack of information

regarding the seismic history of the given landslide inventory,
these landslides were assumed to have failed without seismic
influence, likely yielding a more conservative estimate of soil
drained shear strength.

Fig. 3 Flowchart of the presented framework for analyzing shallow landslides

Fig. 4 Shaded relief map of a portion of the Gales Creek quadrangle showing the limits of the selected DEMs and considered shallow landslide deposits
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For this framework, back-calculation of soil strength using the
landslide inventory required tree properties and root
reinforcement. Root cohesion can vary depending on tree
species, age, environment, and spatial scale. Sakals and Sidle
(2004) applied a spatially variable model to determine root cohe-
sion in the Oregon Coast Range, which was determined as 4.4 kPa
for natural forest. Roering et al. (2003) back-calculated a root
cohesion of 11 kPa from a back-analyzed landslide in the Oregon
Coast Range. The current study uses a root cohesion value of
8 kPa, an approximate mean of the values reported by Sakals and
Sidle (2004) and Roering et al. (2003). Best estimates of tree
properties for the Oregon Coast Range are defined as Dt = 0.75 m,
ρt = 6 kN/m3, Ht = 40 m, Nt = 400 stems/ha, dr = 1 m, and θ = 60°,
as described in previous studies (Roering et al. 2003; Sakals and
Sidle 2004; Wu et al. 1979). Note that the typical depth of root
penetration is 1 m (Sakals and Sidle 2004); therefore, root cohe-
sion is only calculated over a 1-m depth and then averaged over
the full depth of the soil block. For example, when cr is 8 kPa over
a meter of root penetration depth and the shear zone is 2 m in
depth (i.e., 1 m below the root penetration depth), the averaged cr
is 4 kPa. The vertical surcharge of tree weight per unit area is
calculated as 4.4 kPa, similar to the 5.2 kPa value reported by Wu
et al. (1979). This average tree surcharge, presented in Eq. (24),
was assumed to correspond to trees with average root cohesion of
8 kPa (cr-avg). In order to adjust the tree surcharge (based on tree
height/age) with respect to input root cohesion parameters, the
tree surcharge was scaled by a factor of cr/cr-avg. in parametric
studies. This relationship may be complex, but is considered

linear in this framework to simplistically observe the effects of
varying forest density or age.

Since the time and conditions of each unique slope failure is
unknown, one may choose conditions observed in recent, well-
documented landslides; however, selection of the modeling input
values can have significant implications on soil strength and subse-
quent susceptibility mapping. The approach used herein provides a
framework for selecting an array of soil strength properties and shear
plane depths based on past landslides, enabling statistically derived
inputs that may enhance the evaluation of landslide susceptibility
within a specific region. Accordingly, the sensitivity of back-
calculated soil strength was determined for 100 representative shal-
low landslides by varying input parameters—including water height
ratio and root cohesion (analysis A). The sensitivity analysis pro-
duced a suite of mean friction angle values (Fig. 5) as a function of
water height ratio and root cohesion. The soil surcharge term was
neglected during calculation of the lateral earth pressures because a
pre-slide DEM was not available. Mean back-calculated friction
angles generally span a large range of values depending on the input
parameters and the given landslide inventory; accordingly, it is
difficult to specify a single value of friction angle for evaluating
regional landslide susceptibility. For demonstrative purposes, the
baseline conditions for the shallow landslide inventory were consid-
ered to be 8 kPa of root cohesion (forested conditions at failure) and
a water height ratio of 0.5 (observed for shallow landslide failures in
coastal Oregon; Roering et al. 2003), corresponding to a mean
friction angle of 32.5°, used only in the evaluation of landslide size
and time-dependent seismicity analysis.

Table 1 Overview of analyses, objectives, inputs and outputs

Analysis Area Objective Inputs Outputs

A 40 km2 Back-analysis of object-based landslide
inventory for statistical distributions of
geotechnical input properties and
landslide pixel dimensions

• DEM
• Slope
• Aspect
• m
• kh
• cr
• Pixel size
• Landslide inventory

• Statistical distribution of shear strength
for susceptibility analyses

• Statistical distribution of landslide depth for
susceptibility analyses
• Selected pixel sizes for susceptibility
analyses
• Baseline water height ratio

B 40 km2 Application of 3DTLE towards smaller
map to observe sensitivity of greater
array of input parameters

• DEM
• Slope
• Aspect
• m
• kh
• cr
• Pixel size

• Susceptibility analysis in consideration of
water height ratio, cr, and kh

C 150 k-
m2

Application of 3DTLE towards a larger
map to evaluate correspondence of
landslide susceptibility model with
infrastructure

• DEM
• Slope
• Aspect
• m
• kh
• cr
• Pixel size
• Oregon Highway Geodatabase

• Susceptibility analysis for larger region
and infrastructure in consideration of
cr and kh

• Comparison towards point-based landslide
inventory

D 2 km2 Application of 3DTLE to observe
time-dependent failure under a given
earthquake acceleration-time history

DEM
Slope
Aspect
m
kh
cr
Pixel size

• Cumulative failed area with respect to
time- and aspect-dependent earth-
quake acceleration
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However, for susceptibility analyses, the back-analyzed shear
strength properties are derived from a given landslide inventory
by means of a probability density function of ϕ, representative of
the statistical distribution of shear strength attained from each
individual landslide in the given inventory (Fig. 6). The soil shear
strength is dependent on other properties that are statistically
derived from prior literature, including root cohesion, water
height ratio, and soil unit weight. Root cohesion is defined as a
fixed value that was determined statistically in previous studies
(e.g., Wu et al. 1979; Roering et al. 2003; Sakals and Sidle 2004).
The water height ratio, m, has a major influence on the determi-
nation of back-calculated friction angles, and varying root cohe-
sion also affects the back-calculated friction angles, especially
when m is large. Herein, m = 0.5 was chosen as the water height
ratio for the baseline case (analyses A and D). A half-saturated soil
depth (m = 0.5) is thought to be reasonable, as it has been
observed that shallow landslides in Coastal Oregon often occur
when the water table is less than half the depth of failure (Roering
et al. 2003). The location of a water table varies throughout a
landscape in reality (Fan et al. 2007); however, in this study, it
was selected as an input parameter for sensitivity analyses and
model calibration. Soil unit weight can vary depending on lithol-
ogy, geology, site conditions, and saturation levels°in this study,
statistically derived relationships describing bulk unit weights of
forest soils in Oregon were used (Wu and Sidle 1995). Future
modifications to the framework could better assess the spatial

variability of water table depth and its effects on shallow landslid-
ing with field-verified observations using traditional piezometers
or other remote sensing tools (e.g., soil moisture active passive
(SMAP) satellite data). Furthermore, incorporation of not only
water table depth but also the effects of unsaturated soil behavior

Fig. 5 Mean back-calculated friction angle for changing values of water height ratio and root cohesion

Fig. 6 Probability distributions of a back-calculated friction angles for baseline
conditions and b landslide depths obtained from the shallow landslide inventory
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may enable improved back-analysis and assessment of shallow
landsliding susceptibility (Godt et al. 2009).

Analysis of landslide size and shape for study area
As described in the methodology, landslide sizes and shapes in
the SLIDO inventory were investigated to (1) evaluate the suit-
ability of a raster-based approach and (2) determine pixel sizes
that are sufficiently representative of observed landslide dimen-
sions. Slide dimensions and shapes were evaluated by bounding
each inventoried polygon with a rectangle and considering the
dominant aspect of the bounding box (Fig. 7a). A PDF and a CDF
of the inventoried landslide aspect ratio, shown in Fig. 7b, dem-
onstrate a mean length to width (Lprojected/W) ratio of 1.36 and a
peak probability for a ratio of approximately 1.0, demonstrating
that use of a raster-based approach is reasonable. However, it
should be noted that implicit consideration of (1) an active,
driving wedge at the top of the landslide body, (2) a passive
resisting wedge at the toe of the landslide body, and (3) the actual
length of a given landslide body being greater than its square
projection due to slope demonstrates aspect ratios that are great-
er than unity, similar to observations made in prior literature
(e.g., Milledge et al. 2014, where aspect ratios for several
inventories was primarily between 1 and 2). Future work could
incorporate algorithms that better capture the arbitrary shape of
landslides by clustering pixels to better capture actual landslide
morphology (Bellugi et al. 2015).

Since appropriate raster discretization is unknown prior to
running the 3DTLE model, a range of DEM resolutions were
evaluated to investigate the relationship between pixel size and
failure probability. A suite of ten DEMs ranging from 3 to 140 m in
resolution were bilinearly re-sampled from the 0.9-m source DEM
using baseline mean back-calculated soil shear strength (ϕ = 32.5°)
and mean depth of observed failure (3.6 m) as inputs and com-
pared to the dimensions of landslides in the corresponding inven-
tory (Fig. 8). Sensitivity of input parameters on relevant pixel
dimensions was assessed for a range of input root cohesions, water
height ratios, and horizontal seismic coefficients which were also

applied to demonstrate the effect on the calculated failure area,
highlighting larger effective landslide areas for higher water
heights and seismic coefficients (Fig. 8). The baseline scenario
and inventory are represented in all three plots while considered
input values range from 0 to 50 kPa for root cohesion, 0 to 1 for
water height ratio, and 0 to 0.3 for horizontal seismic coefficient.
The curvature of the CDFs depicted in each of the three plots
provides a relative measure of which pixel sizes are causing the
most failure; steeper curves translate to a majority of failures
caused by a small range of cell sizes, while a curve with a more
shallow gradient signifies that many cell sizes contributed to the
calculated area of failure. Root cohesion had minimal effect on the
distribution of failure among pixel sizes as evidenced by the
similar trend of the closely spaced CDFs (Fig. 6a). While the
increase of root strength decreased landslide susceptibility, it did
so relatively evenly amid the ten considered DEM resolutions.
Figure 7b shows the variation of the water height ratio, which
greatly affects the size of predicted failure. For m = 0, approxi-
mately 90% of the failures took place for pixel sizes less than 30 m
with a mean pixel dimension of 10 m, while full saturation (m = 1)
demonstrated failure that was distributed across significantly larg-
er pixel sizes (mean of 35 m). The addition of seismicity (Fig. 6c)
revealed an increase in landslide size; increasing kh from 0 to 0.3
increased failure among larger pixel sizes, representative of a mean
landslide dimension changing from 25 to 32 m. Of the presented
CDFs, the case whenm = 0.5 was selected as it follows the observed
landslide CDF reasonably, while accounting for smaller landslides
that may not have captured in the manually mapped landslide
inventory (e.g., when m = 0.75). The CDF for kh = 0.1 also dem-
onstrates reasonable agreement, but there is little information in
the presented inventory to affirm that the observed shallow land-
slides were caused by seismic activity; therefore, the baseline
conditions were considered to be m = 0.5, cr = 8 kPa, and kh = 0.
For the baseline case, approximately 90% of the failures occur
from pixel dimensions less than or equal to 60 m. To expedite
computational time of susceptibility analyses for large regions,
four DEM resolutions representative of even increments between

Fig. 7 Analysis of landslide shape. a An example of fitting rectangles to landslide deposit polygons. b The ratio of rectangular dimensions are depicted as probabilities of
landslide occurrence
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10th and 90th percentiles of landslide failures were selected: 6, 18,
30, and 61 m.

A reliable shallow landslide inventory is required for
assessing landslide susceptibility. The 3DTLE method assumes
that inventoried landslide deposits can be modeled with a
square shape (Fig. 2), which affects the back-calculated soil
strength. Recall that the mean ratio of landslide dimensions
was roughly 1.36 (Fig. 5). Because the inventoried polygons
represent landslide deposits and not the pre-failure soil mass,
it is likely that the pre-failure soil mass maintained an aspect
ratio (length/width) closer to unity, and failure caused an in-
crease in the dimension parallel to movement. After failure, the
landslide body displaced downslope, implying that the mapped
landslide dimensions, including both the headscarp and body,
may be slightly longer than the pre-failure dimensions. While
the shallow landslide deposit polygons vary in shape, the data
presented in Fig. 7 and the implicit use of active and passive
wedges at the upper and lower boundaries of a slide support the
assumption of a square shape for the purpose of applying the
raster-based 3DTLE model.

Although landslide inventories are useful for performing re-
gional slope stability analyses, they can introduce uncertainty
into analyses. Primarily, landslide records are based on observa-
tions from published maps; therefore, many smaller slope fail-
ures were likely not noticed or detectable, which indicates that
the distribution of landslide area is skewed towards larger sizes.
The bias towards larger landslides implies that the shallow land-
slide inventory CDF presented in Fig. 8 is also shifted to the right,
corresponding to larger pixel sizes. The bias towards larger land-
slide areas further supports the selection ofm = 0.5 and cr = 8 kPa
as the baseline scenario because the baseline scenario CDF is
positioned to the left of the landslide inventory CDF in each plot.
If the smaller landslide areas were included in the landslide
inventory, then the inventory CDFs would likely shift near the
baseline CDFs in Fig. 8; accordingly, the baseline case could be
regarded as more accurate representation of landslides in the
Gales Creek area.

Susceptibility analysis
In this analysis, landslide susceptibility was founded on the shal-
low landslide inventory obtained from SLIDO. Instead of using
Bbaseline^ soil conditions (ϕ = 32.5°, depth = 3.6 m), back-
calculated soil friction angle and depths of failure from individual
landslides were treated as variables having probability distribu-
tions determined from the forensic analysis of the inventory for
m = 0.5 and cr = 8 kPa (analysis B, Fig. 6). The respective product
of a given friction angle and potential depth of failure (both
corresponding to a specific probability) were used as input for a
given slope stability analysis. Due to the inherent reliance on back-
calculated strength and landslide depth for input, this susceptibil-
ity analysis is heavily dependent on the quality of the landslide
inventory.

To apply susceptibility mapping, distributions of landslide
depth and back-calculated friction angle were divided into ten
bins, with each bin having a mean value and an associated prob-
ability of failure (Fig. 8). The analysis was run 100 times for each
combination of friction angle and depth for four different DEM
resolutions. The selected resolutions—6, 18, 30, and 61 m—were
considered representative of the baseline CDF curve, as will be
highlighted in the BResults and discussion^ section. Varying pixel
sizes were integrated into a singular susceptibility map by over-
laying the calculated areas of failure with a resolution equal to the
smallest cell dimension. If failure (Fs <1) was calculated for a given
cell, then the cell was assigned the product of the two probabilities,
friction angle and depth. Finally, the probabilities were summed
for a given cell, producing a map where each cell has a probability
of failure between 0 and 100%.

The susceptibility analysis was first applied to a 40-km2 tile that
contained the landslide inventory for quality control and then
projected to a much larger, 150-km2 DEM of the watershed, delin-
eated using the ArcGIS Hydrology toolset (analysis C, Fig. 4).
Infrastructure susceptibility was characterized for major roads
within the large DEM as a means of evaluating the impacts of
shallow landsliding on regional infrastructure lifelines. All major
roads were included in the analysis. This susceptibility was

Fig. 8 The dependence of failure on pixel size for changing values of a root cohesion, b water height ratio, and c horizontal seismic coefficient. Baseline conditions used
for non-changing parameters
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represented as the maximum probability of failure occurring with-
in 15 m of the roadway’s centerline under the conditions of each
susceptibility map to account for failures that develop under the
roadways or in close proximity. Note that it does not account for
slope failures further than 15 m that may have significant runout
distances.

Seismic analysis
A seismic analysis that accounted for an actual scaled earthquake
motion was performed to highlight the capability of the 3DTLE
model (analysis D). To reduce computational expense, only one
earthquake motion was selected rather than perform a robust
seismic analysis considering many possible motions of the locale.
The most significant earthquake hazard at Gales Creek results
from the Cascadia Subduction Zone, which is capable of produc-
ing large magnitude earthquakes (up to M9.0) and long-duration
earthquake motions. The earthquake motion used herein was
selected from recordings of the 2011 Great East Japan Earth-
quake, because the earthquake motions produced by the
Cascadia Subduction Zone are expected to have similar ampli-
tudes, frequency contents, and durations (Goldfinger et al. 2012;
Melgar et al. 2016). The selection was made by fitting a database
of the 2011 Great East Japan Earthquake motions, which was
compiled and processed by Carey (2014) based on recordings
from K-net and KiK-net seismic stations, to a target design
spectrum. The target design spectrum was created for Gales
Creek using the ASCE 7–10 (2010) procedure with a site class D
assumption. The earthquake motions were linearly scaled in the
time-domain and fitted to the target design spectrum using a
root mean square error (RMSE) goodness-of-fit algorithm
(Barbosa et al. 2014; Kottke and Rathje 2008). The earthquake
motion with the best RMSE goodness of fit and the lowest linear
scaling factor was chosen. The acceleration-time series for the
East-West and North-South transverse components of the select-
ed earthquake motion, as well as the earthquake response spectra
and target design spectrum, are shown in Fig. 9.

Within a limit equilibrium slope stability framework, these
complex earthquake motions can be simplified as pseudo-static
forces; i.e., the inertial force caused by the earthquake motion
shaking the slope mass is estimated as a static force (Seed and
Martin 1966). The horizontal pseudo-static seismic coefficient,
kh, is estimated from the amplitude of a target acceleration
time-series so that each acceleration value (in g) corresponds
to a dimensionless kh that was applied to the 3DTLE model.
Notably, most researchers apply a reduction factor to the
acceleration value to obtain the value of kh for engineering
design, which varies from approximately 0.5 (e.g., Hynes-
Griffin and Franklin 1984) to 0.75 (e.g., Bray and Rathje
1998). However, given that the seismic analysis performed
herein is a proof of concept, and that most kh reduction factors
are calibrated for earthen dams and other embankment struc-
tures, a Breduction factor^ of 1.0 is assumed for analysis (i.e.,
the acceleration values are equivalent to the kh values). At a
given time increment, the 3DTLE model used a horizontal
pseudo-static seismic coefficient for a given cell. The EW and
NS kh values were rotated to the direction of the given pixel’s
aspect using direction cosines, which created cell-specific kh
values. In this manner, each cell of a DEM has a unique
horizontal pseudo-static seismic coefficient that was used for
the factor of safety calculation. For the seismic analysis, a
mean depth (3.6 m) and a mean back-calculated strength
(ϕ = 32.5°) were used, as opposed to the probability distribu-
tions used for the susceptibility analysis, to expedite computa-
tional time.

Similar to the susceptibility analysis, four DEM resolutions
were used to calculate regions of failure and overlaid onto one
map. This process was repeated for each time step of the earth-
quake motion to produce an animation of the cumulative failed
area. An analysis of the full 300-s motion produces 30,000
frames, resulting in considerable computing expense. According-
ly, a reduced motion and a smaller DEM tile (blue rectangle in
Fig. 4) were used for the seismic analysis.

Fig. 9 EW and NS acceleration-time series for the full-length scaled ground motions (left) and pseudo-spectral response with the design target spectrum (right) of two
selected motions used in the scaling of 46 input motions
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Results and discussion

Comparison to observed landslides
Results from the 3DTLE model were compared to historical land-
slide data points (SLIDO) in the larger study region to determine
the model’s suitability for predicting future slope instability
(Fig. 10). These landslide data points generally lack complete
information about landslide shape or depth, unlike the inventory
of polygons used in back-calculation of strength, but provides a
simple means of assessing model agreement within the larger
DEM. In the studied region, data points were primarily recorded
from 1996, a year of historic rainfall. A sensitivity analysis was
performed on water height ratio under the assumption that the
majority of the observed landslides were rainfall-induced (n.b., no
significant earthquake motions were recorded in Oregon during
1996; the largest nearby earthquake had a magnitude of 5.4 and
occurred near Duvall, Washington, nearly 350 km from Gales
Creek). The 3DTLE model was used to predict the probability of
landsliding at each of the points identified as a landslide in the
SLIDO database for the Gales Creek watershed in 1996. Thus,
comparing the 3DTLE model-calculated probability of failure with
locations of known failure provides an approximate measure of
validation for using the 3DTLE model to assess shallow landslide
susceptibility (Fig. 10).

Susceptibility maps of the greater Gales Creek region were
generated for four values of water height ratio, and focal statistics
were applied to smooth the results in a 3 × 3 cell window. Focal
statistics were applied to mitigate some of the positional uncer-
tainty effects of comparing discrete point objects (SLIDO points)
with an underlying raster. The susceptibility was queried at 84
landslide points, and histograms were produced of the results
(Fig. 10). The input water height ratios used were m = 0, 0.25,
0.5, and 0.75, and the horizontal seismic coefficient as well as root
cohesion remained zero. In addition, similar histograms were

generated for 84 random points in locations where landslides
had not occurred to show a reverse correlation. The histograms
are depicted on the left plot of Fig. 10 with a map of point locations
on the right plot. The 3DTLE model should predict high probabil-
ities of failure at the known landslide points from the SLIDO
database, which would suggest model validation, to a rough ap-
proximation. The 3DTLE model does predict high probabilities of
failure when m = 0.5 and m = 0.75, where the model shows that 70
and 85% of the known SLIDO landslide points have probabilities
of failure greater than 0.4, respectively. In contrast, the 3DTLE
model performed at the random points should predict the oppo-
site trend; that is, a majority of random points should have low
probabilities of failure, which indicates that the model is not an
over-predicting failure at locations other than at the landslide
points. The 3DTLE model does predict low probabilities of failure
when m = 0 and m = 0.25 (42 and 50% of SLIDO points have
failure probabilities greater than 40%, respectively). Notably, the
histogram for m = 0.5 shows a roughly inverse distribution of
probabilities of failure across the bin sizes, which gives further
credence for using m = 0.5 as the baseline case. Although the
sensitivity analysis performed to compare the model performance
to observed data is relatively simplistic, it shows that the 3DTLE
model can reasonably capture slope failures that have been ob-
served, and it shows that the 3DTLE model is appropriately sensi-
tive to the location of the phreatic surface.

Susceptibility analysis
Four DEM resolutions (6, 18, 30, and 60 m) and distributions of
both landslide depth (1.1 to 4.4 m, Fig. 7) and friction angle (10.5°
to 55.5° for m = 0.5, Fig. 6) were applied to produce susceptibility
maps for different variations of horizontal seismic coefficient,
water height ratio, and root cohesion (analysis B). Considered
input values included kh= 0, 0.1, 0.3, 0.6; m = 0, 0.25, 0.5, 0.75;
and cr= 0, 8, 20 kPa. When applied to the 40-km2 DEM containing

Fig. 10 Histograms of calculated susceptibility at observed landslide points and randomly generated points for four different values of input water height ratio. The map
of the Gales Creek watershed (right) features 84 points from the SLIDO database and 84 randomly generated points in locales without landslides
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the landslide inventory, susceptibility maps were produced
(Fig. 11), where map colors range from dark blue (0% probability
of failure) to dark red (100% probability of failure). The increased
height of water and seismicity caused an increase in the probabil-
ity of failure for the sloped terrain along the edges of the valley
(Fig. 11). To quantify the effect of changing input values, the mean
probability of failure is compared for the 48 different combina-
tions of kh, m, and cr (Fig. 12). The mean probability of failure for
these scenarios is directly proportional to the water height ratio
and the horizontal seismic coefficient, but inversely proportional
to root cohesion. As is expected, increasing horizontal seismic
coefficients increased the mean probability of failure. For example,
when m was 0.25 and cr was 0 kPa, the mean probability of failure
increased from 0.12 to 0.82 when kh transitioned from 0 to 0.6,
respectively. Increasing the root cohesion to 20 kPa reduced the
probability of failure to 0.65 when kh was 0.6. When the water table
was high (m = 0.75), increasing root cohesion from 0 to 20 kPa
reduced the mean probability of failure by between 10 and 12%;
however, this behavior was muted when seismic inputs were great
(kh = 0.6) as the large seismic forces overcame the stabilizing
forces of the roots.

Using the soil strength and depth distributions of the shallow
landslide inventory, corollaries were made about the statistical
probability of slope failure occurring, resulting in susceptibility
maps for various root, water, and seismic scenarios. The 48 differ-
ent scenarios featured in Fig. 12 were investigated as a parametric
study with highly variable input parameters (i.e., the input param-
eters can change temporally and spatially with environmental
factors or be difficult to estimate as Bmean^ values on a landscape
scale). However, scenarios with m = 1 were excluded from the
susceptibility analysis, because water tables are rarely, if ever, at
the ground surface in mountainous terrain, and excluding m = 1

cases reduced computational expense. Furthermore, root cohesion
has a larger effect on landslide susceptibility for shallower slides,
primarily when the landslide depth is less than the depth of root
penetration and basal root reinforcement can be applied to the
3DTLE model. The generated susceptibility maps, such as those of
Fig. 11, provide important information about shallow landslide
susceptibility, namely, the spatial extent and magnitude of failure
probabilities. Regions with high probabilities of failure can be
identified over large extents, yet the accuracy of a given map is
dependent on the accuracy of several parameters (e.g., friction
angle, root cohesion, soil depth, water height ratio) to characterize
the considered landscape.

The results of susceptibility mapping at an extended spatial
scale (analysis C, Figs. 13 and 14) highlight the notable impacts
that seismicity may have in mountainous terrain with metastable
slopes. Four cases of horizontal seismic coefficient, water height
ratio, and root cohesion were considered in the calculation of
failure probabilities, each showing increasing probability of failure
with greater seismic accelerations. Omission of root cohesion
demonstrated a small increase in landslide susceptibility, but was
minimal in comparison to seismicity. This increasing susceptibility
of failure under seismicity translates directly to greater suscepti-
bility for infrastructure (Fig. 12). Roads that were influenced most
were located on or adjacent to steep hillsides that were deemed
likely to fail. As horizontal seismic coefficients increased, roads
that were in proximity to gentler slopes realized greater suscepti-
bility from landslides.

Finally, the maps of Figs. 13 and 14 include a significantly larger
area (150 km2) than the rectangular maps of Fig. 11, which indicates
that the susceptibility analysis relies on an inventory that is only
partially representative of the landscape. Nonetheless, this analysis
still demonstrates that landslide susceptibility can be characterized

Fig. 11 Landslide susceptibility maps of Gales Creek, OR, calculated using a product distribution and various input values of horizontal seismic coefficient and water
height ratio. Root cohesion was held constant at 0 kPa for all four maps
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for large extents based on given distributions of soil properties
determined from back-analysis of existing landslides. To improve
the larger regional landslide susceptibility maps, accurate repre-
sentation between the considered inventory deposits and the map-
ping extents should be maintained, which is usually accomplished
by considering mapping extents with similar conditions as the
inventory (e.g., lithology, soil type, hydrologic conditions). The
main advantage of extending a mapped area is that meaningful
conclusions can be made in areas where shallow landsliding may
not yet have occurred. For instance, the infrastructure susceptibil-
ity maps of Fig. 14 can aid in asset management decisions and
emergency repair. Although the infrastructure susceptibility maps
display similar probabilities of failure as their associated landslide
susceptibility maps, they capture the potential for infrastructure
loss associated with nearby shallow landslides.

Seismic analysis
The factor of safety against slope stability for each cell was calcu-
lated for every time step of the aspect-rotated earthquake motion,
which ensured that local and global peak accelerations were con-
sidered in the analysis (analysis D). Accordingly, the kh values at
each time step were applied to the shallow landslide model, pro-
ducing a temporal map of the cumulative failed area. Final calcu-
lated areas of failure for maps produced by the four combinations
of m and cr, listed in Fig. 15, are approximately 222,740 m2 (7.10%
of map area), 196,840 m2 (6.28%), 337,500 m2 (10.8%), and
326,610 m2 (10.4%), respectively. From this analysis, it can be
surmised that root strength plays a nuanced role in preventing
seismically induced shallow landslides that is more pronounced
when lower water tables are considered.

Note that there are some discontinuities in the cumulative area
of failure time series (Fig. 15), which correlate to Bspikes^ in the
acceleration-time series. The spikes in the acceleration-time series
can be investigated further by examining the Husid plot, which

shows the normalized Arias intensity (Arias 1970) buildup versus
time. Arias intensity, IA, is given as

IA ¼ π
2g

∫
0

td

a tð Þ2dt ð26Þ

where a(t) is the acceleration-time series and td is the duration
of the earthquake motion. Accordingly, significant changes in the
slope of the Husid plots correspond to the spikes in the
acceleration-time series, and d(IA)/dt, which is sometimes referred
to as the shaking intensity rate (Dashti et al. 2010), is shown in the
bottom plot. The first major discontinuity in the cumulative area
of failure time series occurs around 55 s and corresponds to the
first series of larger d(IA)/dt values (primarily from the N-S earth-
quake motion). The second major discontinuity in the cumulative
area of failure time series occurs around 75 s and corresponds to
the largest d(IA)/dt values (primarily from the E-W earthquake
motion). Although the earthquake motion continues to produce
large values of d(IA)/dt after 75 s, no more significant changes to
the cumulative area of failure occur.

Comparison to conventional infinite slope analyses
Conventional analyses of shallow landslide susceptibility have
often been applied using the infinite slope analysis, which prompts
a comparison between the conventional analyses and the 3DTLE
analyses to highlight notable differences, particularly potential
conservatism associated with the infinite slope method. The com-
parison focused on landslide susceptibility for four combinations
of horizontal seismic coefficients and water height ratios, using the
binned distributions of friction angle and landslide depth (Fig. 16)
in the 40-km2 DEM. The infinite slope equation developed by
Hadj-Hamou and Kavazanjian (1985) was used for calculations,
which accounts for slope parallel seismic accelerations; according-
ly, the magnitude of the input horizontal seismic acceleration was

Fig. 12 Comparison of the mean probability of failure calculated for various input values of horizontal seismic coefficient, water height ratio, and root cohesion
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projected to a slope parallel direction to maintain consistency
between the conventional and 3DTLE analyses. Root cohesion
and tree weights were neglected from this analysis for simplicity
in comparisons.

A raster subtraction was employed to observe the spatial impact
of the infinite slope analysis’s assumptions versus the 3DTLE
model, which includes boundary forces (Fig. 16). Two-
dimensional slope stability methods, like the infinite slope analy-
sis, predict lower factors of safety against slope failure than three-
dimensional methods—meaning that the infinite slope method
should, on average, predict higher probabilities of failure than
the 3DTLE model. Subtracting the 3DTLE failure probability from
the infinite slope failure probability produced a map of probability
differences; a positive difference signifies that the infinite slope
analysis calculates a higher probability of failure, whereas a nega-
tive difference denotes higher failure probabilities calculated with
the 3DTLE model. For static cases, the infinite slope analyses
predict higher susceptibility to landsliding in an average sense
(Fig. 16), both with and without the presence of water, although
the analysis with m = 0.25 under static conditions does begin to
indicate small regions where the 3DTLE model predicts higher
landslide susceptibility. As the factors driving failure are increased
(water height ratio and seismic coefficient), the 3DTLE model
produces more regions with higher failure probabilities on the

shallower sections of the landscape (i.e., ridges). The 3DTLE model
is more sensitive to seismic forces, because the seismic forces act
both as body forces in the potential landslide body and as driving
forces in both the neighboring active and passive wedges. Al-
though the suitability of the infinite slope method is a function
of topography and underlying soil strata, this comparison does
indicate notable conservatism for discrete shallow landslides, par-
ticularly under lower water height ratios and seismicity.

Constraints, limitations, and opportunities for future work
This study proposes the 3DLTE, a raster-based methodology, for
using landslide inventories to derive statistical geotechnical and
landslide properties to assess landslide susceptibility determinis-
tically; however, as in any landslide susceptibility modeling, there
is significant uncertainty in input parameters, particularly those
relating to the subsurface. The aforementioned susceptibility anal-
yses use root cohesion as a uniform value applied over a land-
scape, despite the fact that vegetation can range significantly
regionally. Future work could better delineate root reinforcing
behavior by accounting for root properties associated with unique
tree species, age, and site conditions. Groundwater table in these
analyses was input as constant over a landscape for each analysis:
however, in reality, varying groundwater tables would be observed,
depending on geographic location, geology, lithology, and

Fig. 13 Susceptibility map for the Gales Creek watershed showing the probability of failure for four cases of horizontal seismic coefficient, water height ratio, and root
cohesion overlaid on shaded relief. The inset map shows a close-up view of a section of Highway 6
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topography. Future work could use remote sensing data or a field
instrumentation network to better define the hydrologic condi-
tions and associated variability on a regional level. The proposed
methodology uses a landslide inventory to better define statistical
regional properties pertaining to landslide susceptibility. However,
this means that the quality of derived input properties is intrinsi-
cally dependent on the quality of a given landslide inventory and
its associated metadata. This is particularly important when con-
sidering the uncertainty surrounding the causative conditions for
a given landslide. In the polygon-bases inventories used in this
study, there is no information about landslide causation (e.g., past
earthquakes, rainstorms, wildfire) or time of occurrence. There-
fore, assumptions surrounding initial conditions at the time of
failure were made and sensitivity analyses performed. Future work
could benefit from large landslide inventories with enhanced de-
tail regarding causative factors of landsliding—this would enable
better forensics and, consequently, better input properties for
susceptibility. The proposed framework uses a raster-based analy-
sis to calculate susceptibility at various meaningful pixel sizes
while also considering the slope aspect for a given landslide mass;
however, future modifications of the proposed methodology could
use improved algorithms to account for the often complex kine-
matics and geometry of realistic landslides. For example, recent

work has used clustering algorithms to account for the stability of
multiple pixels representative of arbitrary landslide geometry.
Such analyses, although computationally expensive at large scales,
would more robustly capture potential landslide geometry. Fur-
thermore, future analyses could adopt more complex failure kine-
matics, including rotational (e.g., log-spiral) or generalized slope
stability kinematics (e.g., Spencer, Morgenstern-Price)—however,
the use of such methods introduces further levels of uncertainty
regarding three-dimensional conditions in the subsurface. Despite
these possibilities for enhancements, in its current form, the pre-
sented framework presents a rational methodology for using land-
slide inventories and a newly developed raster-based, three-
dimensional slope stability model to account for regional condi-
tions, topography, and potential seismic loading when evaluating
shallow landslide susceptibility.

Conclusions
A framework for assessing shallow landslide susceptibility—through
the development of the three-dimensional topographic limit equilibri-
um (3DTLE) model, a shallow landslide inventory, lidar-derived digital
elevation maps (DEMs), and various geotechnical scenarios—was de-
veloped. This 3DTLE model is unique because it accounts for lateral
root reinforcement along multiple surfaces, characterizes the influence

Fig. 14 Infrastructure susceptibility maps for various cases of horizontal seismic coefficient, water height ratio, and root cohesion overlaid on shaded relief maps within
the Gales Creek watershed
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of adjacent topography through the earth pressure boundary forces,
accounts for temporally and directionally variant pseudo-static seismic
forces, and uses deterministic geotechnical slope stability analyses and
applies them to a regional scale.

Based on the 3DTLE modeling, it was shown that shallow
landslide susceptibility may be sufficiently modeled using a
raster-based structure to approximate landslide shape for certain
landslide inventories. This observation is particularly valid when
accounting for implicit boundary wedges (active and passive) and
basing the landslide shape on post-rupture landslide remains,
which are often delineated as one shape despite possible runout
and dilation during failure. Furthermore, the results of the 3DTLE
modeling indicate that landslide susceptibility can be determined
for the landscape scale when reasonable input parameters (e.g.,
those from existing landslide inventories) are used. The integrated
approach of using existing landslide inventories to determine
probability distributions of landslide depth, landslide size, and
back-calculated soil shear strengths provides an alternative deter-
ministic approach to landslide susceptibility mapping under both
static and seismic conditions.

Earthquake motions (i.e., seismically induced ground displace-
ment, velocity, and acceleration) are directionally dependent; for
instance, the earthquake motion in a north-south transverse di-
rection is different than the earthquake motion in an east-west
transverse direction. Prior research has demonstrated a correla-
tion between the directionality of ground motions and the aspect
of co-seismic landslides (Barlow et al. 2015). The presented frame-
work could be an investigatory tool to further evaluate this rela-
tionship by taking an acceleration-time history and comparing its

directionality with modeled shallow landslide occurrence. Within
this study, that seismically induced landsliding depends on the
Bintensity^ of the earthquake motion oriented in the downhill
slope direction, defined as a vectorized pseudo-static coefficient
during a given time step. Therefore, the occurrence seismically
induced landsliding is very sensitive to the selected input earth-
quake motion, which must be estimated for a given location.
However, this model presents a unique framework towards evalu-
ating non-uniform and time-dependent accelerations.

A comparison of the 3DTLE model to conventional infinite
slope analysis shows that three-dimensional slope stability tools
can better capture the effects of topographic features, including
valleys and ridges. Additionally, conventional infinite slope anal-
ysis may be unconservative when seismic loading of discrete
landslides is considered, as it cannot capture the effects of in-
creased driving forces (upslope active wedge) and decreased
resisting forces (downslope passive wedge) during inertial loading.

There are many potential opportunities to refine the 3DTLE
model. Root reinforcement can be analyzed in a way that captures
the variation in root area ratio from alternative data sets (e.g.,
NVDI). A more accurate characterization of passive pressure can
be obtained by considering a curved failure surface. Strength param-
eters can be better categorized by incorporating observed regional
geologic units. Incorporation of unsaturated soil mechanics and
hydrologic modeling may help capture the effects of partial satura-
tion and infiltration, yielding better understanding of rainfall-
induced landslides. Topographic amplification can be integrated to
evaluate the effects of non-uniform seismic accelerations on slope
stability (e.g., Ashford et al. 1997). Finally, the approach can be

Fig. 15 Cumulative area of failure obtained by applying the shorter length motions to a smaller DEM tile near Gales Creek, OR. Four different combinations of water
height ratio and root cohesion were analyzed
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further translated into infrastructure risk maps by considering prox-
imity and vulnerability of infrastructure such as roads, business
districts, or residential areas. The future directions are evidently
formidable; however, improved landslide modeling will ultimately
help decision makers in regions prone to landsliding.

A1–5, coefficients used in factor of safety; c″, effective soil
cohesion; cr, root cohesion; Dt, tree diameter; dr, depth of root
penetration; Fh, Fv, horizontal and vertical seismic forces; Fs,
factor of safety; H, height of soil block; Ht, tree height; K0,
coefficient of at-rest earth pressure; kh, kv, horizontal and vertical
pseudo-static seismic coefficients; L, slope-parallel length of soil
block; Lproj, pixel length of soil block; m, water height ratio; N,
normal force; Nt, number of trees per unit area; Pdown, lateral
earth pressure force at downslope surface; Pside, lateral earth
pressure force at side surface; Pup, lateral earth pressure force at
upslope surface; q, soil surcharge at side surface; Sb, Ss, shearing
force at base and side; Sr, root cohesion; Tu, tensile force at
upslope surface; trb, trs, average root tensile strength per soil unit
area; ub, porewater pressure at base; Ws, soil weight; Wt, tree
weight; X, width of soil block; β, slope angle; γs, γsat, dry and
saturated soil unit weight; γw, unit weight of water; δ, interface
friction angle; θ, angle of shear distortion; ρt, density of wood;
σ″b, σ″s, normal stress at base and side surfaces; σu, tensile stress
at upslope surface; τb, τs, soil shear stress at the base and side
surfaces; ϕ″, effective soil friction angle.
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