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Analyzing rainfall-induced mass movements in Taiwan
using the soil water index

Abstract This study applied the soil water index (SWI), which can
represent the conceptual soil water contents as influenced by
present and antecedent rainfall, for analyzing rainfall-induced
mass movements in Taiwan. The SWI has been used in Japan for
nationwide mass movement warnings. This study examined
whether the SWI can be also applied to Taiwan, which has a
climatic condition and high-relief topography similar to Japan.
We used data for mass movements for 2006–2012 (n = 263) for the
main analyses and those for 2013 (n = 19) for verification. The SWI
values before the rainfall events that triggered mass movements
were used as the indicator of the antecedent rainfall condition. We
found that when SWI values before rainfall events increased from
<17.5 to >35, the upper threshold of rainfall conditions needed for
triggering mass movements significantly decreased. The mass
movements in 2013 support this finding. We classified rainfall
conditions for triggering mass movements into two types, short
duration–high intensity (SH) and long duration–low intensity
(LL), based on a principal component analysis (PCA). The SH type
is associated with a rapid increase in SWI, and the LL type is
associated with a gradual rise and subsequent constancy of SWI
except in some extremely long rainfall events. Based on this result,
we modeled the general trend of the time series changes in SWI for
the two types, which was verified using the mass movements in
2013.

Keywords Landslides . Debris flows . Short duration–high
intensity (SH) . Long duration–low intensity (LL) . Warning
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Introduction
Mass movements in mountainous areas of the world are caused
mainly by three triggers: rainfall, earthquakes, and rapid snowmelt
(Keefer 1984; Guzzetti et al. 2002; Malamud et al. 2004a, b; Tiranti
et al. 2013) and influenced by various factors, such as topography,
lithology, geological structure, soil moisture content, and anthrop-
ic influence (Crozier 1999; Glade et al. 2000; Saito et al. 2017).
Numerous methodologies have been developed to detect and
predict mass movement hazards. Such methodologies generally
employ hydrological or statistical models to assess and map mass
movement susceptibility or probability. Hydrological models as-
sess the slope stability based on topographical, hydrological, and
soil texture parameters and calculate the factor of safety along a
critical slip surface using the ordinary method of slicing a land-
form mass or its variations (Bishop 1955; Janbu et al. 1956;
Morgenstem and Price 1965; Spencer 1967; Capparelli and Tiranti
2010). In contrast, statistical models assess slope stability by ana-
lyzing site factors, such as geology, topography, climate, land use,
and vegetation. Several statistical models have been used to assess
mass movement susceptibility for different areas, including

logistic regression (Guzzetti et al. 1999; Dai and Lee 2002; Ayalew
and Yamagishi 2005; Bui et al. 2016), artificial neural networks
(Chang and Chao 2006; Lee et al. 2007; Melchiorre et al. 2008;
Gorsevski et al. 2016), and decision tree models (Pal and Mather
2003; Xu et al. 2005; Bou Kheir et al. 2008; Schneevoigt et al. 2008;
Saito et al. 2009; Tsangaratos and Ilia 2016). Assuming that mass
movements will occur in the future due to the same conditions
that triggered them in the past, susceptibility assessments predict
the locations of future mass movements (Guzzetti et al. 1999, 2005,
2006; Segoni et al. 2015b; Paudel et al. 2016).

Rainfall is the most common triggering factor for mass move-
ments. Previous studies have used rainfall characteristics, such as
intensity, duration, cumulative rainfall, and antecedent rainfall
during a particular period, to identify the climatological condition
for mass movement initiation (Caine 1980; Keefer et al. 1987;
Crozier 1999; Glade et al. 2000; Aleotti 2004; Guzzetti et al. 2007;
Saito et al. 2010a; Tiranti and Rabuffetti 2010; Chen et al. 2015).
Among them, the rainfall intensity (I)–duration (D) threshold is
the most popular and is applied in different areas of the world
(Caine 1980; Larsen and Simon 1993; Guzzetti et al. 2007; Brunetti
et al. 2010; Saito et al. 2010a; Chen et al. 2015; Rosi et al. 2016).
However, the I–D plot only represents average event rainfalls and
does not necessarily reflect antecedent rainfall and sporadic high
rainfall intensities. Previous studies also pointed out that the
occurrence of mass movements is highly related to high-intensity
rainfall (Saito et al. 2010a; Chen et al. 2015; Segoni et al. 2015a).

The Japan Meteorological Agency (JMA) proposed the soil
water index (SWI) as the conceptual soil water contents influenced
by present and antecedent rainfall (Okada et al. 2001). This index
uses a calculated value of the total water depth of a three-layer
tank model with fixed parameters (Sugawara et al. 1974; Ishihara
and Kobatake 1979). Using the SWI, the Japanese government
established a nationwide early warning system for mass movement
disasters in 2005. The system sets a criterion for the occurrence of
mass movements based on a 60-min cumulative rainfall and the
SWI in each 5-km grid cell covering all areas of Japan (Osanai et al.
2010).

Saito et al. (2010b) proposed the normalized soil water index
(NSWI), which is the SWI divided by the highest value of the SWI
over the past decade. They identified two types of rainfall condi-
tions for shallow landslide initiations in Japan: a short-duration–
high-intensity (SH) type and a long-duration–low-intensity (LL)
type. This classification can be used for predicting shallow land-
slides resulting from the rapid increase in the NSWI with short
duration (SH) and those from the gentle rise in the NSWI followed
by heavy rainfalls of long duration (LL). The NSWI was then used
for a regional case study of landslide disasters triggered by a
record-breaking rainfall due to Typhoon Talas in September 2011
that caused enormous damage in the Kii Peninsula, Japan. Most of
the landslides occurred in an area where the maximum NSWI was
high (Saito and Matsuyama 2012).
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In Japan, the SWI was also used to assess the influence of
antecedent rainfall (Sassa 2005). For example, the investigation
team for landslide disasters triggered by the Mid-Niigata Prefec-
ture earthquake in 2004 used the SWI to analyze the influence of
rainfall before the earthquake (Sassa 2005). The heavy rainfall
prior to the Mid-Niigata Prefecture earthquake resulted in numer-
ous landslides and significantly differed from the results in the
Nikawa landslide caused by the Hyogoken-Nambu earthquake in
2005 with a long travel distance and almost no antecedent rainfall.
These previous studies show that the SWI can successfully predict
the occurrence of mass movements, but it has been verified only in
Japan.

Since mass movements are densely and widely distributed in
Taiwan, it is important to establish the relationship between the
initiation of mass movements and the rainfall conditions. In
order to combine the effects of antecedent and current rainfall
intensities and contribute to mass movement warnings, it
seems appropriate to apply the SWI to Taiwan. Both Taiwan
and Japan are located on the ring of fire where active orogeny
resulted in many high mountains higher than 3000 m a.s.l. The
highest peaks in Taiwan and Japan are 3952 m of Yushan and
3776 m of Mount Fuji, respectively. Previous studies also show
that the slope of around 30° is the most relevant with mass
movements in Taiwan (Chen et al. 2015, 2016) and in Japan
(Fujiwara et al. 2004). In terms of climate, Taiwan and Japan
mostly belong to the climate of the temperate zones and under
the influence of the Asian monsoon. The annual rainfall in
Taiwan and Japan average 2500 and 1700 mm, respectively,
and on average, three to four typhoons strike both areas every
year. Figure 1 shows simplified geological maps of Taiwan and
Japan based on the 1:500,000 Taiwan Geological Map from the
Central Geological Survey of Taiwan and the 1:200,000 Japan
Seamless Geological Map from the Geological Survey of Japan.
Geological conditions in both Taiwan and Japan are those of
island arc formed under strong tectonic stresses. Such topo-
graphic, climatic, and geologic similarities between Taiwan and
Japan suggest the applicability of the SWI in both areas. Al-
though other factors, such as vegetation and soil types, also
affect the occurrence of mass movements, the SWI offers a
straightforward means for issuing mass movement warnings
for a wide area. Therefore, the objective of this study is to
examine the applicability of the SWI in Taiwan to analyze the
relationship between mass movements and rainfall conditions.

Study area
Taiwan is located on a convergent plate boundary between the
Eurasian Continental and the Philippine Sea plates, with the latter
subducting below the former at a rate of 80 mm/year (Yu et al.
1997). The subduction resulted in the formation of an active
mountain belt called the Central Range with over 200 peaks higher
than 3000 m a.s.l. (Ho 1986; Teng 1990). It is also responsible for
frequent large earthquakes and an orogenic uplift rate of about 5
to 7 mm/year (Li 1976; Willett et al. 2003). About 32% of Taiwan is
above 1000 m a.s.l. The slope of the mountainous areas is mostly
between 30° and 50° (Chen et al. 2015) with a dominance of 35° (Lin
et al. 2009).

Taiwan is located between 120° E and 122° E and between 22° N
and 25° N, and the boundary between tropical and subtropical

monsoon climates is located in the south of Taiwan (Wang and Ho
2002). The average temperature over the Taiwanese lowlands dur-
ing the wet season (May to October) is above 20 °C, while that
during the dry season (November to April), it is between 14 and
20 °C. On average, four typhoons strike Taiwan every year (Wu
and Kuo 1999), causing heavy and concentrated rainfall. The
annual rainfall in Taiwan averages 2500 mm. However, the annual
rainfall in the mountainous regions can surpass 3000 mm (Shieh
2000). Approximately 60 to 80% of the rainfall occurs during the
wet season (Chen et al. 2015).

Mass movements, particularly landslides and debris flows, are
triggered by frequent rainfall and earthquakes, which represent the
primary mechanisms of erosion and are important for maintain-
ing the balance between erosion and uplift in Taiwan (Dadson
et al. 2003). Taiwan also has a fragile geological environment, with
areas of geological discontinuity that are more prone to mass
movements (Chen et al. 1999; Chen and Su 2001; Chuang et al.
2009).

Data and methods

Mass movement data
This study analyzed 263 mass movements caused by heavy rainfall
during the 7-year period between 2006 and 2012 and used 19 mass
movements that occurred in 2013 for verifying the results (Fig. 2).
These mass movements occurred in various places in Taiwan
during the wet season: two in May, 26 in June, 35 in July, 152 in
August, 27 in September, and 40 in October (Fig. 3).

We collected mass movement data from the reports of the
Soil and Water Conservation Bureau (SWCB) of Taiwan. The
SWCB has conducted detailed field surveys when rainfall-
induced mass movement disasters, such as damage to houses
and roads, occurred to prevent secondary disasters and allow
for a quick recovery. The resultant reports contain information
on the type, location, and approximate time (accuracy in
hours) of each disaster event. They estimate the time based
on real-time videos taken at observation stations, the time
when people reported the disasters, and interviews with resi-
dents. They investigate the extent of the affected areas and the
damage to residences and buildings. The disasters in these
reports are classified into three types: landslides, debris flows
(mostly channelized debris flows and some slope debris flows),
and floods. We selected landslides and debris flows for our
analysis. The landslides may include falls or topples related to
gravity alone. Therefore, we carefully checked all reports (314
mass movements) and excluded 32 mass movements with al-
most no rainfall during the mass movements.

Rainfall data
Since 2012, the Central Weather Bureau (CWB) and the Water
Resource Agency (WRA) of Taiwan developed the Quantitative
Precipitation Estimation and Segregation Using Multiple Sensors
(QPESUMS), a radar system, to estimate rainfall depth and its
spatial distribution (Chen et al. 2007; Chiang and Chang 2009).
However, the radar system in Taiwan is unstable and the data
contain many uncertainties. For Taiwanese researchers, the most
commonly used rainfall data are still those from rain gauges (Chen
2016; Chou et al. 2016) and their interpolated values (Tao et al.
2009). The CWB has installed more than 400 rain gauges with a
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density of approximately one gauge for every 76 km2 (Fig. 2) that
record hourly data. These rain gauges are the tilting-bucket type,
which can be used for automated observations. Since rain gauges
were not always located close to the mass movement sites and
relatively few rain gauges were distributed in the mountainous
areas, we usually selected the nearest five rain gauges within 10 km
from each mass movement to estimate rainfall at each mass
movement location. The selected rain gauges are on the same side
of the hillslope as the mass movements, avoiding the mountain
effect. If five rain gauges based on this principle did not exist, we
then only selected available rain gauges. If the number of available
rain gauges is less than three, we then selected the data from the
nearest rain gauge without interpolation. This included
conducting a kriging interpolation using the ordinary kriging
and the spherical semivariogram model with a variable search
radius. We obtained the hourly rainfall value at the location of
each mass movement in this manner. Although the commonly
used definition of one rainfall event in Taiwan is considered to
begin when hourly rainfall surpasses 4 mm and ends when hourly
rainfall decreases below 4 mm over the next six consecutive hours
(Jan and Lee 2004; Chen et al. 2015), we did not use a peak-over-
threshold approach to identify individual events to compute un-
censored rainfall totals. Many previous studies have proposed

different non-rainfall intervals for defining one rainfall event
(Tiranti and Rabuffetti 2010; Vessia et al. 2014; Melillo et al.
2015). From them, we chose one continuous rainfall event as the
rainfall period delimited by a non-rainfall period of more than
24 h, which is most commonly used in Japan (Osanai et al. 2010;
Saito et al. 2010a, b, 2014).

For verifying the relationship between the mass movements
and rainfall using the SWI, the conditions of the rainfall
events corresponding to the individual mass movements are
needed. Therefore, we also calculated the mean rainfall inten-
sity (I, mm/h), rainfall duration (D, h), and cumulative rain-
fall (mm) from the beginning of a rainfall event to the time
of the mass movement occurrence. We used the mean rainfall
intensity because it is used for the most popular rainfall
threshold (I–D threshold) established by many previous
studies.

Soil water index
The SWI uses a calculated value of the total water depth of a
three-layer tank model with fixed parameters (Sugawara et al.
1974; Ishihara and Kobatake 1979) (Fig. 4). Previous studies in
Japan used the SWI for assessing and predicting potential mass
movements (Okada et al. 2001; Sassa 2005; Osanai et al. 2010;

Fig. 1 Geological maps of a Taiwan and b Japan, simplified after the 1:500,000 Taiwan Geological Map from the Central Geological Survey of Taiwan and the 1:200,000
Japan Seamless Geological Map from the Geological Survey of Japan
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Saito et al. 2010b; Saito and Matsuyama 2012; Oku et al. 2014)
and also for establishing early warning systems for mass move-
ments (Osanai et al. 2010). The heavy rainfall increases soil
moisture contents, which increases the possibility of mass
movements. The tank model is a hydrological model to calcu-
late the water discharge and amount in the near-surface soil
layers and estimate the total amount of rainwater in soil from
the rainfall data. The formula for SWI is as follows :

SWI t þΔtð Þ ¼
X
k

Sk t þΔtð Þ ð1Þ

where t is the time (h); Δt is the passed time (h, calculated per
hour according to the resolution of rainfall data); k = 1, 2, and 3
indicate the top, middle, and bottom tanks, respectively; and Sk is

the remaining water height (mm) for each tank, which can be
calculated as follows:

Sk t þΔtð Þ ¼

Sk tð Þ−
X

l

Qkl tð Þ þ Zk tð Þ
" #

þ R Δtð Þ k ¼ 1ð Þ

Sk tð Þ−
X

l

Qkl tð Þ þ Zk tð Þ
" #

þ Zk−1 t þΔtð Þ−Zk−1 tð Þ½ � k≥2ð Þ

8>>>><
>>>>:

ð2Þ

where Qkl is the outflow volume from the lth side hole (the first
tank has two holes on the side and the other tanks have one), Zk is
the vertical permeation volume from the bottom of the kth tank,

Fig. 2 Distribution of rain gauges and mass movements that occurred between 2006 and 2013
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and R(Δt) is the 1-h rainfall amount. Qkl and Zk at t are calculated
as follows:

Qkl tð Þ ¼ αkl Sk tð Þ−Lklf g Sk tð Þ > Lklð Þ
0 Sk tð Þ≤Lklð Þ

�
ð3Þ

Zk tð Þ ¼ βkSk tð Þ ð4Þ

where αkl is the outflow coefficient (1/h) for the lth side hole, βk is
the coefficient of permeability (1/h) from the bottom hole of the
kth tank, and Lkl represents the outflow height (mm) on the lth
side hole of the kth tank.

The Japanese government set different reference values for
each 1-km2 area to provide a warning when the heavy rainfall
comes and the SWI exceeds the reference value (http://
www.jma.go.jp/jma/kishou/know/kijun/index_shisu.html). The
fixed parameters (αkl, βk, and Lkl) were identified by the statis-
tical analysis of the relationship between rainfall and discharge
in Japan (Sugawara et al. 1974; Ishihara and Kobatake 1979) as
shown in Table 1. Although both Japan and Taiwan are charac-
terized by complex geological conditions, the SWI only repre-
sents the conceptual soil water contents, and the time series
change in SWI exhibits a similar trend when the parameters
are adjusted to different areas. Therefore, the Japanese govern-
ment applies the SWI to the whole of Japan using the fixed
parameters in spite of various geological conditions. For this
reason, this study applies the SWI to Taiwan using the fixed
parameters. The values of SWI were calculated over 1 month
before the occurrence time of each mass movement to see the
effect of antecedent rainfall (Fig. 5).

Classification of rainfall conditions and establishing the general trends
of the SWI
We grouped the 263 mass movements during 2006–2012 into the
SH and LL types and then validated the result by analyzing 19 mass
movements from 2013.

Saito et al. (2010b) pointed out that changes in the NSWI of the SH
and LL types from the beginning of rainfalls to mass movement
occurrence show different trends. The non-parametric median regres-
sions can determine the general trend of the NSWI for the two rainfall
types (Saito et al. 2010b).We also adopted this procedure for Taiwan to
establish the general trends of the two rainfall types but used the SWI
instead of the NSWI. Because the most common rainfall data in
Taiwan are from rain gauges, the hourly rainfall data for at least
10 years should be collected and interpolated for calculating the NSWI.
In addition, Taiwan is a relatively small district where the regional
difference in the highest value of SWI is expected to be smaller than in
Japan. For these reasons, we adopted the SWI for Taiwan.

Results and discussion

Rainfall conditions and the SWI for mass movements
The PCA was adopted to classify the I–D conditions of mass
movement events during 2006–2012 (Fig. 6). Two types of I–D

Fig. 3 Number of the collected mass movements for each month with the wet
season from May to October and the dry season from November to April

Fig. 4 Schematic diagram of the three-layer tank model. The SWI is a calculated
value of the total water depth in each layer (Okada et al. 2001); parameters of each
layer are shown in Table 1
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conditions are distributed along with the two PCs. The proportion
of variance alone with the positives and negatives of the first PC
was 71.8% and that for the second PC was 28.2%. The positives of
the first PC score (120 mass movement events) mainly occur when
rainfall persists for 29–77 h from the beginning of the rainfall event
(53 h on average with 24 h of standard deviation), which represent
SH rainfalls. Conversely, the negatives (143 mass movement
events) mainly occur when rainfall persists for 80–170 h (125 h
on average with 45 h of standard deviation), which represent LL
rainfalls. In Fig. 6, we also plotted the rainfall conditions of the 19
mass movements that occurred in 2013. The rainfall conditions
were classified into 14 SH types and five LL types.

During 2006–2012, the changes in the SWI show that the SWI
before a rainfall event was 17.5 on average, ranging from 0.0 to 105.0.
The SWI for the time of the mass movement occurrences was 336.8
on average, ranging from 68.6 to 645.0. The differences were 319.3 on
average, ranging from 47.8 to 639.1. Table 2 shows that the SWI
results for the SH and LL types are not much different for both
before rainfall and when mass movement occurred. In 2013, the SWI
before the rainfall events was 36.0 on average, ranging from 3.8 to
91.9. The SWI for the time of mass movement occurrences was 154.4
on average, ranging from 81.7 to 220.7. The differences were 118.4 on
average, ranging from −10.2 to 213.4. All values of the SWI in 2013,

except for those before a rainfall event, were smaller than those
during 2006–2012. Figure 6 also shows that the rainfall conditions
in 2013 tend to be lower on the I–D plot than in the other years.
Overall, the SWI changed dramatically from the beginning of the
rainfall to the mass movement occurrence, and the rapid increase in
the SWI resulted in the mass movements. Figure 5 shows an example
of time series changes in the SWI from 1 month before the mass
movements. Before the mass movements occurred, the SWI oscillat-
ed several times with precipitation. The rainfall then elevated the
SWI to its highest value, resulting in a mass movement. Data for the
other rainfall events also show that mass movements occurred
around the peaks in the SWI because the maximum soil water
content causes the most significant decrease in resistant strength
and increase in the sliding force of slopes. This observation shows
that changes in SWI and high SWI values are closely related to mass
movement occurrence.

The 263 mass movements during 2006–2012 can be separated
into three groups by two values of SWI before a rainfall event, 17.5
(the average value) and 35 (twice the average value), respectively.
Table 3 shows the 98th percentile of mean intensity, duration, and
cumulative rainfall for these three groups. We used the 98th
percentile because of its resistance to outliers. The 98th percentile
of rainfall conditions for SWI ≥35 is 25.8 mm/h in mean intensity,
105 h in duration, and 1159.8 mm in cumulative rainfall. Those for
17.5 < SWI < 35 are 23.9 mm/h, 189 h, and 1403.4 mm, and those for
SWI ≤17.5 are 24.1 mm/h, 225 h, and 1745.9 mm (Fig. 7). The
number of data for the group SWI ≥35 is relatively small, and
two cases in this group with relatively high intensity led to the high
98th percentile mean intensity.

Hourly changes of SWI for the SH and LL rainfall types
As mentioned in the previous section, a rainfall event that elevates
SWI to a high value is important for the occurrence of mass
movement. Therefore, identifying changes in SWI helps in under-
standing mass movements. Figure 8 shows the hourly changes in
SWI for the SH and LL rainfall types from the beginning of the

Table 1 Parameters for the SWI

Tank First Second Third

Outflow height
(mm)

L11 = 15 L21 = 15 L31 = 15

L12 = 60

Outflow
coefficient
(1/h)

α11 = 0.1 α21 = 0.05 α31 = 0.01

α12 = 0.15

Coefficient of
permeability
(1/h)

β1 = 0.12 β2 = 0.05 β3 = 0.01

Fig. 5 Example of change in the SWI; the vertical red arrow shows the beginning of the rainfall event that caused a mass movement; the horizontal red arrow
shows the occurrence of the mass movement; the blue arrow and the dashed line show the SWI before the rainfall event representing the antecedent rainfall condition
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rainfall events to mass movement occurrences, based on the data
for the years 2006–2012. Non-parametric median regressions were
adopted to determine the general trends of the SWI of these two
types shown in Fig. 8.

The SH type shows that the SWI rises rapidly within a duration
of 100 h and exceeded 150 for more than 90% of the events. This
result shows that a rapid increase in soil water contents with a
short duration is responsible for mass movement initiation in the
SH type. The SWI of the LL type gently rises to about 150 and
tends to have a peak at 130 h. After 130 h, the SWI decreases
slightly and then goes up again after 250 h. Although the LL curve
is not located at the high domain where mass movements are
initiated, the temporal change in the SWI for each event is large.
Many events were associated with high SWI values, which reveal
that sporadic high-intensity rainfall also occurs during long-term
rainfall. This raises soil water contents and causes mass move-
ments. Therefore, a gentle rise in the SWI over a long duration
from the beginning of a rainfall event, followed by heavy rainfall,
is critical for mass movement initiation for the LL type.

Verification of inferences from the SWI
The observations in the previous sections based on data for 2006–
2012 were tested by analyzing 19 rainfall-induced mass move-
ments from 2013. The SWI values before rainfall events and
rainfall conditions of mass movements are shown in Fig. 9. Most
of them correspond to the rainfall conditions of 2006–2012,
confirming that the SWI can be used as an indicator of antecedent
conditions and for detecting the upper threshold of rainfall con-
ditions for mass movements. However, there are still several cases
that exceeded the upper threshold: three cases for rainfall inten-
sity and two cases for rainfall duration. Even so, the exceeded
values are very close to the upper threshold except the three cases
when the rainfall intensities are as high as 37.3, 32.9, and 32.2 mm/
h, while the SWI before the rainfall event is between 17.5 and 35.

The rainfall conditions of the 19 mass movements were classified
into 14 SH types and five LL types (Fig. 6). The changes in the SWI of
the mass movements in 2013 also followed the trends of the
predefined SH and LL curves (Fig. 10). The cases of the SH type
generally followed the SH general curve from the beginning of

Fig. 6 PCA for I–D conditions of mass movements; gray circles and black
circles are SH and LL types, respectively, and red crosses are data for 2013
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rainfall but then rose from the SH general curve, resulting in mass
movements. In contrast, the LL types were vaguely located between
the SH and LL general curves at the early stage. They started to follow
the LL general curve about 30–40 h after the beginning of rainfall and
continued until the occurrence of mass movements. There is one
exceptional case in the LL type. Its SWI value once followed the SH
curve and rapidly increased, but mass movements did not happen at
that time. Instead, mass movements occurred after the SWI de-
creased and followed the LL curve. The hourly rainfall for this case
was less than 5 mmuntil 37 h after the beginning of the rainfall event.
Suddenly, high-intensity rainfall (about 32 mm/h) occurred during
38–45 h, but after that, rainfall stopped for a long period. The next
intense rainfall occurred 38 h after the rainfall had stopped. This
means that the first high-intensity rainfall increased the SWI rapidly
and the slope became unstable. However, since the rainfall suddenly
stopped, the mass movements did not occur at that time. Soon after
the next intense rainfall, mass movements occurred.

The verification confirmed the advantages of using the SWI.
For example, the SWI of the LL type often increased rapidly before
mass movements (Fig. 8), which can be used for warnings. This
phenomenon cannot be found in the I–D threshold, because the I–
D plot represents average event rainfall and does not necessarily
reflect sporadic high rainfall intensities. This study established the
general curves of changes in SWI for the SH and LL types that can
be used to determine whether a rainfall event belongs to the SH or
LL type during rainfall monitoring and to evaluate the likelihood
of mass movements. Therefore, the combined use of the I–D
threshold and SWI is recommended to local authorities for mak-
ing appropriate decisions in preventing mass movement hazards.

Significance of the SWI for worldwide mass movement warnings
The SWI represents conceptual soil water contents in the near-
surface soil layers that can be easily calculated using the tank model
based on rainfall analysis (Fig. 5). Unlike many other hydrological
models that require a significant amount of data, such as surface
materials, soil thickness, and sliding surface features of each slope,
the SWI provides a simplified model using only rainfall with fixed
parameters to allow application to wide areas.

Our results indicate that with the increase in the SWI, the
rainfall conditions needed for triggering mass movements, such
as duration and cumulative rainfall, decrease (Fig. 7). To deter-
mine the lower threshold of rainfall conditions for mass move-
ments is often difficult because some areas experience mass
movements frequently due to topographic and geological condi-
tions even if the impact of rainfall is relatively small (Chen et al.
2015). However, even from the upper threshold and the SWI, we
can also know that the present rainfall conditions needed for

triggering mass movements decrease due to the antecedent rain-
fall. This means that the SWI can be used as an indicator for

Table 3 The 98th percentile of mean intensity, duration, and cumulative rainfall of
mass movements in different ranges of SWI before rainfall events

Rainfall
conditions

SWI ≤17.5
(n = 167)

17.5 < SWI
< 35 (n = 75)

SWI ≥35
(n = 21)

Mean intensity
(mm/h)

24.1 23.9 25.8

Duration (h) 225 189 105

Cumulative
rainfall
(mm)

1745.9 1403.4 1159.8

Fig. 7 Comparing the SWI before rainfall events with the rainfall conditions of a
mean intensity, b duration, and c cumulative amount during 2006–2012; indicated
values are two cases with high intensity in the group SWI >35; dashed lines
represent the upper thresholds of rainfall conditions in different ranges of SWI
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assessing the effect of antecedent rainfall on mass movements and
is better than using only the total amount of antecedent rainfall.
Actually, there are many different definitions for antecedent rain-
fall in terms of its length, such as 3 days (Kim et al. 1991); 4 days
(Heyerdahl et al. 2003); and 7, 10, 15, and 30 days (Crozier 1999;
Glade et al. 2000; Aleotti 2004; Dahal and Hasegawa 2008; Khan
et al. 2012; Chen et al. 2015). To date, it is still difficult to determine
the appropriate length of antecedent rainfall, and using the SWI
solves this problem. The SWI is calculated based on the perme-
ation and outflow of water by a three-layer tank model that
continuously reflects soil water contents. Unlike models using
only rainfall, effects of antecedent rainfall can be reflected.

This study also combined the SWI with statistical methods to
identify general curves for the changes in the SWI between the
beginning of a rainfall event and mass movement occurrence
(Fig. 8). These general curves can be used as references to judge
the possibility of mass movements similar to previously proposed
statistical methods that establish a threshold for mass movements,
such as the I–D threshold. Although the I–D threshold can be used
for a wide area, it only represents average event rainfalls and does
not necessarily reflect sporadic high rainfall intensities, although
mass movements tend to occur in such conditions (Chen et al.
2015). The SWI before a rainfall event that caused a mass move-
ment reflects the influence of antecedent rainfall, and the rapid
increase in the SWI reflects a sporadic intense rainfall. A rapid
increase in SWI combined with high SWI values leads to mass
movements (Fig. 10), indicating that SWI more exactly predicts the
time of mass movement occurrence. In addition, for an extremely
long rainfall event (>200 h), when rainfall becomes slightly weak,
the SWI may decrease as the rate of runoff is faster than infiltra-
tion. However, if there is a sudden heavy rainfall, the SWI rapidly
increases and mass movements still occur (Fig. 8). Therefore, in
such extremely long rainfall events, continuous and careful obser-
vation of the change in the SWI is necessary.

Although the mechanisms of rainfall-induced mass move-
ments may be various, they are generally due to gradual in-
creases in groundwater level, soil moisture, and pore water
pressure that cause slope instability (Wieczorek and Glade
2005). Therefore, the SWI seems to be applicable to various

areas other than Japan and Taiwan. However, Japan and Taiwan
have similar climatic conditions and high-relief topography. Fu-
ture research needs to test the SWI in areas with other climatic
and topographic conditions.

Fig. 8 Hourly changes in the SWI from the beginning of rainfall events to mass
movement occurrence between the two types of rainfall condition during 2006–
2012

Fig. 9 Verification of the SWI analysis using data for 2013: a mean intensity, b
duration, and c cumulative rainfall; dashed lines represent the upper thresholds
of rainfall conditions in different ranges of SWI; indicated values are the cases
exceeding the upper thresholds in 2013
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Conclusions
The SWI has been used by the JMA to assess mass movement
hazards in Japan. This study in Taiwan has applied the SWI
to an area other than Japan for the first time. For different
values of SWI before rainfall events, the rainfall conditions
needed for triggering mass movements, such as the rainfall
duration and cumulative amount, are different. When higher
values of SWI are observed before rainfall events, the upper
threshold of rainfall conditions needed for triggering mass
movements will be lower. Therefore, the SWI can be used as
the indicator of the antecedent rainfall condition. We classi-
fied the rainfall condition into two types, SH and LL, based
on a PCA. The two types performed differently with changes
in the SWI. The SH type is associated with a rapid increase in
SWI within a short duration, and the LL type is associated
with a gradual rise and subsequent constancy of SWI except
in some extremely long rainfall events. Therefore, a rapid
increase in soil water during a short duration is responsible
for mass movements in the SH type, while the gentle increase
in soil water over a long duration, followed by heavy rainfall,
is critical for mass movements in the LL type. The observa-
tions were verified by analyzing 19 mass movements that

occurred in 2013. We recommend the use of the SWI to
establish a suitable warning system for mass movements in
Taiwan.
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