
Landslides (2017) 14:1091–1111
DOI 10.1007/s10346-016-0769-4
Received: 2 June 2016
Accepted: 10 October 2016
Published online: 22 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Paraskevas Tsangaratos I Ioanna Ilia I Haoyuan Hong I Wei Chen I Chong Xu

Applying Information Theory and GIS-based
quantitative methods to produce landslide
susceptibility maps in Nancheng County, China

Abstract The main objective of the present study was to produce a
landslide susceptibility map by implementing a novel methodolo-
gy that combines Information Theory and GIS-based methods for
the Nancheng County, China, an area with numerous reported
landslide events. Specifically, the information coefficient that is
estimated from Shannon’s entropy index was used to determine
the number of classes of each landslide-related variable that max-
imizes the information coefficient, while three methods, logistic
regression, weight of evidence, and random forest algorithm, were
implemented to produce the landslide susceptibility map. The
comparison of the various models was based on the assessment
of a database of 112 past landslide events, which were divided
randomly into a training dataset (70%) and a validation dataset
(30%). The identification of the areas affected was established by
analyzing airborne imagery, extensive field investigation, and the
examination of previous research studies, while the morphometric
variables were derived using remote sensing technology. The geo-
environmental conditions in those locations were analyzed regard-
ing their susceptibility to slide. In particular, 11 variables were
analyzed: lithology, altitude, slope, aspect, topographic wetness
index, sediment transport index, profile curvature, plan curvature,
distance to rivers, distance to faults, and distance to roads. The
comparison and validation of the outcomes of each model were
achieved using statistical evaluation measures, the receiving oper-
ating characteristic, and the area under the success and predictive
rate curves. Each model gave similar outcomes; however, the
random forest model had a slightly higher predictive performance
in terms of area under the curve (0.9220) against the ones esti-
mated for the weight of evidence (0.9090) and the logistic regres-
sion model (0.8940). The same pattern of performance was
reported when the success power of the models was calculated.
Random forest was slightly better than the other two models in
terms of area under the curve (0.9350) in comparison with the
weight of evidence (0.9255) and logistic regression (0.9097). The
predictive performance was estimated by using the validation
dataset, while the success power of the models was estimated by
using the training dataset. From the visual inspection of the pro-
duced landslide susceptibility maps, the most susceptible areas are
located at the west and east mountainous areas, while moderate to
low susceptibility values characterize the central area.

Keywords Landslide susceptibility . Shannon’s entropy
index . Logistic regression . Weight of evidence . Random
Forest . China

Introduction
Landslides are considered as natural phenomena that are classified
as a highly intense threat to human life, property, infrastructure,
and natural environment observed mostly in mountainous and
hilly regions. According to a report conducted during the FP7

SafeLand project (FP7 SafeLand 2012), China is covered by vast
areas that are classified as regions with high landslide risk, while
the manifestation of landslide phenomena results in an estimated
700 to 1000 deaths every year and damages of infrastructure and
properties that exceed $10 billion RMB annually. In order to
reduce and mitigate the devastated consequences caused by land-
slides, the Chinese government has taken specific measures since
1999, such as, nationwide landslide investigation and risk zoning;
detailed mapping for high risk zones of landslide hazards; stabili-
zation and mitigation on major landslides; weather-based regional
landslide hazard warning; geohazard risk assessment on infra-
structure construction; and education and training for geohazard
mitigation (FP7 SafeLand 2012). Analyzing the first two proce-
dures, the determination of the spatial and temporal extent of
landslide hazard requires to identify areas which are, or could
be, affected by a landslide and estimate the probability of such
landslide occurrence within a specified period of time. However, to
specify the precise time frame for future occurrence of a landslide
event, it can be a difficult task. As a result, landslide hazard can be
represented by landslide susceptibility, if only the predisposing
and preparatory landslide variables are considered. A landslide
susceptibility map provides the spatial distribution and rating of
the terrain according to its propensity to slide, the manifestation
of which depends on the topography, geology, geotechnical prop-
erties, climate, vegetation, and anthropogenic factors (Fell et al.
2008). According to Guzzetti et al. (2000), a landslide susceptibil-
ity map is valuable when the information and data shown are
useful, relevant, and fully understood by the user. In this context,
the present study produces a landslide susceptibility map for the
area of Nancheng County, China, in order to provide vital infor-
mation concerning landslide phenomena to local authorities and
government agencies for implementing appropriate decision-
making and land use planning strategies.

In the last three decades, numerous methods and techniques
have been utilized for landslide susceptibility and hazard and risk
assessments; those methods could be classified into qualitative and
quantitative or direct and indirect (Tien Bui et al. 2015). Qualitative
methods are considered as methods that are characterized by their
subjective nature, which ascertain susceptibility heuristically and
mainly involve direct field geomorphological analysis and also the
usage of index or parameter maps (Verstappen 1983; Leroi 1996;
Soeters and Van Westen 1996). On the other hand, quantitative
methods are based on numerical estimates and involve statistical,
probabilistic, and data mining methods (Carrara et al. 1991; Van
Westen et al. 1997, Castellanos Abella and van Westen 2007;
Chowdhury 1976; Baldelli et al. 1996; Van Westen et al. 1997; Lees
1996; Gomez and Kavzoglu 2005). A great number of scientific
research can be found that utilize bivariate statistics that has been
adopted by many researchers (Magliulo et al. 2008; Yilmaz et al.
2012), as well as multivariate methods that implement
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discriminant analysis (Lee et al. 2008) or linear and logistic re-
gression (Dai and Lee 2003; Ayalew and Yamagishi 2005;
Tsangaratos and Ilia 2016a), frequency ratio (Lee and Pradhan
2006; Yilmaz 2010; Akinci et al. 2011), certainty factor approach
(Lan et al. 2004; Sujatha et al. 2012), and Dempster–Shafer and
weight of evidence models (Tangestani 2009; Cervi et al. 2010;
Neuhauser et al. 2012; Tien Bui et al. 2012a; Ilia and Tsangaratos
2016; Hong et al. 2016a). In addition, data mining methods have
been applied for landslide susceptibility including fuzzy logic
(Ercanoglu and Gokceoglu 2004; Pradhan et al. 2010; Akgun
et al. 2012), artificial neural network (Pradhan and Lee 2009;
Tien Bui et al. 2012b; Tsangaratos and Benardos 2014; Tien Bui
et al. 2016), neuro–fuzzy (Vahidnia et al. 2010; Sezer et al. 2011;
Pradhan 2013), and decision–tree models (Wan 2009; Yeon et al.
2010; Tien Bui et al. 2012c; Tsangaratos 2012; Pradhan 2013;
Tsangaratos and Ilia 2016b). Both methods have been applied
worldwide, and their performance is based on the availability
and quality of data and the scale of analysis.

During a landslide susceptibility assessment, three important as-
pects should be successfully addressed in order to enhance the pre-
dictive power of landslide susceptibility models (Chacón et al. 2006;
Irigaray et al. 2007; Costanzo et al. 2012; Tien Bui et al. 2015; Murillo-
García et al. 2015): the preparation of a landslide inventory map, the
identification of the variables that significant influence stability in
ground surface, and the appropriate reclassification of the variables.
The preparation of a landslide inventorymap is based on a conceptual
frame in which the past and present provide evidence for the future,
failures do not occur randomly, failures share common geotechnical
characteristics, and similar conditions produce similar patterns of
failures (Tsangaratos and Koumantakis 2013). The second essential
aspect is the identification of the influence of each variable contributes
to the overall susceptibility that is expressed with a weighted coeffi-
cient that can be estimated through specific procedures according to
different models. Finally, the determination of the classes for each
variable is equally essential with the estimation of the coefficients, a
procedure that could affect the quality of the outcomes of landslide
susceptibility analysis (Chacon et al. 2006; Costanzo et al. 2012).

In this context, the present study attempts to address the above
mentioned aspects by following a novel methodology. Specifically,
landslide and non-landslide areas were verified by the usage of
remote sensing techniques, Google Earth® and the analysis of high
resolution digital elevation models, while the significance of each
landslide-related variable was estimated by applying statistical and
data mining methods that also produced a series of landslide
susceptibility maps. However, the main novelty of the study is
the determination of the number of classes for each landslide-
related variable by estimating the information coefficient that is
derived by the Shannon’s entropy index. The developed method-
ology was tested in the Nancheng County, China, by applying three
different methods: the Logistic Regression (LR), the Weight of
Evidence method (WofE) as representatives of bivariate statistical
methods, and Random Forest (RF) as a representative of data
mining techniques. The usage of these three methods is considered
to be appropriate since they are suitable for regional and semi-
regional scale analysis and also they exploit both remote-sensing
datasets and field surveys. The computational process was carried
out using R Studio, SPSS 16.0 (SPSS 2007), while ArcGIS 10.1 (ESRI
2013) was used for compiling the data and producing the landslide
susceptibility maps.

Materials and methods

Study area
The Nancheng County is located in the Eastern of the JiangXi
Province and is under the jurisdiction of the prefecture-level city of
Fuzhou. The study area lies between longitudes 440,000 and 490,000
and latitudes 3,020,000 and 3,070,000 (Beijing 1954/3-Degree CM
117E as the reference coordinate system) covering an area of about
1698.3 km2, with altitude ranging between 50 to 1180 m above sea
level (Fig. 1).

Around 61.57 % of the study area has a slope gradient less than 15°

whereas areas with a slope gradient larger than 45° account for only
0.39 %. About 25.38 % of the area is characterized by slope gradient
between 15° and 25°, while 10.01 % is characterized by slope gradient
between 25° and 35°. Dominant features in the area are the Hongmen
reservoir and the Fuhe, Xuijian, and Latin river that flow across the
research area. The waters of the Fuhe River reach the Poyang Lake
that is located north of the Nanchang prefecture of Jiangxi.

The climate of Nancheng County is classified as humid subtrop-
ical (KöppenCfa), with long, humid, very hot summers, and cool and
drier winters with occasional cold snaps. According to the Jiangxi
Province Meteorological Bureau (http://www.weather.org.cn), the
mean annual rainfall for the period 1953–2015 ranged between
900.3 and 2866.4 mm. The average annual temperature is 17.8 °C,
while the average annual water surface evaporation for the area is
estimated to be 1546.7 mm. The rainy season is from April to July
accounting for the 55.2 % of the yearly rainfall. In May and June, the
average rainfall varies between 270 and 305 mm per month.

Concerning the geological settings, more than 22 geologic
groups and units are recognized, data was obtained by the China
Geology Survey (http://www.cgs.gov.cn). In the present study, the
lithology map (scale 1:200,000) was reconstructed by classifying
the geological formations into nine classes, based on clay compo-
sition, degree of weathering, and physical and strength parameters
(Table 1, Fig. 2). The main lithological unit that covers approxi-
mately 37 % of the area is granite porphyry of Cretaceous age, tuff,
ignimbrite, and sandstone gravel (class E) followed by leptynite,
schist, and marbles (class F) that covered 24 % of the area and gray
brown granulite, mica schist, and quartz schist (class G) that
covered 17 % of the area. The soil profiles of the area are mainly
developed due to the action of weathering.

The developed methodology
The methodology followed during the present study could be sepa-
rated into a four-phase procedure: (a) constructing the inventory map
and selecting the appropriate landslide-related variables; (b) the data
pre-processing phase; (c) the phase of implementing the various
techniques and methods in order to construct the landslide suscepti-
bility map; and (d) the validation and comparison of the models.
Figure 3 illustrates the flowchart of the followed methodology, while a
brief description of each phase is presented in the paragraphs below.

Constructing inventory map and selecting the landslide related
variables
The first phase of the followed methodology was to construct the
landslide and non-landslide inventory database. The database includ-
ed information about the location, type of failure, and other features
of landslide incidence and also the locations of non-landslide areas in
order to use them during the training and predictive phase.
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Specifically, the landslide inventory database which included 112
landslide locations was provided by the Jiangxi Department of
Land and Resources (http://www.jxgtt.gov.cn) and the Jiangxi
Meteorological Bureau (http://www.weather.org.cn). The database
involved 70 rotational slides and 42 translational slides. The size of
the smallest landslide is approximately 15 m2, the largest around
18,000 m2, and the average is estimated to be 878.7 m2. The large-
sized landslides (>1000 m2) that occurred in the study area affect-
ed 283 people, accounting for only 11.4 % of the total number of
landslides. Around 33.1 % of the total landslides are medium-sized
(200–1000 m2), and 213 people are affected by these landslides.
Small-sized landslides (<200 m2) that affected 374 people are
accounted for 55.4 % of the total landslides and are inventoried

on metamorphic rocks (schist, granulite, and marbles), having
mass thickness between 3 and 8 m. According to the report in
the Nancheng area, landslides occurred during and after incidence
of heavy rainfall. Moreover, around 42.7 % of the landslides that
were reported occurred when the measured rainfalls were around
95 mm per day whereas the other landslides occurred when the
daily rainfall was larger than 110 mm.

The non-landslide areas were identified with the usage of
Google Earth® and the analysis of high resolution digital elevation
models. Google Earth® provides worldwide coverage of high res-
olution and very high resolution optical satellite images. Its main
advance is that it can present the images into three dimension
(3D), providing in that way an excellent tool for exploiting the

Fig. 1 The study area (Beijing 1954/3-Degree CM 117E as the reference coordinate system, suitable for use in China between 115o 30 E and 118o 30 E)

Table 1 Types of geological formation of the study area

Class Unit name Lithology

A Zhonghanwu group Tonalite rocks, granitic gneiss

B Huang long, Chuanshan, Outangdi Gravel sandstone, siltstone, limestone, dolomitic limestone

C Xinyu Purple siltstone, mudstone and fine sandstone, the central dark gray mudstone
containing Glauber’s salt, anhydrite, and halite

D Lin shanqun, Jiuxiantan, Mu bushan, Xia
changshan, Huang xie, Xi huashan

Coarse quartz sandstone, shale, coal line, gabbro, diabase

E Huobashan, Nan keng, Shuijiang, He kou, Liu keng Ignimbrite, tuff, sandstone gravel, granite porphyry

F Hongshan group, granulite rock, schist, leptite, marble

G Wanyuan group Gray brown granulite, two-mica schist, quartz schist

H Tan hu, Chenao, Fu fan tonalite rock, porphyritic granodiorite, porphyritic monzonite granite, porphyritic moyite

I Anyuan group Sand, shale, chertconglomerate with coal seams, tuffaceous sandstone, tuff,
tuffaceous mudstone, oil shale, olivine basalt
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satellite images and detecting the non-landslide areas. The areas
that are potentially classified as non-landslide areas are character-
ized by gentle and without any changes morphometric character-
istic. The height difference, the steepness, and the orientation of
slopes and also the absence of concavities and convexities are the
main criteria for identifying the non-landslide areas.

Eleven (11) landslide-related variables were selected concerning
the experience gained from studying landslide phenomena in the
wider area, the local geo-environmental conditions, and the avail-
ability of sufficient data, namely, lithology, slope, aspect, altitude,
topographic wetness index (TWI), sediment transport index (STI),
plan curvature, profile curvature, distance to river network, dis-
tance to tectonic features, and distance to road network.

In order to extract the necessary layers that correspond to the
morphometric landslide-related variables of slope, aspect, alti-
tude, TWI, STI, plan curvature, and profile curvature, a digital
elevation model (DEM) of grid size 25 m was used, generated
from the Advanced Space borne Thermal Emission and
Reflection Radiometer Global Digital Elevation Model (ASTER

GDEM) Version 2 (http://gdem.ersdac.jspacesystems.or.jp). The
ASTER GDEM Version 2, which was available for the public in
2011, is considered as the highest resolution DEM among the free
accessible global DEMs having a spatial resolution of 30 m (Arefi
and Reinartz 2011). The spatial product is a joint outcome devel-
oped by the Ministry of Economy, Trade, and Industry of Japan
and the United States National Aeronautics and Space
Administration that covers the entire land surface of the Earth.
The road and river networks were digitized from 1:50,000 scale
topographic maps.

Constructing the training and validation datasets
As proposed by the methodology training and validating, data sets
were randomly produced from the total number of landslide and
non-landslide areas. Specifically, by utilizing the subroutine subset
wizard that is embodied in the Geostatistic toolbox (ESRI 2013),
the first data set contained a number of data that equaled to
approximately 70 % of the total number of landslide and non-
landslide, while the rest 30 % served as validating data.

Fig. 2 The lithology map of the study
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Information coefficient—number of classes
The next phase, the phase of pre-processing, involves the estima-
tion of the exact number of classes that maximize the information
coefficient of each variable based on Shannon’s entropy index. The
Shannon’s entropy index has been used in the Information Theory
as a measure originally proposed by Claude Shannon to quantify
the entropy, disorder, uncertainty, or information content in
strings of text (Shannon 1948). The entropy model introduced by
Shannon has been used in several landslide assessments in order
to estimate weighting coefficients of landslide-related variables
(Yang and Qiao 2009; Yang et al. 2010; Pourghasemi et al. 2012).
The model involves the calculation of the density of land-
slides, as done in bivariate analysis, within each class of each
variable. The value of each variable is expressed as an entropy
index, which indicates the extent of disorder in the environ-
ment. According to Bednarik et al. (2010), the entropy index
expresses which variables are the most influential for the
evolution of instability. The main difference between the pres-
ent study and the approaches described in the aforementioned
publications is that it estimates the information coefficient
each time for a different number of classes and selects the
one that maximizes the information coefficient of the variable
in question. The information coefficient ranges between 0 and
1, with values closer to 0 indicating less information and
values closer to 1 indicating more information. The equations
used to calculate the information coefficient are given bellow
(Bednarik et al. 2010; Constantin et al. 2011):

pij ¼
Lij
Aij

ð1Þ

Pij ¼
Pij

X

j¼1

c j

pij

ð2Þ

H j ¼ −
X

i¼1

c j

Pij⊗log2Pij ð3Þ

H jmax ¼ −log2c j ð4Þ

I j ¼
H jmax−H j

H jmax
ð5Þ

where Aij is the area percentage of the i
th class of the jth variable, Lij is

the landslide percentage of the ith class of the jth variable, Pij is the
probability density of the ith class of the jth variable, Hj is the entropy
value of the jth variable, Hjmax is the entropy of the j

th having c classes,
and Ij is the information coefficient of the jth variable.

Fig. 3 Flowchart of the developed methodology
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The reclassification process was performed by the Reclass
subroutine using either Geometrical Intervals or Natural
Breaks method (ERSI 2013). The choice of which to use is based
on the type of distribution the data have. Specific, Geometrical
Intervals was used for visualizing continuous data and provid-
ing an alternative to the Natural Breaks classification method.
The specific benefit of the Geometrical Intervals method is that
it works reasonably well on data that are not distributed nor-
mally, particular on data that are heavily skewed. On the other
hand, Natural Break method is applied on normally distributed
data.

Conditional independence and multicollinearity analysis
In order to implement WofE method, the conditional independen-
cy assumption among the landslide-related variables must be valid
and the data population of each variable must have a normal
distribution. According to Bonham-Carter (1994), this rough as-
sumption may lead to errors and, in order to solve this problem,
non-parametric statistics can be used since they are not based on
the assumption of normal distribution. To calculate independency
when applying non-parametric statistics, the χ2 (chi-square) meth-
od can be used (Ilia and Tsangaratos 2016).

The next step is to implement the multicollinearity analysis
in order to estimate the correlation among the predictor fea-
tures (Dormann et al. 2013; Tien Bui et al. 2015). For this
purpose, the proposed methodology uses the variance inflation
factor (VIF) and tolerance (TOL) two important indexes for
multicollinearity analysis (Marquardt 1970; Weisberg and Fox
2010). Although no rules exist for interpretation of VIF, the
most common rule of thumb is using 10 as a threshold for
severe multicollinearity, while several authors apply a very
strict threshold of 2 or 5, above which variables are considered
multicollinear and are excluded from the model (O’brien 2007;
Van Den Eeckhaut et al. 2006, 2010; Guns and Vanacker 2012;
Tsangaratos and Ilia 2016a), while a value of TOL smaller than
0.1 indicates serious multicollinearity between independent
variables (Menard 2002).

Implementing logistic regression
Logistic Regression is among those statistical methods that have
been proved to be highly reliable when performing a landslide
susceptibility assessment (Dai et al. 2002; Ayalew and Yamagishi
2005; Yesilnacar and Topal 2005; Gorsevski et al. 2006; Yilmaz
2010; Akgun et al. 2012). The independent variables in this model
are considered as predictors of the dependent variable and can be
measured on a nominal, ordinal, interval, or ratio scale, while the
dependent variable is in a binary format. The relationship between
the dependent variable and independent variables is nonlinear
(Yesilnacar and Topal 2005).

LR is thought as a special case of a generalized linear model;
however, it is based on quite different assumptions concerning the
relationship between the dependent and independent variables
from those followed by linear regression models. The conditional
distribution is a Bernoulli distribution rather than a Gaussian
distribution, since the dependent variable has the form of a binary
variable (presence or absence of landslides).

In logistic regression analysis, the relationship between the
occurrence and its dependency on several variables can be
expressed by the following equation (Eq. (6)):

p ¼ 1
1þ e−z

ð6Þ

where p is the probability of a landslide occurrence. The probabil-
ity can take values from 0 to 1 on an S-shaped curve and z is the
linear combination of a set of landslide-related variables. Logistic
regression involves fitting an equation of the following form to the
data (Eq. (7)):

z xið Þ ¼ bo þ b1x1 þ b2x2 þ…þ bnxn ð7Þ

where b0 is the intercept of the model, the bi (i = 0, 1, 2, ..., n) is the
slope coefficients of the logistic regression model, and xi (i = 0, 1, 2,.
.., n) are the independent variables. The linear model formed is then
a logistic regression of presence or absence of landslides (present
conditions) on the independent variables (pre-failure conditions).

Implementing weight of evidence
WofE is a data-driven approach that is based on the Bayes theorem
and on the concepts of prior and posterior probability (Bonham-
Carter 1994). There are numerous studies of landslide susceptibil-
ity analysis that utilize the WofE method (Lee et al. 2002; Lee et al.
2004; van Westen et al. 2003; Mathew et al. 2007; Bettian and Birgit
2007; Neuhäuser and Terhorst 2007; Poli and Sterlacchini 2007;
Dahal et al. 2008; Sharma and Kumar 2008; Barbieri and Cambuli
2009; Ghosh et al. 2009; Tangestani 2009; Cervi et al. 2010; Ilia
et al. 2010, 2013; Park 2010; Regmi et al. 2010; Armas 2012; Kayastha
et al. 2012; Tien Bui et al. 2012a; Thiery et al. 2014; Kouli et al. 2014;
Ilia and Tsangaratos 2016), in which the main objective is to
estimate if a given set of independent variables could predict the
presence of landslide incidence that is considered as the depen-
dent variable. The method investigates the spatial relationship
between the distribution of the areas affected by landslides and
the distribution of the landslide-related variables (Ilia et al. 2010;
Neuhauser et al. 2012; Ilia and Tsangaratos 2016). A measure of the
spatial association between landslide locations and landslide-
related variables is provided through the magnitude of contrast
(C), which is determined by the difference of positive (W+) and
negative (W−) weights. W+ and W− provide information about
whether there is a positive or a negative spatial correlation be-
tween the landslide-related variables and the landslide locations.
When C is positive, it implies positive correlation, and when it is
negative, it implies negative spatial association (Bonham-Carter
et al. 1989; Agterberg et al. 1990). The studentized value of C is
calculated as the ratio of C to its standard deviation stdC, (C/stdC),
and serves as a guide to the significance of the spatial association,
acting as a measure of the relative certainty of the posterior
probability (Bonham-Carter 1994).

Implementing random Forest
Random Forest (RF) is an ensemble learning method, which is based
on the generation of several classification trees, which are aggregated
to estimate a classification (Breiman et al. 1984; Breiman 2001). The
algorithm exploits random binary trees which use a subset of obser-
vations through bootstrapping techniques: from the original data set,
a random selection of training data is sampled and used to build the
model, the data not included are referred to as out-of-bag (OOB)
(Breiman 2001). According to Hansen and Salamon (1990), an

Original Paper

Landslides 14 & (2017)1096



ensemble method, such as RF, is more accurate than individual
members if only data appear random and are diverse. In the case
of RF, diversity is achieved by resampling the data with replacement
and randomly changing the predictive factor over the different tree
induction processes (Youssef et al. 2015).

One of the main advantages of RF is the ability to avoid over-
fitting and growing a large number of random forest trees where it
does not create a risk of over-fitting (e.g., each tree is a completely
independent random experiment). The RF algorithm data does
not need to be rescaled, transformed, or modified. It has resistance
to outliers in predictors and automatically handles the missing
values (Breiman and Cutler 2004).

Models validation and comparison
For the estimation of the performance of the three methods, two
statistical evaluation criteria were utilized by using the training
and validation data; the first one is the overall accuracy on the
training data, which is an indication of the successful power of the
model. The second one is the overall accuracy on the validation
data, which is an indication of the predictive power of the model.

Both criteria are calculated as the ration of the true positives plus
the true negatives to the total number of data. The validation
processes were achieved by using the receiver operating character-
istic (ROC) curve analysis (Fawcett 2006). Using the landslide grid
cells in the training dataset, the success-rate results were obtained,
while the validation dataset was used for the construction of the
prediction-rate curves (Chung and Fabbri 2003). The area under
the ROC curve (AUC) has been used as a metric to access the
overall quality of the predictive models by evaluating the models
ability to anticipate correctly the occurrence or non-occurrence of
predefined events (Hanley and McNeil 1982; Negnevitsky 2002;
Fawcett 2006). If AUC is close to 1, the outcomes of the analysis
are excellent, while if the AUC is closer to 0.5, the less accurate the
result of the analysis is.

In addition, the landslide density ratio was calculated as a
measure of sufficiency (Can et al. 2005; Pradhan and Lee 2010).
A model is more sufficient and accurate when there is an increase
in the landslide density ratio when moving from low susceptible
classes to high susceptible classes and when the high susceptibility
class covers small extent areas.

Fig. 4 The spatial distribution of non-landslide and landslide points
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Results and discussion

Determining the class numbers of the landslide-related variables
Following the procedure described in the methodology, the land-
slide and non-landslide inventory database was constructed with
the usage of Google Earth® and the analysis of the high resolution
DEM. In order to capture representative information concerning
the landslide-related variables, about the 112 landslide locations,
additional points were introduced when necessary, especially when
the landslide area had a large surface coverage, creating a total of
286 points. Equal number of 286 non-landslide points were iden-
tified, while by applying the subroutine subset wizard, approxi-
mately 70 % of the total number of landslide and non-landslide
were used as training data and the rest 30 % served as validating
data. Figure 4 illustrates the spatial distribution of the landslide
and non-landslide areas.

The next action was to estimate the number of classes of each
landslide-related variable that maximize the information coeffi-
cient based on Shannon’s entropy index. The analysis was per-
formed for two (2) to six (6) classes, for the each variable, except of
the variable lithology that is a categorical variable. Table 2 provides
the Information coefficient values for each class.

For the first variable, altitude, the information coefficient has
the highest value, 0.3543, when classified by the Geometrical
Interval classification method into two (2) classes. Similar, slope
maximizes the information coefficient when classified into three
(3) classes having a value of 0.1432. Aspect, which has been classi-
fied with the Natural Break method, also presents the highest
information coefficient value (0.1123) when classified into three
(3) classes, in comparison with those estimated when classified
into a different number of classes. TWI and STI were classified by
implementing the Geometrical Interval classification method and
maximize the information coefficient when classified into two (2)
classes, having values 0.0441 and 0.0466, respectively. Plan curva-
ture, distance from river network, and distance from road network
maximize its information coefficient when classified into four (4)
classes, with values 0.0115, 0.0627, and 0.0902, while profile curva-
ture when classified into six (6) classes, with information coeffi-
cient value, 0.0473. Finally, distance to tectonic features has the

highest value of information coefficient when classified into three
(3) classes. Plan curvature and profile curvature were classified by
using the Natural Break method, while distance from river net-
work, distance from road network, and distance to tectonic fea-
tures were classified by using the Geometrical Interval method. NC
stands for non-calculable, meaning that for the certain classifica-
tion, a class of the variable does not contain an incidence.
Comparing the information coefficients among the variables, the
most informative appears to be altitude, followed by slope and
aspect, while the least informative appears to be the plan curva-
ture. Figure 5a–j shows the spatial pattern of the classes that
maximize the information coefficient for each of the landslide-
related variables used in the analysis.

Multi-collinearity analysis
The VIF’s and tolerance values (TOL) were estimated by
performing multicollinearity analysis (Table 3). According to the
results, there was no serious multicollinearity between the inde-
pendent variables. The smallest TOL was the one calculated for the
plan curvature variable (0.405) which however is higher than 0.100
the theoretical critical value for evidence of collinearity (Menard
2002). Also, the VIF’s values for all the variables are less than 5, a
similar theoretical threshold of multicollinearity (O’brien 2007;
Van Den Eeckhaut et al. 2006, 2010; Guns and Vanacker 2012;
Tsangaratos and Ilia 2016a).

Applying logistic regression method
The training dataset was evaluated using a chi-square of Hosmer-
Lemeshow test, Cox and Snell R2, and Nagelkerke R2, while accu-
racy percentages of classification for all training sets were also
calculated. Hosmer-Lemeshow test showed that the goodness of fit
of the equation can be accepted since the significance of the chi-
square is larger than 0.05 (Table 4).

The overall precession and recall index of the classification is
82.5 %, which is quite acceptable. The logit of f(x) function is
calculated for all of the grids of the Nancheng County, in which
zero (0) corresponds to no susceptibility and one (1) to total
susceptibility. Based on constant values that were calculated, the
logistic regression is compiled according to Eq. (8) as follows:

Table 2 Information coefficients

Thematic layer (classification method) 2 classes/
information
coefficient

3 classes/
information
coefficient

4 classes/
information
coefficient

5 classes/
information
coefficient

6 classes/
information
coefficient

Altitude (Geometrical Intervals) 0.3543 0.3028 0.2396 0.1919 NC

Slope (Geometrical Intervals) 0.0996 0.1432 0.0991 0.0842 0.1063

Aspect (Natural Break) 0.0012 0.1123 0.1051 0.1042 0.0700

TWI (Geometrical Intervals) 0.0441 NC NC NC NC

STI (Geometrical Intervals) 0.0466 0.0340 NC NC NC

Plan curvature (Natural Break) 0.0018 0.0035 0.0115 0.0080 0.0091

Profile curvature (Natural Break) 0.0037 0.0076 0.0336 0.0355 0.0473

Distance to river network (Geometrical Intervals) 0.0112 0.0002 0.0627 0.0318 0.0207

Distance to tectonic features (Geometrical Intervals) 0.0587 0.0807 NC NC NC

Distance to road network (Geometrical Intervals) 0.0793 0.0611 0.0902 0.0543 NC
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z ¼ −5:0789þ 0:3079* Lithologyð Þ½ � þ 2:0617* Altitudeð Þ½ �
þ 0:8983* Slopeð Þ½ � þ 0:0627* Aspectð Þ½ � þ −2:0718* TWIð Þ½ �
þ 2:2334* STIð Þ½ � þ −0:084* Profile Curvatureð Þ½ �
þ −0:2199* Plan Curvatureð Þ½ �
þ 0:4515* Distance to River Networkð Þ½ �
þ 0:2376* Distance to Tectonic Featuresð Þ½ �
þ −0:4703* Distance to Road Networkð Þ½ � ð8Þ

In order to predict the possibility of landslide occurrence in
each grid, probability was calculated from Eq. (6) and the landslide
susceptibility map was produced (Fig. 6).

The conditional variables lithology, altitude, slope, aspect, STI,
distance to river network, and distance to tectonic features affect the
LR function positively, while the highest b coefficient according to
Eq. (8) is allocated to STI and altitude, which are 2.2334 and 2.0617,
respectively. TWI, profile and plan curvature, and distance to road
network have a negative effect on the landslide occurrence as they
have negative b coefficients. From the visual analysis of the landslide
susceptibility map, high and very high susceptible zones are located
at the west and east mountainous areas, while the central area is
characterized by very low to low susceptibility values. It is clear that
the spatial pattern of the landslide susceptibility follows the distri-
bution of the elevation and slope observed in the study area, since
lowlands are characterized by very low to low susceptibility values.
One can also observe a strong association between the lithological
coverage and the landslide susceptibility values.

Applying weight of evidence method
The estimation of the conditional independency among the
landslide-related variables was performed by the chi-squared sta-
tistic test. Table 5 illustrates the results of the chi-squared test on
the observed distribution and expected distribution of the land-
slide occurrence based on posterior probabilities calculated using
the 11 variables. The theoretical χ2 values are presented in brackets.
From the total of 55 pairwise comparisons, 14 conditional depen-
dencies have been identified at a 0.01 significance level and varying
degrees of freedom. Specifically, TWI showed six (6) conditional
dependences, while distance to road network showed four (4)
conditional dependences. Despite the observed conditional depen-
dence among some of the variables, it was decided to proceed in
the analysis in order to compare the three models under the same
settings.

The next phase was to calculate the weights of the
landslide-related variables according to the methodology of
the WofE method. Table 6 provides the C values that are
used to construct the landslide susceptibility map through
an aggregated weighted method and also the stdC and
C/stdC values. Ranking the positive spatial correlation be-
tween the classes of the landslide-related variables and the
landslide locations, areas that have elevation greater than
131 m exhibit the highest C value (1.6230), followed by areas
that have TWI values less than 5.85 (1.6179). Concerning the
lithological formation of the research area, the Wan Yuan
group that consists of granulite and mica-quarts schist is
found to have the highest C value (1.4038), while areas that
have an orientation between 109° and 228° have moderate C
values (1.0003).

Fig. 5 The landslide-related variables. a Altitude, b slope angle, c aspect, d TWI, e STI, f plan curvature, g profile curvature, h distance to river network, i distance to
tectonic features, j distance to road network
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Fig. 5 (continued)
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Figure 7 shows the landslide susceptibility map constructed by
WofE method. A similar pattern of landslide susceptibility values to
the LR method was observed, with high and very high susceptible
areas to be located at the west and east mountainous areas, while the
central area is characterized bymoderate to low susceptibility values.

Applying random Forest method
To implement successively the RF method, there is a need to
estimate the minimum number of trees required to minimize the

Out-Of-Bag error and also the need to estimate the number of
variables randomly sampled as candidates at each split. As illus-
trated in Fig. 8a, the Out-Of-Bag error (black line) is less fluctuated
when the number of trees exceeds 800, while Fig. 8b gives the
results of the tuning process concerning the number of variables
used in each split. It was decided to train the RF model using two
(2) random variables at each split and 1000 trees.

After the training phase ended, some extra information about
the influence of each variable has on the overall landslide sus-
ceptibility analysis followed by the RF method was gained.
Specifically, Fig. 9 illustrates the 11 variables ordered by the mean
decrease accuracy and the mean decrease Gini. The mean de-
crease in Gini coefficient is a measure of how each variable
contributes to the homogeneity of the nodes and leaves in the
resulting random forest model, while the mean decrease in accu-
racy a variable causes is determined during the Out-Of-Bag error
calculation phase. The more the accuracy of the random forest
decreases due to the exclusion of a variable, the more important
that variable is assumed, thus variables with a large mean de-
crease in accuracy are more important. According to those two
metrics, the most important variable is altitude followed by TWI
and lithology.

In Table 7, the variables that are more often used during the
training phase are reported. The most used variables were lithology
(13.46 %), plan curvature (13.22 %), and distance to river network
(12.93 %) followed by distance to road network (12.56 %), aspect
(11.27 %), and distance to tectonic features (10.25 %). Profile curva-
ture (9.77 %), TWI (5.61 %), slope (5.02), and altitude (4.91 %) are the
least used, while STI only participates in themodel 0.89% of the total
number of times each variable was used.

Fig. 5 (continued)

Table 3 Multi collinearity analysis

Variable Collinearity statistics
TOL VIF

Lithology 0.821 1.218

Altitude 0.634 1.578

Slope 0.665 1.505

Aspect 0.846 1.182

TWI 0.486 2.056

STI 0.879 1.138

Plan curvature 0.405 2.470

Profile curvature 0.558 1.791

Distance to river network 0.889 1.125

Distance to tectonic features 0.763 1.311

Distance to road network 0.740 1.351
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Figure 10 illustrates the landslide susceptibility map con-
structed according to the RF method. From the visual analysis
of the landslide susceptibility map, it seems that it follows the
pattern of altitude, lithology, and the distance to river network.
High and very high susceptible zones are located along the road
network mainly at the west and east mountainous areas, while
the central area is characterized by very low to low susceptibility
values.

Insights about the influence the landslide-related variables
have in predicting the stability condition of the research area
have been obtained by the implementation of the three models.
Specifically, RF and WofE considered altitude, lithology, and TWI
as the most important variables. LR identifies altitude and lithol-
ogy as affecting the LR function positively, while TWI affects the
LR function negatively. Concerning the altitude of a surface, it
could be considered as a variable that indirectly contributes to

Table 4 The overall statistics of the logistic regression

Hosmer-Lemeshow test

Chi-square df sig −2log likelihood Cox and Snell R2 Nagelkerke R2

10.698 8 0.2194 295.69 0.48 0.64

Fig. 6 Landslide susceptibility map produced by the LR method
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the slope failure manifestation (Dai et al. 2002). The elevation of
a surface is considered to be formed by the combined action of
tectonic activity, weathering, and erosion processes and is also
related with the action of the climatic conditions through a
complex interactive influence. The analysis performed in our
study showed that areas with elevations greater than 131 m expe-
rience considerable higher chance of landslide occurrence.
Regarding lithology, the high percentage of small-sized land-
slides was observed in areas covered by metamorphic rocks
(schists, granulite, and marbles) having mass thickness between
3 and 8 m. However, it should be mentioned that the scale of the
available lithological map makes it difficult to distinguish in
more detail the overlying lithology. Quaternary deposits that
may be present are not mapped and thus the types of landslides
observed are not associated with those types of geological for-
mations. This issue should be addressed as key research point in
the close future. Finally, concerning the TWI, that is an index to
describe the effect of topography on the location and size of
saturated source areas of runoff generation (Moore et al. 1991),
the analysis revealed that areas less saturated exhibit higher
landslide susceptibility.

Validation and comparison
The next phase of the followed methodology was to estimate the
relative distribution of the landslide susceptibility zones and the
landslide density for each of the three methods. All models
showed an increasing landslide density ratio when moving from
low susceptible classes to high susceptible classes (Fig. 11).

However, the WofE method showed the highest density
(0.7740), followed by the LR method (0.6739) and the RF meth-
od (0.4284) in the very high susceptible zone. The percentage of
landslides found in the very high susceptible zone for WofE, LR,
and RF was estimated to be 77.97, 67.13, and 41.25 %, respec-
tively, while the percentage of the area classified as very high
susceptibility according to WofE, LR, and RF was estimated to
be 28.64, 19.80, and 18.46 % of the total research area,
respectively.

According to the methodology, the validation of the three
methods was estimated by calculating the successive and predic-
tive power on the bases of the training and validation dataset.
Figure 12 illustrates the area under the ROC curve (AUC) that
expresses the models ability to anticipate correctly the occurrence
or non-occurrence of landslides for the three models. The highest
train AUC value was obtained by the RF method (0.9350) followed
by the WofE (0.9255) and the LR method (0.9097). The highest
predictive ROC curve with AUC values equal to 0.9220 was again
achieved by the RF method followed by the WofE (0.9090) and LR
method (0.8940).

Our findings are consistent with the results from similar
comparative studies. More specifically, as reported in a landslide
susceptibility analysis presented by Esposito et al. (2014) which
compared the outcomes of a RF model with a LR model in Rio de
Janeiro, Brazil, the RF model showed higher accuracy than the LR
model, with AUC values estimated to be 0.81 and 0.72, respec-
tively. Similar results of higher accuracy were also reported in a
comparative landslide susceptibility study, indicating the RF

Table 5 Test of conditional independence

Variables A B C D E F G H I J

Lithology 76.78
(15.51)

4.53
(26.30)

10.88
(26.30)

6.67
(15.51)

4.28
(15.51)

12.60
(36.41)

20.98
(55.76)

20.09
(36.41)

25.95
(26.30)

76.14
(36.41)

A – 17.10
(5.99)

0.65
(3.84)

5.41
(3.84)

0.69
(3.84)

4.07
(7.81)

7.68
(11.07)

4.26
(7.81)

4.54
(5.99)

12.45
(7.81)

B – – 1.47
(9.49)

22.37
(5.99)

0.05
(5.99)

4.63
(12.59)

18.00
(18.31)

2.51
(9.49)

1.11
(5.99)

9.20
(12.59)

C – – – 1.68
(5.99)

1.10
(5.99)

8.70
(12.59)

11.91
(18.31)

16.14
(12.59)

2.16
(9.49)

0.98
(12.59)

D – – – – 8.48
(3.84)

28.41
(7.81)

29.50
(11.07)

8.35
(7.81)

2.23
(5.99)

0.89
(7.81)

E – – – – – 2.89
(7.81)

5.38
(11.07)

2.78
(7.81)

0.47
(5.99)

2.18
(7.81)

F – – – – – – 94.46
(24.30)

3.11
(16.91)

2.78
(12.59)

12.68
(16.91)

G – – – – – – – 10.24
(24.30)

6.55
(18.31)

8.07
(24.30)

H – – – – – – – – 15.78
(12.59)

36.40
(16.91)

I – – – – – – – – – 16.35
(12.59)

A altitude, B slope, C aspect, D TWI, E STI, F plan curvature, G profile curvature, H distance to river network, I distance to tectonic feature, J distance to road network.
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Table 6 The weights of the landslide-related variables based on the WofE method

Thematic Layer Classes W+ W− C stdC C/stdC

Lithological Units A 0.0411 −0.0017 0.0428 0.3609 0.1185

B −5.1169 0.0083 −5.1252 10.0003 −0.5125

C −6.8026 0.0460 −6.8486 10.0003 −0.6848

D −6.6541 0.0395 −6.6937 10.0003 −0.6693

E −0.8477 0.2931 −1.1408 0.1929 −5.9146

F 0.2335 −0.0894 0.3229 0.1529 2.1121

G 0.9778 −0.4261 1.4038 0.1419 9.8949

H −0.8520 0.0425 −0.8945 0.4145 −2.1579

I −4.9944 0.0074 −5.0018 10.0003 −0.5002

Altitude (m) <130 m −1.1216 0.5013 −1.6230 0.1929 −8.4142

>131 m 0.5013 −1.1216 1.6230 0.1929 8.4142

Slope Angle (degrees) 0–9 0.2880 −0.0230 0.3110 0.2536 1.2265

10–28 −0.2751 0.2667 −0.5418 0.1430 −3.7874

>29 0.2630 −0.2006 0.4636 0.1415 3.2777

Aspect (degrees) 0–108 −0.4396 0.1587 −0.5983 0.1736 −3.4462

109–228 0.5485 −0.4518 1.0003 0.1430 6.9930

229–360 −0.4636 0.1762 −0.6398 0.1721 −3.7174

Distance from tectonic features (m) <700 m −0.9319 0.1034 −1.0353 0.2978 −3.4770

701–4500 m 0.0732 −0.1026 0.1758 0.1447 1.2155

>4501 m 0.1604 −0.0720 0.2325 0.1498 1.5516

Distance from river network (m) <250 m 0.0979 −0.0568 0.1547 0.1453 1.0644

251–500 m 0.0941 −0.0327 0.1267 0.1593 0.7956

501–750 m −1.0651 0.1418 −1.2069 0.2868 −4.2076

>751 m 0.2568 −0.0844 0.3413 0.1575 2.1669

Distance from road network (m) <250 m 0.3880 −0.2378 0.6258 0.1420 4.4072

251–500 m 0.4033 −0.1390 0.5423 0.1529 3.5466

501–750 m −0.5216 0.0657 −0.5873 0.2536 −2.3163

>751 m −0.8213 0.2545 −1.0758 0.1980 −5.4324

Plan curvature 0.00–0.51 0.1323 −0.0152 0.1475 0.2260 0.6524

0.52–1.05 −0.1377 0.0504 −0.1881 0.1633 −1.1518

1.06–1.94 −0.0497 0.0392 −0.0889 0.1428 −0.6221

1.95–11.60 0.2422 −0.0556 0.2978 0.1736 1.7152

Profile curvature <−1.98 0.8230 −0.0540 0.8770 0.2471 3.5492

−1.97—0.63 −0.0280 0.0052 −0.0332 0.1954 −0.1699

−0.62–0.34 −0.0576 0.0210 −0.0786 0.1612 −0.4877

0.35–1.19 −0.0910 0.0378 −0.1288 0.1575 −0.8178

1.20–2.54 −0.1996 0.0398 −0.2394 0.1980 −1.2088

2.55–16.23 0.5951 −0.0307 0.6258 0.2868 2.1818

TWI 0–5.85 0.4740 −1.1439 1.6179 0.1980 8.1699

5.86–41.21 −1.1439 0.4740 −1.6179 0.1980 −8.1699

STI <225 −0.0101 0.5069 −0.5170 0.45294 −1.14150

>226 0.5069 −0.0101 0.5170 0.45294 1.14150
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Fig. 7 The landslide susceptibility map produced by the WofE method

Fig. 8 a Error OOB vs number of trees, b number of variables used in each split (mtry)
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model as the most accurate against a LR model and a frequency
ratio model (Trigila et al. 2015). Also, Goetz et al. (2015) reported
that RF model had a slightly better performance in a landslide
susceptibility assessment contacted in Austria, when compared
with LR, WofE, and other advanced data mining techniques. In

contrast to the above studies, findings of a landslide susceptibil-
ity analysis held in Lianhua County, China, reported however the
poor performance of RF model when compared with a data
driven evidential belief function, a frequency ratio and a LR
model (Hong et al. 2016b).

In any case, understanding the abilities and limitation of
each method remains critical for selecting the most accurate
model (Goetz et al. 2015). The b coefficients of the LR function
are able to provide an estimate of the importance of each
variable plays in explaining the presence of landslide; however,
they do not provide information about the relative priorities or
importance among the predictive variables. In WofE method,
the conditional independency assumption among the landslide-
related variables must be valid, while the data population of
each variable must have a normal distribution. On the other
hand, RF has several advantages; it does not require assump-
tions on the distribution of explanatory variables, it allows for
the use of either categorical or numerical variables, it accounts
interactions and nonlinearities among variables, and its ability
to provide information about the influence of each variable on
the overall result (Catani et al. 2013; Pourghasemi and Kerle
2015).

Conclusions
The present study presents a novel methodology in which
Shannon’s entropy model was used for classifying landslide-

Fig. 9 Mean decrease accuracy and mean decrease Gini

Table 7 Number of times variables were used when applying RF

Variables Number of
times used
by the model

Percentage
(%)

Lithology 1827 13.46

Altitude 667 4.91

Slope angle 682 5.02

Aspect 1530 11.27

TWI 762 5.61

STI 121 0.89

Profile curvature 1327 9.77

Plan curvature 1808 13.32

Distance to river network 1756 12.93

Distance to tectonic features 1392 10.25

Distance to road network 1705 12.56
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Fig. 10 The landslide susceptibility map produced by the RF method

Fig. 11 Bar graphs showing the relative distribution of landslide susceptibility zones and landslide density
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related variables in order to produce landslide susceptibility maps.
Specifically, Shannon’s entropy model was utilized for determining
the appropriate classes that maximize the information coefficient
for each variable. The developed methodology was implemented
in the Nancheng County, China, using three quantitative methods,
logistic regression, weight of evidence, and random forest, and was
based on the analysis of eleven (11) conditional variables, namely,
lithology, altitude, slope, aspect, topographic wetness index, sedi-
ment transport index, plan curvature, profile curvature, distance
to river network, distance to tectonic features, and distance to
road network.

According to the results of the research, each model had satis-
factory performance, though the RF model had a slightly higher
performance in terms of AUC predictive values (0.9220) against
the ones estimated for the WofE (0.9090) and the LR model

(0.8940). The same pattern was observed when the success power
of the models was calculated. Specifically, RF outperforms LR and
WofE, having a higher performance in terms of AUC successive
values (0.9350) in comparison with the ones calculated for WofE
(0.9255) and LR (0.9097). From the visual inspection of the pro-
duced landslide susceptibility maps, the most susceptible areas are
located at the west and east mountainous areas, while the central
area is characterized by moderate to low susceptibility values.
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