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slopes

Abstract A Kriging-based surrogate model provides a logically
strict and efficient tool to evaluate the system reliability of a slope.
However, the constant trend function adopted in the ordinary
Kriging (OK) cannot always well capture the nonlinear non-
smooth properties of a slope stability problem. Although the
universal Kriging (UK) with a linear or a quadratic trend function
could be an alternative for some cases, a higher order nonlinear
trend function is preferable for some more complicated nonlinear
non-smooth cases in the slope stability analysis. To address this
problem, a genetic algorithm (GA) optimized Taylor Kriging (TK)
surrogate model is proposed for the system reliability analysis of
soil slopes in this paper. The proposed surrogate model allows a
unified framework of the Kriging, considering different extents of
nonlinear properties according to the Taylor expansion order (e.g.,
can be as high as the fourth order). The GA is introduced to search
for the optimal correlation parameters, of which the effectiveness
is verified by an analytical example. The feasibility of the proposed
surrogate model is then validated by two analytical examples
before its application to the practical slope reliability analyses.
The results show that the UK model can be incorporated into the
TK model, and the TK model provides a higher accuracy and
efficiency when facing the highly nonlinear slope stability prob-
lems. It is also found that the UK model cannot fully capture the
potential nonlinear properties existed in a slope stability model as
compared with the higher order TK model.

Keywords Slope stability - System reliability
analysis - Kriging - Genetic algorithm - Taylor
expansion - Surrogate model

Introduction

The traditional factor of safety (FS) used in the slope stability analysis
cannot consider the effects of the uncertainty of the soil properties. On
the other hand, the probabilistic approaches which try to quantify
those uncertainties are increasingly being used by engineers and
researchers for the probabilistic slope stability analysis (Cho 2009,
2013; Hamedifar et al. 2014; Jha and Ching 2013; Li et al. 2014; Low 2007;
Zhangetal. 2011a). Generally, the probability of a slope failure involves
solving a multiple integration with respect to the joint probability
distribution function of all the random variables (e.g., c and ¢) within
the failure region, which is a very challenging task if the analytical
method is adopted. Currently, the Monte Carlo simulation (MCS) is
being used to obtain an unbiased estimation of the failure probability
by evaluating the performance function based on a large number of
randomly generated samples (Jiang et al. 2015; Wang 2012, 2013; Wang
et al. 2010). However, the MCS suffers from a prohibitively expensive
calculating cost, and a full MCS may take more than 1 day to complete
the computation using the limit equilibrium method (LEM). For the
slope stability analysis based on the finite element model (FEM), the
required computer time is practically unacceptable to most of the
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routine engineering design works. To enhance the computational
efficiency of the MCS, the quasi MCS and the variance reduction
methods have been proposed in the literature. For example, the use
of the quasi MCS in the slope stability analysis is a promising alterna-
tive (Cheng et al. 2015) which may however perform unsatisfactorily in
some cases. In addition, the Subset Simulation (SS), which is consid-
ered as an enhancement of the MCS, can significantly improve the
computational efficiency, but it still requires hundreds evaluations of
the LEM or FEM slope stability model (Au and Wang 2014; Wang et al.
2011). Therefore, more efficient and accurate reliability analysis ap-
proaches are still under active research.

As an alternative, the surrogate model, which uses an explicit
performance function to approximate the implicit relationship
between the original model output (i.e., FS) and the inputs (e.g.,
¢ and ¢), has been recognized as an efficient tool for the slope
reliability analysis over the past few decades. The most popular
surrogate models include the support vector machine (Kang and
Li 2015; Zhao 2008), the neural network (Cho 2009), the Kriging
(Luo et al. 2012a, b; Yi et al. 2015; Zhang et al. 2011a, 2013) and the
response surface method (RSM) (Jiang et al. 2014; Li et al. 2015; Li
and Chu 2015; Zhang et al. 2011b). Among them, the RSM based on
the second order polynomial without cross terms is the most
popular approach at present, and more about the RSM and its
variants can be found in a recent review paper (Li et al. 2016).
Usually, the RSM is adopted in combination with the first order
reliability method (FORM) or the sampling-based approaches
(e.g., MCS) to assess the reliability of a slope, which can substan-
tially reduce the evaluating time for the reliability analysis. By
contrast, it has also been validated that a traditional RSM is unable
to approximate the performance function accurately, and the ad-
justment to the RSM for an expected precision is non-trivial when
it is only locally accurate (Zhang et al. 2013).

Compared with the RSM, a Kriging-based surrogate model
presents several advantages as follows: Firstly, it is an exact inter-
polation method, that is, the predictions at the known points that
belong to the design of experiments (DOEs) are absolutely correct.
The DOEs here in this study are also known as the training
samples to calibrate the Kriging model. Secondly, it can provide
a Kriging variance indicating the prediction error at an unknown
point, for which the RSM cannot (Zhang et al. 2011a; Zhao et al.
2015). Due to the abovementioned merits, the Kriging model has
gained much attraction in structural reliability analysis (Busby
2009; Kaymaz 2005; Yuan et al. 2013; Zhang et al. 2015; Zhao
et al. 2015; Zhao and Wang 2011; Zhao et al. 2010). On the contrary,
the application of the Kriging model in geotechnical reliability
field is still limited at present. Zhang et al. (2011a) is probably the
first one to use the Kriging in the numerical model or the RSM to
best fit a response surface for the reliability analysis of the stability
of some typical geotechnical structures. Later on, Zhang et al.
(2013) compared the Kriging with the quadratic RSM in system
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reliability analysis of soil slopes and have found its superiority
over the commonly used quadratic RSM. Luo et al. (2012b) and Yi
et al. (2015) used the artificial bee colony (ABC) algorithm and the
particle swarm optimization (PSO) optimized Kriging method for
the slope reliability analysis, respectively. Recently, Kang et al.
(2015) used a Gaussian process regression with the Latin hyper-
cube sampling (LHS) to perform the system probabilistic stability
analysis of soil slopes, of which the underlying principle is very
similar to the Kriging method. It should be noted that all these
researchers used the ordinary Kriging (OK) based on a MATLAB
toolbox DACE (design and analysis of computer experiments)
developed by Lophaven et al. (2002). The problem is that the trend
function is a nonzero constant which might not be able to capture
the non-constant mean trend of the soil strength parameters.
Although the universal Kriging (i.e., the trend function is polyno-
mial) is available in the DACE, it is limited to the second order
while the selection of the base function forms still requires explo-
ration. Given the high nonlinearity of the soil properties and the
slope stability models, applying the higher order trend function for
improving performance should be of great importance. Further
comparison of the performances between the Kriging with differ-
ent trends in the slope reliability analysis should be conducted, but
such work appears to be outstanding at present, to the best
knowledge of the authors.

Inspired by Liu et al. (2010), the objective of this paper is to
combine the Taylor expansion and the Kriging to form a unified
Kriging approach. It is termed as the Taylor Kriging (TK) in this
paper, and the Taylor expansion order can be as high as the fourth.
To implement the TK model, firstly, the genetic algorithm (GA) is
used to optimize the correlation parameters in the Kriging, and an
adapted toolbox based on the DACE for the purpose of consistent
comparison with other Kriging models, named as the GATK (ge-
netic algorithm optimized TK), is built for the ongoing research. In
the GATK, the best Kriging model can be identified easily from the
different Taylor expansion orders. Both the analytical and the
practical slope examples are used to validate the proposed ap-
proach. With the existence of the GATK, the comparisons can be
made between the OK, UK and TK models as well as the other
reliability approaches. To achieve these aims, this paper starts with
a review of the classical Kriging theory and the proposed TK
forms, followed by the introduction of the GATK model which is
validated by two analytical examples. The system reliability anal-
ysis of the slope stability and its implementation procedure are
then described. Finally, the proposed approach is illustrated by
two practical soil slopes, followed by the conclusions of this study.

Kriging methodology

Classical Kriging theory

Unlike the other models, the Kriging method is a semi-parametric
interpolation technique consisting of two parts: linear regression
part (trend part) and stochastic part (Cressie 1993; Krige 1994).
Assume x denotes a vector of input variables and y(x) denotes the
dependent response, the Kriging is expressed as

y(x) = f(x)"B+2(x) (1)

where f(x) = [f,(x), f,(x), ~ ,f,,(x)]Tis the basis function,
B=15s 08, > Ballis a vector of the regression coefficients which
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needs to be determined, and n denotes the number of the basis
function. z(x) is used to model the fluctuation of the regression
part fix)"3, and it is assumed to be a Gaussian process with the
following statistical properties:

E(z(x)) = o
Var(z(x)) = o* (2)
Cov(z(x;),z(x;)) = o*R(x;, x;)

where o is the process variance, Cov(z(x;), z(x;)) defines the co-
variance between the two arbitrary points x; and x;, and R(x;, x;) is
the spatial correlation function which can be determined from
several available models. The Gaussian correlation function is
adopted as the spatial function in this study, and it is written as

R(x,-,xj) = exp (—ZOI|Xil_le|Z> (3)
=1

where n, is the number of the variables, and 6, is the Ith correlation
parameter which ensures a high flexibility of the model and is
usually determined by an optimization method.

Suppose there is a set of DOEs with § =[x, x,, -, x,,]" and the
response Y = [y1, ¥, = » ¥l » then the unknown parameters o> and
3 can be estimated using the least square method or the maximum
likelihood estimation (MLE) as

A= (F'R7'F)'F'R'Y (4)

o % (Y_ Fé\) e (Y—Fﬁ/\) (s)

where F is a vector of f(x), m is the number of the DOEs, and R is
the correlation matrix which can be described as

R(x,,x,) R(x,, %)
R= : : (6)
R(x, %) R(x, %)

However, it can be seen from Eq. (4) and Eq. (5) that the

A
parameter 0; should be estimated prior to the 3and ¢, and based
on MLE, it is evolved to find an optimized solution as the follow-
ing expression:

min : ¥(0)) = % (mlno® +1n|R|), I=1,2,"n, (7)

In the DACE, the minimum value of the Eq. (7) is deter-
mined by the pattern search method (PSM) which belongs to
a local optimization method, and this is the reason why the
GA is adopted in this study. The difference between the
effects of the GA and the PSM on the minimum of the
Eq. (7) will be illustrated by the analytical example #1 in the
following section.

After the unknown parameters above are calibrated using the
DOEs, we can predict the responses at other unknown points. It
should be noted that the Kriging can predict the value at any
unknown point as well as providing an estimation of the predic-
tion variance, which gives an uncertainty indication of the
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Fig. 1 Variation of ¥(6;) and 6; with number of DOEs between GATK and DACE

established Kriging model. The predicted value and the variance at
a new point x,,,, are estimated as

A - A A
Axnew) = f (x)B+ 1" (x) | Y-FB (8)
0*(%new) = 0> (1+u" (F'R™'F) _lu—rT(x)R_lr(x)) (9)
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where r (xnew) = [R(xnew’ xl)’ R(xnew: xz)a ;R(xnew» xm)] is the
correlation vector between an unknown point x,,, and all the

known DOEs(x,, x,, 5 X,,,)-

Theory of TK

The main idea of the TK is to integrate the Taylor expansion with
the trend function to enhance the nonlinear function approxima-
tion capabilities of the Kriging. Suppose the first part (trend
function) in Eq. (1) is denoted as p(x) which has continuous
derivatives up to the (n + 1)th order at a point x,, then the Taylor
expansion of y(x) at the point x, is:

() = ) + (5 ) + )

) (x,) p (€)
* n! (n+1)!

(x—x0)* +
(10)

)n+1

(x—x,)" + (x—x,

where £ is a vector between x and x,,. Clearly, the Eq. (10) can be
further abbreviated in the matrix form as

l‘/(xO)
P‘/ (%)
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Fig. 2 Comparison between predicted and actual values under different Kriging models (LHS = 5). a The first order TK. b The second order TK. ¢ The third order TK. d The

fourth order TK
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Fig. 3 Comparison between predicted and actual values under different Kriging models (LHS = 10). a The first order TK. b The second order TK. ¢ The third order TK. d

The fourth order TK

which is similar in the form to that in the Eq. (1). Hence, the major
difference between TK and OK or UK is the selection of the basis
function, and this will not affect the analytical solution form of the
other parameters (i.e., 3 and ¢*). With this in mind, a unified
Kriging model can be built by choosing a suitable Taylor expan-
sion order and the Taylor expansion point. The highest order in
this study is selected at the fourth order considering the over-
fitting problem and computational complexity based on Liu
(2009). In addition, the fourth order TK model can deal with quite
a few slope stability problems, as can be concluded from the
former works (Li et al. 2015; Li et al. 2016; Li and Chu 2015;
Zhang et al. 2011b) where the quadratic response surface or the
second to fourth order Hermite polynomial chaos expansion func-
tions well. However, it is worthy of noting that, for those highly
nonlinear problems, a proper order should be identified by more
rigor methods, such as the Bayesian model class selection method
(Cao and Wang 2012; Wang et al. 2016), instead of cutting directly
at the fourth order.

GATK surrogate model

Genetic algorithm

GA is a stochastic global search method that mimics the metaphor
of the natural biological evolution (Homayouni et al. 2014). The
underlying principle is the natural selection, based on which the
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individuals in nature are becoming much stronger through the
continuous breeding. Specifically in the GA, a group of the poten-
tial solutions are randomly created and coded as chromosomes,
and each component of a solution is considered as a gene in the
corresponding chromosome. Similar to the natural selection, the
outstanding individuals (solutions) will get more opportunity for
the next generation breeding, which are selected by the evaluation
of a fitness function, that is, the objective function of the optimi-
zation problem. Similar to the complex process of the natural
selection, those selected excellent individuals can crossover with
each other and mutate themselves which increases the diversity of
the next generation. This process leads to the evolution of solu-
tions that are better suited to the studied problem than the initially
created solutions. Iterations are stopped when the maximum
breeding generation predefined is reached. Hence, six parameters
will affect the efficiency and accuracy of the GA, and they are the
number of the initial population (NIP), the maximum breeding
generation (MBD), the generation gap (GGAP), the crossover
probability (CP), and the mutation probability (MP). In this study,
NIP = 50, MBD = 100, GGAP = 0.95, CP = 0.7, and MP = 0.01. The
values here are determined by trial and error with the consider-
ation of the balance between the accuracy and computational
effort. For the enhancement of the GA, the evolution reversal,
the multiple populations, and the elitist strategy are suggested.
With the global optimization capability, the GA will replace the



pattern search in the DACE for finding the optimal correlation
parameters 6; in Eq. (7).

GATK model

GATK model is an adaption based on the Kriging toolbox DACE
(Lophaven et al. 2002), in which the function [dmodel,
perfl = dacefit (S, Y, regr, corr, thetao, lob, upb) was utilized to
build the basic Kriging model with an embedded pattern search
method for determining 6, in Eq. (7). In the DACE, the outputs
dmodel and perf provide information on the parameters needed in
the prediction model and optimization of the objective function in
Eq. (7), respectively. The inputs S and Y are the same with those
mentioned in the second section in this study; regr, corr and thetao
denote the basis function, correlation function and initial 6,
adopted in the model, respectively. lob and upb are respectively
the lower and upper bounds of ;. A new function [dmodel,
perfl = dacetkgafit(S, Y, @regTaylor, corr, n_order) is however
developed to establish the proposed GATK model. It is clear that
the number of the inputs is the same as the original DACE while
two specific augments are different. In the GATK, @regTaylor is a
new sub-function which aims at obtaining the Taylor expansion
basis function values (i.e., F in Eq. (4) and Eq. (5)) at the DOEs S,
and it is in the form of [F] = regTaylor(S, n_order), where n_order
is the selected Taylor expansion order. As described in the section
of “Theory of TK,” n_order can range from one to four. Regards to
the GA, it is embedded in the GATK and no prior 6; is needed.
With the GA in hand, the disadvantages of the pattern search’s
single-point search method and its heavy dependency on the
initial choice of §; could be overcome, and the optimal correlation
parameters will be found, which will be verified by an analytical
example in the following section. Similar to the DACE, the GATK
can also be easily accepted by other researchers and engineers.

Analytical validation of GATK—example #1

An explicit one-dimensional analytical example is firstly adopted
to verify the proposed GATK model. The limit state function is
defined as

g(x) = x> +2x*—3 (12)
where x is assumed to comply with the standard normal distribu-
tion. To verify the proposed GATK model, its optimization capa-
bility for searching the minimum of Eq. (7) is firstly compared
with that in DACE. The variation of the minimum ¥(6;) is
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Fig. 4 Contour plot of Eq. (13)
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Fig. 5 Variation of probability of failure with the number of DOEs

observed under different DOEs which are used to calibrate un-
known parameters 3 and o®. As can be seen in Fig. 1, the GATK can
always converge to a smaller ¥(6;) than DACE as a whole, which
may contribute to different estimation of the 6 values. It is clear
that the difference of ¥(6;) between GATK and DACE is negligible
when the number of DOEs reaches to about 20, this is because the
Kriging model can be highly accurate with this large amount of
DOEs (compared with the number or random variables here). The
difference between the two models is not very evident (0.71468 vs.
0.7149), but GATK still gives smaller value than DACE, which
means that ¥(6)) depends less on & when the number of DOEs is
much small (say 1 when the logarithm of determinant of R is o).
Hence, from the perspective of robustness, GATK is better than

Characterize input information for system reliability
analysis of slope, such as slope geometry, geotechnical
parameters and corresponding distribution types

!

Perform LHS and isoprobability transformation to
get a number of DOEs S

l

Substitute S to original deterministic slope stability
model to obtain Y, i.e., FSs

l

Establish TK surrogate model based on S and Y

|
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surrogate models to perform MCS

l
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estimate the probability of failure using Eq. (16)
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Fig. 6 Flow chart for system reliability analysis of slope
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Fig. 7 The geometry of the c-¢ slope with 6069 potential slip surfaces

DACE in general. Therefore, the following analysis is based on
GATK.

To validate the accuracy of the proposed TK method, a TK
model is initially established when the number of DOEs is 5.
Then, it is used to predict a set of randomly produced
samples by LHS, and the predicted results produced by the
TK, UK, and OK models are compared with the actual results
calculated from Eq. (12), as shown in Fig. 2. Note that the
UK1 and UK2 models denote the linear and quadratic regres-
sion models in DACE, respectively, while the TK1, TK2, TK3,
and TK4 models denote the first, second, third, and fourth
TK models in GATK. Obviously, predictions from the TK3 and
TK4 can agree quite well with the actual y values while the
worst is the OK model. Interestingly, it is easy to find that the
scatters of the UK1 and TK1 coincide with each other as well
as for the UK2 and TK2. This is simply because the Taylor
expansion point in this study is selected at the mean value.
Hence, the UK model can be incorporated in the TK model. It
is also find that when the number of DOEs increases to 10, all
the Kriging models are highly accurate (see Fig. 3), which is
not surprising because Kriging is an absolute accurate inter-
polation method. This also indicates that the OK and UK can
produce accurate results only at the expense of extra evalua-
tion time; hence, it can be concluded that the efficiency of the
TK is better in general.

Analytical validation of GATK—example #2

In this section, a more complicated example is shown to gain more
insights about the proposed TK model. The Himmelblau Function
with a minor adaption is used for such a purpose (Liu 2009),
which is given as

glx,y) = (¢ +y-1)" + (x +y*=7)" + 0a((x-3)" + (x—2)")=5 (13)

where x and y are independent standard normal random variables.
The contour plot of the performance function (i.e., Eq. (13)) is
shown in Fig. 4 with a global minimum and several local minima.

Table 1 Stochastics of soil strength parameters

It is also postulated that the failure event happens when g(x, y) is
less than or equal to zero.

Figure 5 shows the variation of the probability of failure with
the number of DOEs. It is clear that the fourth TK model con-
verges fast to the baseline (i.e., probability of failure evaluated
from the explicit performance function by MCS), while the others
need more DOEs to achieve a comparable accuracy. Also, the
results from the TK1 and TK2 models are consistent with those
from the UK1 and UK2 models. Again, this indicates that the TK
model has a good potential to cope with the more complicated
problems efficiently.

System reliability analysis using GATK surrogate model
The functional state of a slope is often characterized by a limit
state function G(X), which is expressed as

G(X) = FSmin(X)—1 (14)

where FS,,;n(X) denotes the minimum slope factor of safety for a
vector of input variables X. Slope failure happens when the value
of G(X) is less than or equal to the unit, and the failure probability
Pyis depicted as

Pf =/'“jjll[FSmin(X)Sl]f(X)dX (15)

where f(X) is the joint probability density function (PDF) of X, and
I[] is an indicator function which is equal to the unit when
FSmin(X) <1 and zero otherwise. In view of the large numbers
law, the MCS can be used to estimate the failure probability as

N

> I[FSmin(X)<1]

i=1

Py= (16)

1
N

where N is the number of the MCS samples. The estimation
accuracy of the Pris highly dependent on the number of samples
and it is assessed by the coefficient of variation of Psas

1-Py

COfo = pr

(17)

Generally, to reach a reasonable accuracy of the MCS, the value
of N could be extremely large, say in the order of or larger than 10*.
However, directly running the deterministic stability model (par-
ticularly for a FEM model) for such a large number would be
prohibitively time-consuming. Hence, the proposed TK surrogate
model will replace the original deterministic stability model in the
following analysis, which is expected to reduce significantly the
computation time. A flow chart for the following system slope
reliability analysis is suggested in Fig. 6 for reference.

Parameter Distribution Correlation coefficient
Cohesion, ¢ (kPa) 10 0.3 Lognormal p=-07
Friction angle, ¢ (°) 30 0.2 Lognormal
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Illustrative examples

In this section, the proposed TK model is illustrated by a homo-
geneous and a heterogeneous soil slopes. The reliability analysis
results are also compared with those from other methods in the
literature to further verify the accuracy of the proposed TK surro-
gate model.

A homogeneous c-¢ slope

In this example, a single-layered c-¢ slope shown in Fig. 7 is
studied, which has also been analyzed by Jiang et al. (2015); Cho
(2010) and Li et al. (2016) in the literature. The slope has a height
of 10 m, a slope angle of 45° and a total unit weight of 20 kN/m>.
The stochastic properties of the soil strength parameters are given
in Table 1. Based on the mean values of the soil parameters, the FS
of this slope is evaluated as 1.206 using Bishop’s simplified meth-
od, which is well consistent with the values of 1.206, 1.204, and
1.206 by Jiang et al. (2015); Cho (2010) and Li et al. (2016), respec-
tively. The critical slip surface with the minimal FS and a total
number of 6069 potential slip surfaces are schematically shown in
Fig. 7.

As the number of DOEs is of great importance for cali-
brating the Kriging model, a sensitivity analysis is adopted in
order to identify the optimal number. The accuracy of the
Kriging model is measured by the coefficient of determination

400 K

300 H

200 H

100 H
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Fig. 10 Correlated lognormal samples generated by MCS

(R*) based on the predicted and actual FS values of 100
randomly generated testing samples. The optimal number of
DOE:s is determined when the R* is relatively large (e.g., larger
than 0.95) and relatively invariant with the number of DOEs.
Figure 8 shows the variation of R* with the number of DOEs.
It is clear that the higher order TK models converge very fast
to the optimal number of DOEs, while the OK model seems
to be unstable with the increase of the number of DOEs.
Specifically, both the TK3 and TK4 models begin to level off
at the number of about 200 with the R* equal to 0.9999 and
1.000, respectively, which is 100 earlier than the TK2 and UK2
models with the value of R* both equal to 0.9980. This also
indicates that the TK3 and TK4 models are better than the
TK2 (UK2) model in terms of the comparable accuracy. Al-
though the TK1 and UK1 models seems to be invariant with
the number of DOEs when the number is greater than 350,
they are less accurate compared with the TK3 and TK4
models. The optimal number for each model is schematically
shown in Fig. 9. Hence, it can be concluded that the TK3 and
TK4 models perform better than the OK and UK models for
capturing the nonlinear properties of this slope stability
problem.

Based on the optimal number of DOEs, different Kriging
models are established and can be used as replacements of the
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Fig. 11 Variation of probability of failure with the number of DOEs
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Table 2 Results of the probability of failure by different methods

Methodology

Deterministic slope stability model

Probability of failure REEE

Baseline (LHS = 1000) Bishop’s simplified method 0.0480 (COV = 1.40 %) This study
OK (DOEs = 400) Bishop’s simplified method 0.0366 (COV = 1.62 %) This study
UK1 (DOEs = 300) Bishop’s simplified method 0.0504 (COV = 1.37 %) This study
UK2 (DOEs = 350) Bishop’s simplified method 0.0477 (COV = 1.41 %) This study
TK1 (DOEs = 300) Bishop’s simplified method 0.0504 (COV = 1.37 %) This study
TK2 (DOEs = 350) Bishop’s simplified method 0.0477 (COV = 1.41 %) This study
TK3 (DOEs = 200) Bishop’s simplified method 0.0477 (COV = 1.41 %) This study
TK4 (DOEs = 200) Bishop’s simplified method 0.0478 (COV = 1.41 %) This study
MCS Bishop’s simplified method 0.0390 (COV = 1.31 %) Li et al. (2016)
MSRSM Bishop’s simplified method 0.0790 (COV = 182.4 %) Li et al. (2016)
SSRSM Bishop’s simplified method 0.0400 (COV = 75.20 %) Li et al. (2016)
SQRSM Bishop’s simplified method 0.0420 (COV = 0.500 %) Li et al. (2016)
MQRSM Bishop's simplified method 0.0430 (COV = 0.500 %) Li et al. (2016)

MSRSM multiple stochastic response surface method, SSRSM single stochastic response surface method, SQRSM single quadratic response surface method, MQRSM multiple

quadratic response surface method

original deterministic stability model to perform MCS for slope
reliability analysis. For the convenience of comparisons, a thou-
sand times of the LHS are first directly evaluated based on the
original deterministic stability model, and the probability of fail-
ure is estimated as 0.048 which can be considered as the baseline
of this example. Then, a hundred thousand samples generated by
the MCS shown in Fig. 10 are evaluated based on the established
Kriging models for calculating the probability of failure. Figure 11
shows the variation of the probability of failure with respect to the
number of DOEs for different Kriging models. Similar observa-
tions with Fig. 8 can be seen that the results (0.0477 and 0.0478)
estimated respectively by the TK3 and TK4 models are very close
to the baseline (i.e., 0.0480). The TK2 and UK2 models can also
produce comparable results (both at 0.0477) at the expense of
about 150 more DOEs, that is, 150 times more evaluations on the
original deterministic stability model. This means more

computational effort is required. Clearly, the TK1 and UK1 models
overestimate the probability of failure by about 5 %. In addition, it
is worthy to note that the probability of failure from the OK model
is still very sensitive to the number of DOEs as stated above, and
the corresponding result is 23.75 % below the baseline. Table 2
summarizes the results of the probability of failure estimated by
the proposed TK models, with the results from the literatures
included for comparison. The results obtained by different
methods are comparable with each other, which validates the
feasibility of the proposed TK models.

A heterogeneous two-layered soil slope

This example is a two-layered soil slope with the cross-section
given in Fig. 12, which was originally studied by Hassan and Wolff
(1999). The upper layer is clay and the lower layer is a ¢-¢ soil. The
strength parameters are assumed to be mutually independent
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Fig. 12 Cross-section of a two-layered soil slope
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Table 3 Statistics of soil strength parameters

Soil layer Parameter Mean Standard deviation

Layer 1 Cohesion, ¢; (kPa) 3831 7.662

Layer 2 Cohesion, ¢, (kPa) 23.94 4788
Friction angle, ¢, (degree) 12.00 1.200

standard normal random variables, and the statistic properties are
given in Table 3. There is no water table or external water in the
slope, and the unit weight of the soil is taken as 19 kN/m®. Using
the mean values of these strength parameters, the minimum FS of
this slope is calculated as 1.621 according to the Spencer’s non-
circular slip surface method. This value is slightly less than 1.650
by Yi et al. (2015) and 1.634 by Xu and Low (2006).

The Kriging models should be established before performing
the MCS. As for the surrogate model, the number of DOEs is
critical to establish a suitable Kriging model. In this study, the
optimal number of DOEs is identified considering the balance
between the model accuracy and efficiency, which is achieved
based on a sensitivity analysis with respect to the number of DOEs
as shown in Fig. 13. Similar to the first example, the R* that is
calculated based on the predicted and actual FSs of 100 randomly
generated testing samples is selected to measure the accuracy of
the Kriging model. As can be seen from Fig. 13, the R* evaluated by
the OK model fluctuates significantly with the number of DOEs
and tends to converge at a lower value compared with the UK and
TK models. This indicates that the constant trend function in the
ordinary Kriging cannot well capture the nonlinear properties of
this slope stability problem. Again, the TK2 and UK2 models
coincide with each other as well as the TK1 and UK1 models, which
is expected as the Taylor expansion point is selected at the mean
point. However, the TK1 (UK1) model seems to be less accurate
than the TK2 (UK2) model. Additionally, the TK3 model appears to
be the most accurate for this example and is as efficient as the TK2
(UK2) model (both converge at nearly DOEs = 220), while the TK4
model is also capable of obtaining competent accuracy but at the
expense of nearly 20 more DOEs (i.e., approximate 240) than the
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Fig. 13 Variation of coefficient of determination with the number of DOEs

TK3 model. The optimal number of DOEs for each Kriging model
is shown in Fig. 14. Overall, it can be concluded that the TK model
is much more efficient and accurate.

To estimate the failure probability of this slope, the direct MCS
based on the original deterministic stability model would be pro-
hibitively impossible. Therefore, the Kriging-based MCS is used as
a surrogate to efficiently estimate the failure probability with a
reasonable accuracy. For a convenient comparison, a thousand
random samples produced by the LHS are firstly evaluated on
the original deterministic slope stability model to obtain the prob-
ability of failure, which is estimated as 0.0100 and is considered as
the baseline of this example. According to the literature (Hassan
and Wolff 1999; Xu and Low 2006; Yi et al. 2015), the MCS with a
hundred thousand random samples shown in Fig. 15 are sufficient
for this example to estimate an accurate failure probability. Similar
to Fig. 13, the variation of the probability of failure with respect to
the number of DOEs is shown in Fig. 16. Obviously, the probability
of failure estimated from the OK model is not as good as those
from the UK and TK models due to the highly nonlinear proper-
ties, while those high order TK models present inconspicuous
difference.

To gain more insights into the proposed TK model, the reli-
ability results evaluated by other methods from the literature are
provided for comparison and are listed in Table 4. The results of
probability of failure estimated from different Kriging models
under the corresponding optimal DOEs are also shown in this
table. In general, there are some minor differences among
different methods since both the deterministic and stochastic
slope stability models are different. However, the results from Yi
et al. (2015) agree well with the baseline as well as the results from
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the proposed TK models estimated in this study. Additionally, the
result (0.0103) obtained from the TK3 model is the closet to the
baseline (0.0100), and this result seems to be better than other
published results. On the other hand, for conservative estimation,
the result from the TK4 model is closer to the results obtained by
Xu and Low (2006) with less variation. This further indicates the
effectiveness and accuracy of the proposed TK model.

Discussions
The aforementioned reliability results have verified the effec-
tiveness of the proposed GATK model. The efficiency of the
GATK model has also been qualitatively analyzed. In this
section, the computation cost of the proposed method will
be quantified to further quantitatively illustrate its high com-
putational efficiency compared with the direct MCS. The cur-
rent work presented in this study was completed on a desktop
with Intel Core iz-4790 K, 4.00 GHz processor and 16 GB
RAM, based on which several observations on the computa-
tion expenses by different models are discussed and described
as follows.

Figure 17a, b schematically shows the stack columns of the time
sources for the Kriging-based MCS with 100,000 samples for the
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Fig. 16 Variation of probability of failure with the number of DOEs
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homogeneous c-¢ slope and the heterogeneous two-layered soil
slope, respectively. It can be found from the figures that the
computation time required by the Kriging-based MCS mainly
consists of four parts: model training for preparing the DOEs,
model calibration including the GA optimization for determining
the unknown coefficients, model validation based on the testing
samples and the MCS for estimating the failure probability. Com-
pared with the time for model training and validation, the time for
model calibration and the MCS is negligible as the two processes
can be finished quickly within 1 min, as can be seen from Fig. 17.
This indicates that the efficiency of the proposed method depends
mainly on the model training and validation. But even so, the total
computational time required by each Kriging-based MCS is less
than 8000 s (i.e., about 2 h) for the homogeneous c-¢ slope
example. However, it takes about 416.7 h or 17.4 days to perform
a direct MCS, which is difficult to be accepted by the engineers.
Similarly for the heterogeneous two-layered soil slope, the total
computational time by a Kriging-based MCS is about 5000 s (i.e.,
about 1.4 h), which is significantly less than 277.8 h or 11.6 days by
the direct MCS. Thus, all these indicate the high efficiency of the
proposed method in this study in comparison to the direct MCS.

Furthermore, Fig. 18a compares the computational time by the
Kriging-based MCS and the direct MCS for the homogeneous c-¢
slope when the number of the MCS samples changes. It is found
that the computation time by the direct MCS increases sharply
with the increase of the number of the MCS samples. However, the
time spent by the Kriging-based MCS seems to be invariant with
the number of the MCS samples. This is because the MCS is
performed on the established Kriging model, which can be com-
pleted within 1 min, as illustrated in Fig. 17. This highlights the
superiority of the proposed method in efficiency if a high accuracy
of the MCS estimation is required. Similar results can also be
observed for the heterogeneous two-layered soil slope, as illustrat-
ed in Fig. 18b.

Finally, for different Kriging-based MCS methods, it is observed
from both Figs. 17 and 18 that the TK models are more efficient
than the UK and OK models despite the introduction of the GA
optimization. Specifically for the case of the homogeneous c-¢
slope, the TK3 and TK4 models perform much faster than the
OK and UK models with more accurate results (see Table 2),
reducing computation time by about half an hour. For the hetero-
geneous two-layered soil slope, the TK models (TK2, TK3, and
TK4) take nearly 0.6 h less time than the OK and UK1 models, and
simultaneously ensure the accuracy of the results (see Table 4).

Conclusions

A unified Kriging surrogate model based on the Taylor expansion,
which is referred to as the TK model, has been proposed for the
system reliability analysis of soil slopes in this paper. The proposed
TK model is implemented based on a GATK toolbox which is
adapted from the commonly used DACE toolbox. Different from
the DACE, the global optimization method GA is introduced in the
GATK to search for the optimal correlation parameters. The effec-
tiveness of the GA is verified by an analytical example, and it is
found that the GA well outperforms the pattern search approach in
the DACE. Two analytical examples are then evaluated to demon-
strate the feasibility of the proposed GATK toolbox. Finally, the
proposed model is applied to a homogeneous c-¢ slope and a
heterogeneous two-layered soil slope to evaluate their system



Table 4 Results of probability of failure by different methods

Methodology Deterministic slope stability model Probability of failure Reference
Baseline (LHS = 1000) Spencer's method with noncircular slip surface 0.0100 (COV = 3.14 %) This study
0K (DOEs = 400) Spencer's method with noncircular slip surface 0.0049 (COV = 4.51 %) This study
UK1 (DOEs = 380) Spencer's method with noncircular slip surface 0.0106 (COV = 3.06 %) This study
UK2 (DOEs = 220) Spencer's method with noncircular slip surface 0.0113 (COV = 2.95 %) This study
TK1 (DOEs = 380) Spencer's method with noncircular slip surface 0.0106 (COV = 3.06 %) This study
TK2 (DOEs = 220) Spencer's method with noncircular slip surface 0.0113 (COV = 2.95 %) This study
TK3 (DOEs = 220) Spencer's method with noncircular slip surface 0.0103 (COV = 3.10 %) This study
TK4 (DOEs = 240) Spencer's method with noncircular slip surface 0.0120 (COV = 2.87 %) This study
RSM Strength reduction method based on FEM 0.0146 Xu and Low (2006)
RSM Spencer's method with noncircular slip surface 0.0197 Xu and Low (2006)
RSM Spencer's method with circular slip surface 0.0132 Xu and Low (2006)
PSO-Kriging Strength reduction method based on FDM 0.0099 Yi et al. (2015)
MFOSM mean value first-order second-moment method, FDM finite difference method
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Fig. 17 Stack column of the time sources for the Kriging-based MCS with 100,000
samples. a The homogeneous c-¢ slope. b The heterogeneous two-layered soil

slope

OK UK1

UK2 TK1 TK2 TK3 TK4
Kriging model

0.0 2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10°
Number of the MCS samples

Fig. 18 Comparison of the computational time between the Kriging-based MCS
and the direct MCS. a The homogeneous c-¢ slope. b The heterogeneous two-

layered soil slope

Landslides 14  (2017) | 545



| Original Paper

reliability, and the results are compared with those obtained by the
OK, UK and other methods from the literature. Several conclu-
sions can be made from this study and are described as follows:

Firstly, it can be concluded that the UK model can be incorporated
into the TK model if the Taylor expansion point is selected at the mean
points. Secondly, the OK model is demonstrated to be not able to
capture the potential nonlinear properties existed in the slope stability
model compared with the high order TK model. Thirdly, the UK model
can obtain comparable results but should be at the expense of more
evaluation time on the original deterministic stability model. Fourthly,
the TK model seems to show higher accuracy and efficiency, particu-
larly when there is higher nonlinearity in a slope stability problem.
Finally, the present work is developed with a view to maintain a balance
between the amount of computation and accuracy in analysis so that
routine reliability analysis will be possible for most of the engineering
design.
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