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S. Yavari-Ramshe I B. Ataie-Ashtiani

A rigorous finite volume model to simulate subaerial
and submarine landslide-generated waves

Abstract This paper presents a new landslide-generated wave
(LGW) model based on incompressible Euler equations with
Savage-Hutter assumptions. A two-layer model is developed in-
cluding a layer of granular-type flow beneath a layer of an inviscid
fluid. Landslide is modeled as a two-phase Coulomb mixture. A
well-balanced second-order finite volume formulation is applied
to solve the model equations. Wet/dry transitions are treated
properly using a modified non-linear method. The numerical
model is validated using two sets of experimental data on subaerial
and submarine LGWs. Impulsive wave characteristics and land-
slide deformations are estimated with a computational error less
than 5 %. Then, the model is applied to investigate the effects of
landslide deformations on water surface fluctuations in compari-
son with a simpler model considering a rigid landslide. The model
results confirm the importance of both rheological behavior and
two-phase nature of landslide in proper estimation of generated
wave properties and formation patterns. Rigid slide modeling
often overestimates the characteristics of induced waves. With a
proper rheological model for landslide, the numerical prediction
of LGWs gets more than 30 % closer to experimental measure-
ments. Single-phase landslide results in relative errors up to about
30 % for maximum positive and about 70 % for maximum nega-
tive wave amplitudes. Two-phase constitutive structure of land-
slide has also strong effects on landslide deformations, velocities,
elongations, and traveling distances. The complex behaviors of
landslide and LGW of the experimental data are analyzed and
described with the aid of the robust and accurate finite volume
model. This can provide benchmark data for testing other numer-
ical methods and models.

Keywords Impulsive waves . Landslide-generated
waves . Tsunami . Submarine/subaerial landslides . Coulomb
mixture . Finite volumemethod

Introduction
Natural granular flows like rock falls, avalanches, debris flows, and
landslides may initiate huge impulsive waves, called landslide-
generated waves (LGWs) or landslide tsunamis (Ward 2001). when
they occur in the borders of a water body (e.g., dam reservoirs,
lakes, rivers, oceans). LGWs are highly destructive due to the
nature of having long wavelength and short wave period or high
velocity (Titov 1997). They may impose serious damages to dam
bodies, offshore and onshore constructions, and human posses-
sions or cause fatalities with a huge runup, overtopping, or fol-
lowing flood (Panizzo et al. 2005; Ataie-Ashtiani and Malek-
Mohammadi 2007; Ataie-Ashtiani and Malek-Mohammadi 2008).
A massive landslide may also decrease effective capacity of water
reservoirs or change the bed topography and natural morphology

of the affected area. The biggest recorded LGW in the world is a
180-m impulsive wave with velocity of about 160 km/h caused by a
40 Mm3 rockslide in Lituya Bay, Alaska, in 1958 (Thurman and
Trujillo 2003; Fritz et al. 2009). Accordingly, it has significant
importance to analyze the LGW risks of probable landslide hazard
all over the world in order to minimize their potential damages.

A large number of numerical studies have been performed
regarding LGWs. Three distinguished stages in numerical simula-
tion of impulsive waves are the generation, the propagation, and
the runup/overtopping stages (Ataie-Ashtiani and Yavari-Ramshe
2011). Researchers have achieved considerable advances in simu-
lation of the propagation stage using Boussinesq-type equations
with high orders of wave non-linearity and dispersion ( e.g., Ataie-
Ashtiani and Najafi-Jilani 2007; Ataie-Ashtiani and Yavari-Ramshe
2011; Lynett 2002; Watts et al. 2003; Lynett and Liu 2005; Dutykh
and Kalisch 2013). With proper estimation of positive wave ampli-
tudes near the borders of the water body, wave runup can also be
appropriately calculated either numerically or with empirical
equations (e.g., Ataie-Ashtiani and Malek-Mohammadi 2008;
Dodd 1998; Hubbard and Dodd 2002; Liu et al. 2005; Lynett and
Liu 2005; Schüttrumpf et al. 2009). The key challenge concerning
numerical modeling of LGWs is the generation stage. Correct
prediction of LGWs near the source is the key to the accurate
simulation of the propagation and the runup/overtopping stages.
Recent experimental works (Fritz 2002; Enet and Grilli 2005, 2007;
Grilli and Watts 2005; Liu et al. 2005; Najafi-Jilani and Ataie-
Ashtiani 2008; Ataie-Ashtiani and Nik-Khah 2008) exhibit a com-
plex three-phase system (water-air-soil) contributing in the land-
slide wave generation stage, especially for subaerial cases.

The wave generation phase is including the processes of the
slide initiation, motion, and interaction with water. Slide trigger-
ing, which is beyond the scope of this paper, requires the infor-
mation of seismology, geology, and geophysics (Grilli et al. 2009).
Regarding landslide motion, two general approaches have been
typically applied. The majority of available numerical models
consider landslide as a solid body with predefined kinematics
using a semi-empirical equation, e.g., describing the center of mass
motion as a time variable bottom boundary (Noda 1971; Mader
1973; Raney and Butler 1975; Goto and Ogawa 1992; Sander and
Hutter 1996; Grilli et al. 1999; Grilli et al. 2002; Lynett 2002;
Synolakis et al. 2002; Saut 2003; Yuk et al. 2006; Ataie-Ashtiani
and Najafi-Jilani 2007; Serrano-Pacheco et al. 2009a; Cecioni and
Bellotti 2010). This approach is commonly applied for submarine
landslides, although some researchers proposed new ideas for
subaerial cases (Lynett and Liu 2005; Yavari-Ramshe and Ataie-
Ashtiani 2009; Ataie-Ashtiani and Yavari-Ramshe 2011). In the
second approach, the sliding mass is treated as a general deform-
able mass. Recent experimental and numerical studies confirm the
significant effects of landslide deformations on LGW characteris-
tics (Abadie et al. 2008; Ataie-Ashtiani and Najafi-Jilani 2008;
Ataie-Ashtiani and Nik-Khah 2008; Mohammed and Fritz 2012;
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Heller and Spinneken 2013). They have confirmed that landslide
rheological behavior should be properly described and included in
numerical simulations to predict LGW characteristics more accu-
rately. With considering landslide as a rigid body, LGW properties
(e.g., wave amplitudes, velocities, and periods) have been generally
overestimated (Grilli and Watts 2005; Abadie et al. 2008; Sælevik
et al. 2009; Heller and Kinnear 2010; Ataie-Ashtiani and Yavari-
Ramshe 2011).

A list of numerical studies which follow the second approach,
i.e., deformable landslide, is summarized in Table 1. The related
models generally describe the combination of water and landslide
as a mixture, a multiphase, or a multilayer flow model. Mixture
models consider the blend of water, soil grains, and air as a single-
phase flow having variable mixture density and velocity in time
and space (Manninen et al. 1996). In these models, landslide may
be described as an inviscid (Heinrich et al. 1998) or viscous fluid
(Ma et al. 2013) with various rheological models like Bingham
(Assier Rzadkiewicz et al. 1997) or Coulomb (Mangeney et al.
2000). In multiphase models, water, air, and grain soils are sepa-
rately considered as either inviscid or viscous fluids whose inter-
faces are tracked by a proper technique like volume of fluid (VOF)
(Abadie et al. 2010; Abadie et al. 2008; Biscarini 2010; Horrillo et al.
2013). level set (LS) (Pastor et al. 2009; Zhao et al. 2015). or
smoothed particle hydrodynamic (SPH) (Ataie-Ashtiani and
Shobeyri 2008; Capone et al. 2010; Cremonesi et al. 2011) method.
Finally, the third group is multilayer models which consider land-
slide as a separate layer beneath a layer of water while each layer
may include a multiphase flow. In some early research works, a
two-layer shallow flow model was developed considering subma-
rine landslide as a laminar layer of viscous fluid (Jiang and
Leblond 1992) or a layer of inviscid fluid (Imamura and Imteaz
1995). Thomson et al. (2001) modified the two-layer model of Jiang
and Leblond (1992) for including subaerial landslides. Later, dif-
ferent rheological flow models (e.g., bilinear, Bagnold, Bingham,
Herschel-Bulkley, or Coulomb) were applied to describe the be-
havior of viscid or inviscid granular layer (e.g., Heinrich et al. 2001;
Imran et al. 2001; Serrano-Pacheco et al. 2009b). Shigihara et al.
(2006) considered landslide as a layer of viscous fluid having shear
stress on the interface and bottom defined by the Manning equa-
tion. Recently, some researchers have described the landslide layer
as a two-phase solid–fluid mixture with different rheologies (e.g.,
Fernández-Nieto et al. 2008; Shakeri Majd and Sanders 2014). The
same hypothesis is applied in the present model.

In this study, a fully coupled two-layer flow model is developed
which is composed of a layer of two-phase granular medium
moving beneath an inviscid and homogeneous layer of water.
Water and granular material are supposed to be immiscible.
Landslide behavior is conceptualized based on the Savage–Hutter
(SH) assumptions (Savage and Hutter 1989; Savage and Hutter
1991) as the best-tested and the most parsimonious model for
cohesion-less granular mixtures (Iverson and Vallance 2001;
Denlinger and Iverson 2001; Greve and Hutter 1993; Hungr and
Morgenstern 1984; Hutter and Koch 1991; Koch et al. 1994;
Mangeney et al. 2003; Pitman and Le 2005; Toni and Scotton
2005; Wieland et al. 1999; Yavari-Ramshe et al. 2015). In real
landslide events, the two-phase nature of the granular mass in-
cluding sand grains and interstitial water cannot be neglected
(Hungr 1995; Iverson and Denlinger 2001; Iverson and Vallance
2001; Pitman and Le 2005; Pudasaini et al. 2005). particularly, when

landslide happens in the borders of a water body or triggers by a
heavy rain.

To consider the two-phase nature of the landslide, the
sliding material is described as a granular medium filled with
water, called the Coulomb mixture, where the dissipation
within its solid phase is described by a Coulomb-type friction
law (Iverson and Denlinger 2001; Pudasaini et al. 2005). Both
phases are supposed to have the same velocity, for simplicity
(Fernández-Nieto et al. 2008).

The same assumptions applied by Fernández-Nieto et al.
(2008) are implemented in the present model regarding the
effects of bottom curvature. Incompressible Euler equations are
transferred to a local coordinate system along the bottom to take
the bed curvature effects into account, under the hypothesis of
small variation of the bed curvature proposed by Bouchut et al.
(2003). To discretize the system of model equations, a well-
balanced Roe-type finite volume method (FVM) introduced by
Yavari-Ramshe et al. (2015) is applied. This scheme has been
applied in a one-layer numerical model to study natural
granular-type flows and is generalized for the present two-layer
model.

The core objectives of this paper are to introduce an applicable
two-layer two-phase landslide tsunami model using a proposed
state-of-the-art FVM formulation and to study the effects and
importance of landslide rigidity on LGW characteristics and two-
phase solid–liquid nature of granular material on both landslide
deformations and water surface fluctuations. This is the first time
that a detailed sensitivity analysis is performed on the effects of
each phase of landslide on both LGW characteristics and landslide
deformations based on comparison with two sets of experimental
data. The importance of landslide deformations on LGW charac-
teristics is also investigated with comparing the model predictions
with experimental measurements and numerical results of a
Boussinesq-type model considering a rigid slide. For the sake of
simplicity, the problems are simulated in one dimension. However,
the proposed scheme can be extended for more general one- or
multidimensional flows.

The paper is organized as follows: BMathematical model
equations^ section provides the governing mathematical equa-
tions. In BNumerical model formulations^ section, the proposed
well-balanced Roe-type finite volume scheme is introduced and
applied to discretize the system of model equations. BNumerical
results^ section is devoted to illustration of numerical results
including model verification, sensitivity analysis, and compari-
son with a simpler numerical model regarding landslide rigidity.
Finally, the concluding results will be discussed in the last
section.

Mathematical model equations
The system of model equations is derived from the following
incompressible Euler equations (Toro 1999).

∇:V
0
i ¼ 0

ρi∂tV
0
i þ ρiV

0
i:∇V

0
i ¼ −∇:Pi þ ρi∇ g!: X

!� �(
ð1Þ

Index i=1 represents the upper layer, composed of a homoge-
neous inviscid fluid (water) with constant density ρ1, and i=2
denotes the second layer, composed of a granular mass with
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constant density ρ2. As it is mentioned in the first section, the
second layer is considered to be a solid–fluid mixture, a grain
medium with density ρs and porosity ψ0 which its pores are filled
with the upper layer fluid. Accordingly, the granular layer density
is calculated as (Terzaghi et al. 1996)

ρ2 ¼ 1−ψ0ð Þρs þ ψ0ρ1 ð2Þ

Vi
′=(ui,vi)is the velocity vector of each layer with the horizontal

and the vertical components ui and vi. Pi ¼ Pi;xx Pi;xz

Pi;zx Pi;zz

� �
is the

normal stress tensor of each layer with Pi,xz=Pi,zx. g!¼ 0;−gð Þ is
the vector of gravitational acceleration. X

!¼ x; zð Þ represents Car-
tesian coordinate. ∇ ¼ ∂

∂x ;
∂
∂z

� �
is the gradient vector. t is time and

∂t=∂/∂t. It should be noticed that for a dry subaerial landslide, ρ1
substitutes with ρa which represents the air density. The model
parameters are illustrated in Fig. 1.

It is supposed that both phases of the second layer have the
same velocity (Iverson and Denlinger 2001). The pressure tensor of
the Coulomb mixture can be decomposed as

P2 ¼ Ps2 þ P f
2 ð3Þ

where P2
s and P2

f are the pressure tensors of the solid phase and
the fluid phase, respectively (Fernández-Nieto et al. 2008).

Then, Eq. 1 is transferred to a local coordinate system over the
non-erodible bed defined by z=b(x), based on the following trans-
formation matrix (Fernández-Nieto et al. 2008)

∇
X
! X;Zð Þ ¼ 1

J
cosθ sinθ
− Jsinθ Jcosθ

� 	
; J ¼ 1−ZdXθ ð4Þ

X and Z represent the components of the local coordinate
system. X denotes the curve length of the bottom, and Z is measured
perpendicular to the bed (Fig. 1). J is the Jacobian of the change
of variables. For a non-erodible bed, the flow depth, h1

′+h2
′, should

be less than the local radius of the bed curvature so that J≠0
(Savage and Hutter 1991). θ represents the local bed slope angle.

The kinematic (K.C.) and boundary (B.C.) conditions applied in
the model are (Fernández-Nieto et al. 2008).

– At the free water surface, i.e., Z=S=H1+H2

∂tSþ U 1∂XS−V 1 ¼ 0 K:C:
P1:nS ¼ 0 B:C:



ð5Þ

– At the layers interface, i.e., Z=H2

∂tH2 þ Ui∂XH2−Vi ¼ 0 K:C:
ni: P1−P2ð Þni ¼ 0 B:C:



ð6Þ

– At the bottom, i.e., Z=0

V2 ¼ 0 K:C:
P2:nb−nb nb:P2:nbð Þ ¼ − Ub= Ubj jð Þ nb: P2−P1ð Þ:nbð Þtanδ B:C:



ð7Þ

ns, ni, and nb are the exterior unit normal vectors of the free water
surface, the interface of two layers, and the bottom, respectively. Hi

is the thickness of each layer normal to the bed. The second
equation of Eq. 7 describes the interactions between the granular
flow and the non-erodible bottom based on a Coulomb-type
friction law (Savage and Hutter 1989). U and Vare the flow velocity
components in the X and Z directions, respectively. In this rela-
tion, Ub is the sliding velocity along the stationary bed and δ is the
basal friction angle.

In the next step, a dimensional analysis is performed on the
system of model equations, K.C.s and B.C.s, using two character-
istic lengths of L and H′ in the X and Z directions, respectively. The
non-dimensional variables (~:) are (Fernández-Nieto et al. 2008) as
follows:

X; Z; tð Þ ¼ L~X;H
0~Z;

ffiffiffiffiffiffiffiffi
L=g

p ~t
� �

; Ui;Við Þ ¼ ffiffiffiffiffiffi
Lg

p ~Ui; ε
~Vi

� �
;

PiXX ; PiZZð Þ ¼ gH0 ~PiXX ;
~PiZZ

� �
; PiXZ ¼ gH0μi

~PiXZ; Hi ¼ H0~Hi

where μ1=1 and μ2=tanδ0 (Fernández-Nieto et al. 2008). δ0 is the
angle of repose of the granular material (Fernández-Nieto et al.
2008). ε=H′/L is a small parameter due to considering a shallow
domain.

Next, the system of model equations is averaged in perpendic-
ular direction to the bottom. dXθ is considered to be Ο (ε)
(Bouchut et al. 2003). therefore, J=1−ZdXθ≈1 (Fernández-Nieto
et al. 2008). The Coulomb friction term is also assumed to be of
the order of a small parameter γ∈(0 , 1), introduced by Gray
(2001). so that tanδ0=Ο(ε

γ) (Fernández-Nieto et al. 2008).
Depth-averaging the system of model equations, K.C.s and B.C.s,

with considering dXθ to be Ο(ε) (Bouchut et al. 2003) results in the
following relations up to order ε (Fernández-Nieto et al. 2008).

P1ZZ ¼ ρ1 S−Zð Þcosθ ð8Þ

P2ZZ ¼ PS2ZZ þ P f
2ZZ ¼ ρ1h1cosθþ ρ2 h2−Zð Þcosθ ð9Þ

P2ZZ is the total pressure on the second layer normal to the
bottom. P2ZZ

S and P2ZZ
f are the normal pressures of the grain and

the fluid phase on the second layer, respectively (Fernández-NietoFig. 1 Schematic definition of the present model parameters
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et al. 2008). With considering the landslide as a fluid–solid mix-
ture, a proper constitutive relation is required for both phases.
Iverson and Denlinger (2001) and Pudasaini et al. (2005) have
considered linear normal stresses perpendicular to the non-
erodible bottom since the flow is considered to be shallow. They
have introduced a factor Λf which distributes the normal stress
between fluid and solid phases. Fernández-Nieto et al. (2008)
consider two factors λ1 and λ2 for allocating the normal stresses
to the fluid and solid phases in the flow interface and within the
Coulomb mixture layer, respectively. The present model follows
the same definition for these two pressure terms as

P f
2ZZ ¼ λ1ρ1h1cosθþ λ2ρ1 h2−Zð Þcosθ

PS
2ZZ ¼ 1−λ1ð Þρ1h1cosθþ ρ2−λ2ρ1ð Þ h2−Zð Þcosθ



ð10Þ

λ1 and λ2should be determined by calibration. These coefficients
are estimated for both subaerial and submarine landslides based on
comparison with the experimental data of Ataie-Ashtiani and Nik-
Khah (2008) and Ataie-Ashtiani and Najafi-Jilani (2008) in
BNumerical results^ section. Based on Eq. 10, λ1 controls the distri-
bution of the pressure at the interface (P1ZZ(H2)=ρ1H1cosθ) between
two phases of the second layer (Fernández-Nieto et al. 2008). λ2
determines what percent of the normal pressure comes from each
phase through the second layer (Fernández-Nieto et al. 2008; Iverson
and Denlinger 2001). As a result, λ1=1 is equivalent to the continuity
of the pressure of the fluid phase of the second layer with the fluid of
the first layer and λ1=0 means that the pore fluid is isolated from the
first layer fluid (Fernández-Nieto et al. 2008).

Following constitutive relations are also considered to relate
normal and longitudinal stresses of each layer and each phase
(Iverson and Denlinger 2001). An isotropic stress is defined for
homogeneous fluid of the first layer and the same pore fluid, i.e.,
P1XX=P1ZZ and P f

2XX
¼ P f

2ZZ
. For anisotropic solid phase of the

Coulomb mixture, the normal and longitudinal stresses are related
through the proportionality factorK (Ps

2XX
¼ KPs

2ZZ
) which represents

the earth pressure coefficient calculated as (Savage and Hutter 1989)

Kact=pass ¼ 2 1−sgn
∂U2

∂X

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

cosφ
cosδ

� 	2
s !

=cos2φ−1 ð11Þ

φ represents the internal friction angle of the granular material.
The Bactive^ and Bpassive^ states of the earth pressure coefficient are

corresponding to the maximum andminimum values ofKwhich are
distinguished by the sign of the longitudinal strain (∂U2/∂X) (Savage
and Hutter 1989). Classic SH model considers negligible depth gra-
dients due to shallow flow assumption of parallel flow lines. The
curved flow lines caused by a significant depth gradient, e.g., dam-
break problems, create a pressure component non-parallel to the bed
(Hungr 2008). This pressure component originates additional shear
stresses close to the bottom which are not considered in original SH
model and the model developed by Fernández-Nieto et al. (2008).
The present model overcomes this deficiency using the proposed
method of Hungr (2008). He has modified the definition of the
resisting shear stress at the flow by reducing the basal friction angle
as a fraction of these extra stresses as

tanδmod ¼ tanδ−λ
0
K

∂H2

∂X

� 	
ð12Þ

In this relation, δmod is the modified (reduced) basal friction
angle, λ′ is an empirical coefficient validated as about 0.333, and
∂H2/∂X is the granular flow depth gradient (Hungr 2008). Then, K is
calculated by Eq. 13 using the modified value δmod. Without reducing
δ dynamically, the granular flow tail (ensuing flow) moves very
slowly in comparison with experiments (Yavari-Ramshe et al. 2015).
The tail motion is important when dealing with LGWs. The slide
trailing motion continuously generates trailing wave trains, which
may become significant especially in dam reservoirs, lakes, and
closed bays. Hunger’s modification also improves the numerical
prediction of the slide tail deformations and velocities.

Based on the considered constitutive relations, normal pressure
of the second layer is (Fernández-Nieto et al. 2008)

P2XX ¼ KPS2ZZ þ P f
2ZZ ¼ H1cosθρ1 λ1 þ K 1−λ1ð Þð Þ

þ H2−Zð Þcosθ λ2ρ1 þ K ρ2−λ2ρ1ð Þð Þ ð13Þ

Finally, the system of model equations is rewritten with original
variables and is retransferred to the Cartesian coordinate system
using the following relations (Fernández-Nieto et al. 2008)

∂=∂X ¼ cosθ∂=∂x; hi ¼ Hi=cosθ; qi ¼ hiui

Consequently, the final system of model equations will be
(Fernández-Nieto et al. 2008)

∂th1 þ ∂x q1cosθ
� � ¼ 0

∂t q1
� �þ ∂x h1u12cosθþ g

h1
2

2
cos3θ

� 	
¼ −gh1cosθdxbþ g

h21
2
sinθcos2θdxθ−gh1cosθ∂x h2cos2θð Þ

∂th2 þ ∂x q2cosθ
� � ¼ 0

∂t q2
� �þ ∂x h2u22cosθþ gΛ2

h2
2

2
cos3θ

� 	
¼ −gh2cosθdxbþ g

h22
2
sinθcos2θdxθ

−rΛ1gh2cosθ∂x h1cos2θð Þ þ ℑ
cosθ

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ

where r=ρ1/ρ2. The terms of order ε1+γ are neglected, and the flow
velocity is considered to have a constant profile (Fernández-Nieto

et al. 2008). ℑ represents the Coulomb friction term defined as
(Fernández-Nieto et al. 2008)
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ℑ ¼ − g 1−rð Þh2cos2θþ h2u22cosθdx sinθð Þ� � q2
q2
�� ��tanδ ℑj j ≥ σc

q2 ¼ 0 ℑj j < σc

8<
: ð15Þ

where σc is the basal critical stress which is defined based on the
angle of repose of the sliding mass as σc=g(1−r)h2cosθ tanδ0
(Fernández-Nieto et al. 2008). Based on Eq. 15, when the basal
friction term is less than the critical basal stress, |ℑ|<σc, the
granular mass stops moving, u2=0. This happens when the gran-
ular mass angle is smaller than its angle of repose. With this
assumption, the model is able to capture the sudden appearance
of the flowing/static regions along the granular flow path. More-
over, Λ1=λ1+K(1−λ1) and Λ2=rλ2+K(1−rλ2) (Fernández-Nieto
et al. 2008) (for more details about the mathematical formulations,
see Fernández-Nieto et al. 2008).

Numerical model formulations
In this section, the system of model Eq. (14) is discretized using a
modified Q-scheme of Roe proposed by Yavari-Ramshe et al.
(2015). This scheme, which was developed for a one-layer granu-
lar-type flow model, is generalized for the present two-layer mod-
el. In this scheme, the non-homogeneous source terms concerning
the bed level and the bed curvature are upwinded in the same way
of numerical fluxes. The Coulomb friction term is discretized
using a two-step semi-implicit method.

As it is mentioned, the system of model equations is trans-
ferred to a local coordinate system along the non-erodible bot-
tom to consider the effects of the bed curvature on the sliding
mass deformations. As a result, numerical fluxes depend not
only on horizontal distance x but also on the bed curvature
changes which makes it difficult to define an exact well-
balanced scheme (Castro et al. 2007; Fernández-Nieto et al.
2008). In this regard, we have followed the special finite volume
solver introduced by Castro et al. (2007) for two-layer shallow-
water equations which preserves water at rest while also verifies
an entropy inequality. Finally, the main difference between the
one-layer and the two-layer system of model equations is regard-
ing the non-conservative coupling term which is discretized
based on the proposed method of Dal Maso et al. (1995) and
applied by Fernández-Nieto et al. (2008). The general hyperbolic
form of model equations is

∂tW þ ∂x F θ;Wð Þ ¼ G1 x;Wð Þ þ G2 x;Wð Þ þ B Wð Þ∂xW þ T ð16Þ

where F is the numerical fluxes as a conservative product. B is the
coupling term. G1, G2, and T are three source terms correspond-
ing to the bed level, the bed curvature and the coupling term, and
the basal friction, respectively. These terms are defined as
follows:

W ¼
h1
q1
h2
q2

2
664

3
775; F θ;Wð Þ ¼

q1cosθ
q1

2

h1
cos2θþ gK

h1
2

2
cos3θ

q2cosθ
q2

2

h2
cos2θþ gΛ2K

h2
2

2
cos3θ

2
666664

3
777775

G1 ¼
0
−gh1cosθdxb
0
−gh2cosθdxb

2
664

3
775; G2 ¼

0

−g
h1

2

4
þ h1h2

� 	
cosθ∂x cos2θð Þ

0

−g
h2

2

4
þ rΛ1h1h2

� 	
cosθ∂x cos2θð Þ

2
666664

3
777775and T ¼

0
0
0
ℑ=cosθ

2
664

3
775

B Wð Þ ¼
0 0 0 0
0 0 −gh1cos3θ 0
0 0 0 0

−rΛ1gh2cos3θ 0 0 0

2
664

3
775

The computational domain is subdivided into constant inter-
vals of size Δx as shown in Fig. 2. The ith grid cell is denoted by
Ii=[xi−1/2,xi+1/2] (LeVeque 2002). For the sake of simplicity, the
time step, Δt, is also supposed to be constant and tn=nΔt. xi+1/2=
iΔx and xi=(i−1/2)Δx are the centers of the cell Ii. Wi

n denotes the
numerical approximation of the average value over the ith cell at
time tn as (LeVeque 2002)

Wn
i ≅

1
Δx

Z
xi−1=2

xiþ1=2

W x; tnð Þdx ð17Þ

The proposed scheme is a two-step Roe-type FVM upwinding
the source terms (Yavari-Ramshe et al. 2015). In the first step, the

vectors of unknowns, W, are predicted as W*. Then, in the second
step, the predicted values of the granular layer velocities, u2, are
corrected based on the effects of the bottom friction.

First step
The predicted values W*=[h1

*u1
*h2

*u2
*] are defined by the follow-

ing scheme at the first step (Yavari-Ramshe et al. 2015).

W*
i ¼ Wn

i þ rc d f nþ1=2;þ
i−1=2 −d f nþ1=2;−

iþ1=2

� �
ð18Þ

where Wi
*=[h1,i

* u1,i
* h2,i

* u2,i
*], Wi=[h1,i u1,i h2,i u2,i], and rc=

dt /dx . The general ized numerical f luxes df i ± 1 / 2
n + 1 / 2 ,∓=

dfi±1/2
∓ (Wi

n,Wi±1
n,Wi

n+1/2,Wi±1
n+1/2) are computed as
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d f nþ1=2;∓
iþ1=2 ¼ 1

2
�Fnþ1=2

iþ1 ∓Fnþ1=2
i � Sniþ1=2 � Bn

iþ1=2dW
n
iþ1=2−P1;iþ1=2dW

nþ1=2
iþ1=2 þ P2;iþ1=2 Sniþ1=2 þ Tn

iþ1=2dx
� �n o

ð19Þ

Wi
n+1/2 is the vector of intermediate values of unknowns

(Wnþ1=2
i ¼ Wn

i þ rc
2 d f n;þi−1=2−d f

n;−
iþ1=2

� �
) c o m p u t e d a t d t / 2 .

Furthermore, Si+1/2=S1,i+1/2+S2,i+1/2+S3,i+1/2+S4,i+1/2 where

S1;iþ1=2 ¼
0
−gh1;iþ1=2cosθiþ1=2

0
−gh2;iþ1=2cosθiþ1=2

2
664

3
775 d biþ1=2;

S2;iþ1=2 ¼
0
−g h21;iþ1=2=4þ h1;iþ1=2h2;iþ1=2

� �
cosθiþ1=2

0
−g h22;iþ1=2=4þ rΛ1h1;iþ1=2h2;iþ1=2

� �
cosθiþ1=2

2
664

3
775d cos2θð Þiþ1=2;

S3;iþ1=2 ¼
0
−3gh1;iþ1=2

2=4cosθiþ1=2

0
−3gΛ2h2;iþ1=2

2=4cosθiþ1=2

2
664

3
775d cos2θð Þiþ1=2;

S4;iþ1=2 ¼
−q1;iþ1=2

−q21;iþ1=2=h1;iþ1=2

−q2;iþ1=2

−q22;iþ1=2=h2;iþ1=2

2
664

3
775d cosθð Þiþ1=2

and dbi+1/2=bi+1−bi, d(cosθ)i+1/2=cosθi+1−cosθi, and d(cos2θ)i+1/
2=cos

2θi+1−cos2θi. Moreover, P1,i+1/2=κi+1/2|Di+1/2|κi+1/2
−1 is the

Roe correction term (Yavari-Ramshe et al. 2015). |Di+1/2| is a
diagonal matrix defined as (Yavari-Ramshe et al. 2015)

Diþ1=2

�� �� ¼
λ1;iþ1=2

�� �� 0 0 0
0 λ2;iþ1=2

�� �� 0 0
0 0 λ3;iþ1=2

�� �� 0
0 0 0 λ4;iþ1=2

�� ��

2
664

3
775

λl,i+1/2, l=1,2, 3, 4, represents the local eigenvalues of the
Jacobean matrix A or the coefficient matrix of the system of model

Eq. (14) which is defined as Aiþ1=2 ¼
J1iþ1=2 B1

iþ1=2
B2
iþ1=2 J2iþ1=2

� �
where

J1iþ1=2 ¼
0 cosθiþ1=2

−u
2

1;iþ1=2cosθiþ1=2 þ c21;iþ1=2cos
2θiþ1=2 2u1;iþ1=2cosθiþ1=2

" #

J2iþ1=2 ¼
0 cosθiþ1=2

−u
2

2;iþ1=2cosθiþ1=2 þ Λ2c22;iþ1=2cos
2θiþ1=2 2u2;iþ1=2cosθiþ1=2

" #

B1
iþ1=2 ¼

0 0
c21;iþ1=2cos

2θiþ1=2 0

� �
; B2

iþ1=2 ¼
0 0

rΛ1c22;iþ1=2cos
2θiþ1=2 0

� �

and κi+1/2 is the matrix whose columns are the local eigenvectors
associated with each local eigenvalue λl,i+1/2. The coefficient matrix
A is evaluated at the Roe’s intermediate states which are calculated
as (Yavari-Ramshe et al. 2015; Fernández-Nieto et al. 2008)

uk;iþ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
hk;iþ1

p
uk;iþ1 þ

ffiffiffiffiffiffiffi
hk;i

p
uk;iffiffiffiffiffiffiffiffiffiffiffi

hk;iþ1
p þ ffiffiffiffiffiffiffi

hk;i
p ; hk;iþ1=2 ¼ hk;iþ1 þ hk;i

2
;

cosθiþ1=2 ¼ cosθi þ cosθiþ1

2
;cos2θiþ2 ¼ cos2θi þ cos2θiþ1

2

for k=1,2. cn
k;iþ1=2

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghk;iþ1=2cosθiþ1=2

p
stands for the characteristic

wave velocity and dWi+1/2=Wi+1−Wi.
P2,i+1/2=κi+1/2sgn(Di+1/2)κi+1/2

−1 is the correction part of the
projection matrixes applied for upwinding the source terms
(Yavari-Ramshe et al. 2015). sgn(Di+1/2) is a diagonal matrix de-
fined as follows (Yavari-Ramshe et al. 2015)

sgn Diþ1=2
� � ¼

sgn λ1;iþ1=2
� �

0 0 0
0 sgn λ2;iþ1=2

� �
0 0

0 0 sgn λ3;iþ1=2

� �
0

0 0 0 sgn λ4;iþ1=2
� �

2
664

3
775

The coupling term B and the Coulomb friction matrix T are
defined as (Fernández-Nieto et al. 2008)

Biþ1=2 ¼
0 B1

iþ1=2
B2
iþ1=2 0

� �
and Tiþ1=2 ¼

0
0
0

ℑ iþ1=2=cosθiþ1=2

2
664

3
775

Fig. 2 Computational domain discretization in x–t space; the cell average Wi
n is updated using the intermediate values of fluxes Fi ± 1/2

n + 1/2 at the cell edges
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where

ℑ iþ1=2 ¼ ℑ 1;iþ1=2 þ ℑ 2;iþ1=2 q2;iþ1=2

��� ��� > Δtσc;iþ1=2

cosθiþ1=2
τ crit;iþ1=2 Otherwise

8<
:

ℑ 1;iþ1=2 ¼ −c2;iþ1=2cosθiþ1=2 1−rð Þ sgn u2;iþ1=2

� �
tanδ

ℑ 2;iþ1=2 ¼ −h2;iþ1=2u
2

2;iþ1=2
sinθiþ1−sinθi
Δx

sgn u2;iþ1=2

� �
tanδcosθiþ1=2

σc;iþ1=2 ¼ 1−rð Þ c22;iþ1=2 cosθiþ1=2tanδ0
τ crit;iþ1=2 ¼ c22;iþ1=2cosθiþ1=2 Λ2−rΛ1ð Þ biþ1−bi þ h2;iþ1cos2θiþ1−h2;icos2θi

� �
=Δx


þ 1−Λ2ð Þ biþ1−bið Þ=Δxþ h2;iþ1=2=4

� �
cos2θiþ1−cos2θið Þ=Δx� �

At the first step, T is only included in the uncentered part of the
scheme. The actual effects of the Coulomb friction term on the
granular layer velocities are reflected in the second step
(Fernández-Nieto et al. 2008). The vector of unknowns, W*

i , cal-
culated by Eq. 18, is predicted without considering the interaction
between the granular material and the non-erodible bed. In the
second step, the flow thicknesses and the first layer velocities
remain the same, i.e., hk,i

n+1=hk,i
* (k=1,2) and q1,i

n+1=q1,i
*, but

the predicted values of q2,i
* will be modified based on the effects of

the Coulomb friction to compute the state values corresponding to
the next time step, Wnþ1

i .

Second step
In this step, the state values, W*

i , predicted in the first step, are
applied to calculate the updated values of granular layer ve-
locity q2

n+1, based on the following equations (Fernández-
Nieto et al. 2008).

qnþ1
2;i ¼ q*i þ ℑ *

1;i þ ℑ *
2;i

� �
Δt=cosθi

�
q*2;i

��� ��� > σ*
cΔt

cosθi
0 Otherwise

8<
: ð20Þ

where

ℑ *
1;i ¼ − 1−rð Þ

c*2;i−1=2
� �2

þ c*2;iþ1=2

� �2
2

cosθisgn q*2;i
� �

tanδ

ℑ *
2;i

¼ −
h*2;i−1=2 þ h*2;iþ1=2

2
u
*

i

2 sinθiþ1=2−sinθi−1=2
Δx

sgn q*2;i
� �

tanδ cosθi

σ*
c;i
¼ 1−rð Þ

c*2;i−1=2
� �2

þ c*2;iþ1=2

� �2
2

cosθitanδ0; c*
2;iþ1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
h*2;i þ h*2;iþ1

2
cosθiþ1=2

s

Based on Eq. 20, when the Coulomb friction term is less than
the critical resistance of the bottom against the flow, |T|<σc, the
granular material stops moving, q2

n+1=0. It shows that the nu-
merical treatment of the Coulomb friction term acts like a
predictor-corrector method.

Numerical model properties
The followings are some properties of the present model regarding
the system of model equations and its discretization.

& The Courant–Friedrichs–Lewy (CFL) condition is applied in
the present model as one of the stability requirements
(Courant et al. 1928).

max λl;i�1=2

�� ��
∞; 1≤ l≤4; 0≤ i≤m

n o Δt
Δx

≤γ ð21Þ

where 0<γ≤1 is a constant, λl,i±1/2 are the local eigenvalues of the
Jacobean matrix A, and m is the number of computational cells.

& The present model is a well-balanced scheme. It satisfies all the
stationary solutions regarding water at rest and no movement
for the granular layer when its angle is less than the angle of
repose of the granular material (Yavari-Ramshe et al. 2015).
The steady state corresponding to water at rest over a station-
ary sediment layer is equivalent to the following condition,

bþ h1 þ h2ð Þcos2θ ¼ cst

Λ2−rΛ1ð Þ∂x bþ h2cos2θð Þ þ 1−Λ2ð Þ ∂xbþ h2
4
∂xcos2θ

� 	����
����≤ 1−rð Þtanδ0

u1 ¼ u2 ¼ 0

8><
>: ð22Þ

The second inequality in Eq. 22 is equivalent to stationary
state of the second layer when its angle is less than the angle of
repose. This inequality is obtained from the momentum conser-
vation equation of the second layer considering u2=0 where ℑ
<σc=gh2cos

2θ tanδ0. When the angle of granular layer is less
than the angle of repose, this inequality is satisfied and the
second layer will remain stationary (Yavari-Ramshe et al. 2015;
Fernández-Nieto et al. 2008).

& In Roe-type schemes, the fluxes may not be computed correct-
ly when one of the eigenvalues of the Jacobean matrix A
vanishes (Castro et al. 2003). In this situation, the numerical
viscosity of the scheme disappears which may cause inappro-
priate numerical behavior (Castro et al. 2003). One practical
example of this condition is when the flow is critical. A proper
solution, applied in the present model, is increasing the near-
zero eigenvalues in critical cells based on the right, λR, and the
left, λL, eigenvalues of the critical cell as

λj j* ¼ λ2

Δλ
þ Δλ

4
When −Δλ=2 < λ < Δλ=2 ð23Þ

where Δλ=4(λR−λL) (Van Leer et al. 1989). Then, the flux terms are
computed based on these modified eigenvalues |λ|*.

& The present model is able to deal with various situations of
wet/dry transitions applying a modified wet/dry treatment
(Yavari-Ramshe et al. 2015) based on the non-linear method
of Castro et al. (2005b) where only one of the layers is involved
in the wet/dry situation. This wet/dry algorithm is modified by
Yavari-Ramshe et al. (2015) to deal with the bed curvature
changes in the present model. When both layers are engaged
in a wet/dry front, solving a non-linear Riemann problem
happens to be complicated. In these situations, the wet/dry
fronts are treated by an approximation of the present wet/dry
algorithm proposed by Castro et al. (2005a).

Numerical results
In this section, the present model is applied to simulate two sets of
available experimental data performed by Ataie-Ashtiani and
Najafi-Jilani (2008) and Ataie-Ashtiani and Nik-Khah (2008) on
submarine and subaerial LGWs, respectively. Their experimental
setup is briefly explained in the following. The model parameters
are calibrated for both submarine and subaerial landslides includ-
ing an unconfined mass of sand. A sensitivity analysis is per-
formed to investigate the effects of two-phase nature of the
landslide based on constitutive structure of the slide on landslide
deformations and induced water surface fluctuations. Afterward,
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the effects of the sliding mass deformability on generated wave
characteristics are studied in comparison with the experiments
and the numerical results of LS3D model (Ataie-Ashtiani and
Najafi-Jilani 2007). LS3D is a two-dimensional depth-averaged
Boussinesq-type model developed by Ataie-Ashtiani and Najafi-
Jilani (2007) to study submarine LGWs. The model has been
extended for simulating subaerial real world cases by Ataie-
Ashtiani and Yavari-Ramshe (2011). In LS3D, landslide has a rigid
hyperbolic-shaped geometry described using a truncated hyper-
bolic secant function as a time-variable bottom boundary (Ataie-
Ashtiani and Najafi-Jilani 2007).

Experimental setup
Two series of 120 experiments were performed in a part of a 25-
m-long, 2.5-m-wide, and 1.8-m-deep flume at Sharif University of
Technology (SUT). Figure 3 shows a schematic of this experimen-
tal setup. The flume contained two frictionless inclined planes
with slopes adjustable from 15° to 60°: one applied as a sliding
slope and the other as a wave runup surface. Eight wave gauges,
the Validyne DP15 differential pressure transducers, were located
at eight points along the central axis of the tank, St. 1 to St. 8,
shown on Fig. 3, to record the water surface fluctuations. In these
experiments, the spatial and temporal changes of the induced
wave properties, such as amplitude and period, are studied.
Furthermore, the effects of the bed slope angle, the still water
depth, the initial depth of the slide mass center, and the slide
geometry and rigidity on LGWs are investigated. Further infor-
mation on the experiments can be found in Ataie-Ashtiani and
Najafi-Jilani (2008), Ataie-Ashtiani and Nik-Khah (2008), and
Najafi-Jilani and Ataie-Ashtiani (2008).

The sliding masses are either rigid, made of 2-mm-thick steel
sheet with various dimensions and shapes (wedge, cubic, and
hyperbolic shaped) or deformable, sand grains with mean diame-
ter, D50, of about 0.8 cm and density of about 1.9 g/cm3.
Deformable slides have two different categories. In the first group,
the slides are made of unconfined lump of sand representing
frictional material, materials with negligible cohesion like loose
sands. The second set contained confined sand in a softly deform-
able lace representing cohesive material such as saturated muds
and clays (Ikari and Kopf 2011). In each set of experiments, 18 tests
were performed using deformable slides, including 9 tests on each
type (unconfined and confined masses) with the same initial

wedge shape but three different values of the slope angle θ (30°,
45°, and 60°) and three different values of initial position of the
sliding mass (h0C) for each θ. The still water depth, h0, for all
deformable tests is the constant value of 0.8 m. The experimental
parameters and the initial profile of deformable slides are illus-
trated in Fig. 4. Based on the SH assumptions applied in the
present model, the sliding mass is considered to have negligible
cohesion. Accordingly, the experimental data of the first group of
deformable slides, i.e., unconfined masses, are appropriate to be
simulated by the present model.

Sensitivity analysis
In the following, the effects of the two-phase nature of landslide on
induced water surface fluctuations (BWater surface fluctuations^ sec-
tion) and the sliding mass deformations (BSliding mass
deformations^ section) are investigated based on different values of
λ1and λ2 which represents the role of each phase in constitutive
structure of the landslide layer. Then, these two parameters are
calibrated based on the comparison between numerical and experi-
mental results regarding both the time histories of water surface
fluctuations and landslide deformations.

From Eq. 9, the normal stress of the second layer
(P2ZZ=P2ZZ

S +P2ZZ
f =ρ1h1cosθ+ρ2(h2−Z)cosθ) is described as the

sum of the normal stresses of the solid (PS
2ZZ) and the fluid

(Pf
2ZZ) phases defined by Eq. 10. If λ1=λ2=0, then P2ZZ

f =0 and
P2ZZ=P2ZZ

S. It means that no contribution is considered for the
fluid phase in definition of the normal pressures and, consequent-
ly, longitudinal stresses along the Coulomb mixture. On the other
hand, if λ1=λ2= 1, then P2ZZ

f =ρ1h1 cosθ+ρ1(h2−Z)cosθ and
P2ZZ
S =(ρ2−ρ1)h2cosθ. This condition may represent complete liq-

uefaction as the pore water is carrying the entire load of the first
layer. Following comparisons confirm the importance of each
phase in defining the second-layer stresses such that ignoring each
phase causes large differences between numerical and experimen-
tal LGWs.

In all the simulated cases, the computational parameters are
supposed to be dx=0.02 m, dt=0.004 s, and rc=dt/dx=0.2 satis-
fying CFL condition. The sliding surface is lubricated to be fric-
tionless which is equivalent to δ≈0. The landslide porosity is
calibrated as ψ0=0.3. The second layer density or the Coulomb
mixture density can be calculated based on Eq. 2 using the water
density of ρ1=1.0 g/cm3 and the sand grain density of ρs=1.9 g/cm

3

as ρ2=1.63 g/cm
3. Accordingly, r=ρ1/ρ2≈0.6135.

Fig. 3 Schematics of the experimental setup for LGWs. All dimensions are in centimeter (Ataie-Ashtiani and Nik-Khah 2008)
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Water surface fluctuations
In the following sensitivity analysis, the experimental and numer-
ical results regarding the time history of water surface fluctuations
recorded by St. 1 in Fig. 3 are compared. Specifically, the predicted
values of the maximum positive amplitude (ap,max) and the max-
imum negative amplitude (an,max) of the first LGW are compared
with experimental measurements for different values of λ1and λ2
to investigate the effects of each phase of landslide on landslide
tsunami generation.

Due to considering a small variation of the bed curvature in the
present model, i.e., dxθ=Ο(ε), experiment no. 103 of Ataie-
Ashtiani and Najafi-Jilani (2008) with the smallest value of incline
(θ=30°) is selected to be simulated by the present model. This
experiment is including the release of an unconfined mass of sand
through a 30° incline from the first location of h0C=0.2751 m. The
measured values of ap,max and an,max of the first LGW are 0.0059
and 0.0279 m, respectively. The numerical results regarding the
simulation of experiment 103 of Ataie-Ashtiani and Najafi-Jilani
(2008) can be observed in Fig. 5.

Based on Fig. 5a, as λ1 is increased, an impulsive wave with a
smaller negative height and a bigger positive height is generated.
Larger λ1 means that the fluid phase is more linked to the water
layer and burdens a higher percentage of the first layer pressure at
the interface. Figure 5b illustrates the relative errors regarding the
prediction of ap,max and an,max calculated as

Err ¼ an=p;predicted−an=p;measured

�� ��
an=p;measured

ð24Þ

where an/p,predicted is the numerical prediction of an,max or ap,max

and an/p,measured is the equivalent experimental measurement.
According to this figure, the relative errors of both an,max and
ap,max are mostly less than 5 % for 0.2≤λ1≤0.5. It means that about
35 % of the water layer pressure is applied on the liquid phase and
about 65 % on the solid part. Therefore, the pore fluid is not
isolated from the first layer and it bears about 35 % of water
pressure at the interface. Although with ignoring the contribution
of fluid phase (λ1=0), an,max and ap,max are estimated with the
relative error of about 4 % for this case with ψ0=0.3 but for a more
porous media (ψ0>0.5). The relative errors increase up to about
50 %. This fact confirms the importance of considering the inde-
pendent role of each phase of the Coulomb mixture in numerical
modeling.

Figure 5c illustrates the sensitivity analysis performed on the
LGW properties against λ2 with λ1=0.5. In contrast with λ1, as λ2 is
increased, the first LGW has a bigger an,max and a smaller ap,max.
Based on Fig. 5d, for 0.7≤λ2≤0.9, there is a good agreement
between the experimental and the numerical impulsive waves.
From Eq. 10, The second-layer stresses without the water layer
pressure are equal to ρ2(h2−Z)cosθ. For this simulated case with
ρ1=1.0 g/cm

3, ρ2=1.63 g/cm
3, and λ2≈0.8, P2ZZf =0.8(h2−Z)cosθ and

P2ZZ
S=0.83(h2−Z)cosθ. It means that each phase burdens about

50 % of the normal stresses of the second layer. This fact confirms
that not only the fluid phase is not isolated from the water layer
and burdens about 35 % of the first layer pressure, but also it has
an important and independent contribution in definition of the
Coulomb mixture stresses. Without fluid-phase contribution
(λ2=0), an,max of the first LGWs is about 70 % underestimated.
The relative error of about 10 % in estimation of ap,max for
0.7≤λ2≤0.9 in Fig. 5d is due to considering λ1=0.5. To have a
more accurate estimation, λ1 should be reduced which is also
another verification of its importance.

A possible simplification is considering a same value for λ1 and
λ2 (Fernández-Nieto et al. 2008). As a result, the fluid phase
P2ZZ
f =λ1ρ1(h1+h2−Z)cosθ will be independent of the solid phase.

A more generalization is considering λ1=λ2=ψ0 (Fernández-Nieto
et al. 2008). In this case, the normal stresses of the solid phase,
P2ZZ
S =(1−ψ0)(ρ1h1+ρs(h2−Z))cosθ, depend on the density of the

solid part ρs not the mixture ρ2. Figure 6 shows that how an,max

and ap,max change against porosity when λ1=λ2=ψ0. Based on
Fig. 6, both an,max and ap,max grow as the porosity decreases.
From Eq. 2 and ρs=1900 kg/m3, lower porosity means having a
heavier and consequently more devastative slide that causes bigger
waves. The best agreements between numerical and experimental
induced waves are obtained for 0.3≤ψ0≤0.4. However, sensitivity
analysis shows that for having a more accurate estimation, λ1 and
λ2 should be determined as two independent variables.

Sliding mass deformations
The landslide deformations are compared with the pictures of
landslide depth profiles at 0.3/0.6 and 0.4/0.8s after releasing the
slide for the experiment no. 106 of each submarine and subaerial
cases, respectively. These pictures are quantified to be compared
with the predicted profiles of the second layer. In experiment 106
of Ataie-Ashtiani and Najafi-Jilani (2008). a mass of sand is re-
leased along a 45° inclined plane from the initial position of
h0C=0.1654m.

Figure 7 illustrates landslide predicted depth profiles for differ-
ent values of λ1 and λ2 at 0.3 and 0.6 s after releasing the granular
mass. With proper definition of the Coulomb mixture parameters
like δ, φ, ψ0, λ1, and λ2, various types of cohesion-less landslide
materials from dry granular masses to loose mud can be simulated
by the present model. When ψ0, λ1, and λ2 are supposed to be zero,
P2ZZ
f =0 and P2ZZ

S =ρ1h1cosθ+ρs(h2−Z)cosθ which represents a dry
granular mass. In this condition, the slide deformations are ap-
proximately similar to the illustrated profiles for ψ0=0.3, λ1=0
and λ2=0.2 in Fig. 7a, b. The slide shapes a thick front edge
followed by a thin ensuing flow. Besides, the mixture moves very
slowly such that it almost preserves its initial shape. When λ1=0
and ψ0=0.3, increasing λ2 slows the slide elongation; although the
numerical flux of the second layer is slightly increased due to the
increase of Λ2=rλ2+K(1−rλ2).

Fig. 4 Schematics of the experimental parameters and the initial wedge-shaped
profile of deformable slides. All dimensions are in centimeter
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As λ1 is increased, e.g., Fig. 7c, d, the sliding mass elongates
faster and the second layer velocity increases. Large values of λ1 in
combination with a large value of λ2 may represent complete
liquefaction or loose materials like debris/muddy flows or even
sediment transports with considering a high porosity, ψ0. Finally,
when λ1 is supposed to be more than about 0.8 (e.g., Fig. 7e, f), for
small values of λ2, the sliding mass illustrates the same behavior of
having a thick front followed by a thinner tail. These results are in
agreement with the numerical results of Sassa and Sekiguchi (2010,
2012) who developed a code called LIQSEDFLOW to predict the
flow of sediment–water mixtures caused by liquefaction or fluid-
ization under dynamic environmental loading with considering
the multiphase nature of submarine sediment gravity flows. They
emphasize on the important role of the two-phase physics of
subaqueous gravity flows in modeling the simultaneous processes
of flow stratification, deceleration, and redeposition. They results

show that considering more sediment concentration (equivalent to
smaller λ2) in a fluidized (high λ1) granular flow decreases its flow-
out potential. Nevertheless, as λ2 is also increased, the second layer
tends to show a dam-break type or fluidic behavior which elon-
gates more rapidly, e.g., the depth profiles regarding the values 0.6
and 0.8 of λ2 in Fig. 7f. This case can be physically interpreted as a
complete liquefaction where the slide moves faster, has the most
elongations, and travels the maximum distances.

As a result, when the solid phase of the sliding mass is more
effective than the fluid phase (small values of λ1), the granular flow
front gets thicker than the ensuing flow. As λ1 is increased, the
granular layer forms a more symmetric hyperbolic-shaped profile.
A large number of available numerical models consider a rigid
body with a hyperbolic-shaped geometry as the sliding mass (e.g.,
Ataie-Ashtiani and Najafi-Jilani 2007; Grilli et al. 1999; Watts et al.
2003). Based on the present numerical results, this idea is proper

Fig. 5 a an,max and ap,max of the first LGW against λ1 (λ2 = 0.7) and b their relative errors. c an,max and ap,max against λ2 (λ1 = 0.5) and d their relative errors.
Experiment no. 103 of Ataie-Ashtiani and Najafi-Jilani (2008)

Fig 6 a Maximum negative (an,max) and positive (ap,max) amplitudes of the first LGW against different values of porosity ψ0 and b their relative errors. Experiment no. 103
of Ataie-Ashtiani and Najafi-Jilani (2008)
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for a uniform grain sized mass with average values of granular
parameters, e.g., 0.3<λ1,λ2<0.7, on a constant slope. In these
conditions, the slide steadily forms a hyperbolic-shaped profile
which progressively elongates along its path. But, it is not suitable
for real hazards where there is a general topography; a slide with
non-uniform grain size; or loose, fluidic, and liquefied slides.
Finally, for a large value of λ1, the liquefied granular layer shows
a dam-break-like behavior where the flow front is thinner than the
trailing flow.

Regarding the simultaneous interactions between landslide de-
formations and water surface fluctuations, a more liquefied gran-
ular layer for high values of λ1 and λ2 moves fast and elongates
rapidly (Fig. 7e, f). This is like a sudden withdrawal beneath the
water layer which generates a wave with high an,max followed by a
small ap,max (Fig. 5c). For a more solid slide, where λ1 and λ2 are

small, the dense landslide elongates slowly (Fig. 7a) but applies a
more strong impact to the water body. Therefore, the generated
wave has larger ap,max with a smaller an,max (Fig. 5a).

Therefore, both solid and fluid phases play an important con-
tribution in describing the constitutive structure of the second
layer as a two-phase flow. With a single-phase landslide and
ignoring the effects of pore fluid or solid phase, accurate predic-
tion of landslide deformations and water surface fluctuations
simultaneously and as a coupled system is very unlikely. With
considering a single-phase landslide, either water wave properties
or landslide deformations or both may have huge differences with
experimental measurements. Therefore, for having a more accu-
rate estimation of both layer’s characteristics at the same time,
two-phase nature of landslide should be considered in simulations
as well as its rheological behavior.

Fig. 7 Landslide depth profiles for different values of λ1 and λ2 at two different times, 0.3 and 0.6 s after releasing the sliding mass. Experiment 106 of Ataie-Ashtiani and
Najafi-Jilani (2008)
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For real LGW hazards, the model parameters can be initially
considered as λ1=λ2=ψ0. Then, the formation patterns of both
LGWs and landslide deformations should be compared with re-
corded data. If landslide moves very fast or ap,max is
underestimated, λ1 and λ2 should be reduced. On the other hand,
underestimated landslide velocity or overestimated ap,max shows
that pore water has a more prominent role in the constitutive
structure of the landslide and λ1 and λ2 should be increased. For
potential landslide hazards with no recorded data, a probabilistic
analysis may be performed or different landslide scenarios can be
considered including the worst and the safest landslide scenarios
(Ataie-Ashtiani and Yavari-Ramshe 2011; Ataie-Ashtiani and
Malek-Mohammadi 2007, 2008).

Finally, the experimental depth profiles of landslide at t=0.3 s
and t=0.6 s for test no. 106 of Ataie-Ashtiani and Najafi-Jilani
(2008) are shown in Fig. 12. Two distinct properties can be de-
duced from these photos regarding the slide deformations. The
sliding mass is moving very slowly, its front edge has traveled a
short distance of about 7 cm along the inclined surface after 0.6 s.
Besides, the slide profile has a thick front followed by a thin
trailing flow. These two properties are more corresponding to the
computed profiles in Fig. 7a, b. It shows that the best agreements
between the experimental and the numerical results regarding
landslide deformations obtain with λ1 less than about 0.4 and λ2
more than about 0.7, which are in agreement with the estimated
intervals in BWater surface fluctuations^ section.

Calibration of the model parameters
To calibrate λ1 and λ2 for the submarine experiments of Ataie-
Ashtiani and Najafi-Jilani (2008). the complete time history of
water surface fluctuations recorded at St. 1 and landslide depth
profiles are compared with numerical results for tests 103 and 106,
respectively. Based on the performed sensitivity analysis, λ1 and λ2
are changed within the approximate ranges of 0.2≤λ1≤0.5 and
0.7≤λ2≤0.9. To quantify the following comparisons between the
numerical and the experimental LGWs, the computational error,
Errc, is calculated as

ErrC ¼

Xn
i¼1

ηnumerical−ηexperimental

ηexperimental

�����
�����

nþ 1
ð25Þ

in a specified time period of Ts, where η represents the water
surface fluctuations from still water level and n=Ts/Δt. The com-
putational error of landslide depth profiles is calculated with the
same equation where η is replaced with h2 and n is the number of
mesh points. Figure 8a illustrates the predicted time histories of
LGWs for a number of λ1 and λ2 combinations which result in the
computational errors less than 5 % in comparison with the exper-
imental measurements. The best agreement is related to the values
of 0.45 and 0.75 for λ1 and λ2, respectively.

The second criterion to adjust the best values of λ1 and λ2 is
comparing the estimated landslide depth profiles with the equivalent
experimental data for test 106 of Ataie-Ashtiani and Najafi-Jilani
(2008). Besides the lack of recorded data on landslide deformations,
the second difficulty in this regard is related to the initial geometry of
the slide in experiment 106 of Ataie-Ashtiani and Najafi-Jilani (2008).
The front face of the wedge-shaped landslides (Fig. 3) stands vertical

on 30° or 60° inclines but not on the 45° sliding surface of experiment
106. This makes the definition of the initial landslide geometry hard
for numerical code. In the present simulations, the slide front face is
considered to be vertical also on 45° inclines. The numerical and
experimental results of the landslide depth profiles at t=0.3 s and
t=0.6 s and the temporal landslide front locations are compared for
the case 106 of Ataie-Ashtiani and Najafi-Jilani (2008). The slide front
locations, xf , versus time are illustrated in Fig. 8b for the same
combinations of λ1 and λ2 applied in Fig. 8a. The best fitted results
are obtained for the same values of λ1=0.45 and λ2=0.75 regarding
both landslide depth profiles and front velocities with computational
errors less than about 8 and 1 %, respectively. The complete details
regarding the comparison of the numerical and the experimental
depth profiles of landslide are discussed in BSubmarine landslides^
section and Fig. 12.

Model verification
Now that all the model parameters are calibrated based on the
experimental data, the effects of the slide deformability on induced
water wave properties are investigated and compared with the
experimental measurements and the LS3D numerical results for
both submarine and subaerial cases in the following.

Submarine landslides
The calibrated values of model parameters for submarine LGWs
are as follows: λ1=0.45, λ2=0.75, φ=35°, and ψ0=0.3. The basal
friction angle is negligible on the lubricated inclined parts of the
flume and about δ=15° through the horizontal section. Using these
values, the numerical results of water surface fluctuations at the
generation stage (St. 1 in Fig. 3) are illustrated in Fig. 9 for
experiment 103 of Ataie-Ashtiani and Najafi-Jilani (2008). The
numerical and experimental results are in a good agreement with
a computational error less than about 4 %. The relative errors
between the numerical and experimental values of an,max and
ap,max are also less than 5 %.

To compare the effects of landslide rigidity on induced water
waves, water surface fluctuations of experiments 4 and 112 of
Ataie-Ashtiani and Najafi-Jilani (2008) are also illustrated in
Fig. 9. These three experiments have the same conditions regard-
ing the free surface level, the sliding slope, the slide initial position,
geometry, and density. In experiment 4 of Ataie-Ashtiani and
Najafi-Jilani (2008). the sliding mass is a rigid body while in
experiments 103 and 112 of Ataie-Ashtiani and Najafi-Jilani
(2008). it is an unconfined and confined deformable mass of sand,
respectively. As it is expected, the numerical LGWs predicted by
the present model are in a better agreement with the experimental
waves caused by an unconfined mass of sand (Exp. 103) than a
rigid (Exp. 4) or confined deformable (Exp. 112) mass.

The present numerical results are also compared with the
numerical results of LS3D model in Fig. 9. The water surface
fluctuations predicted by LS3D are closer to the experimental
measurements of test 4 which are generated by a rigid mass. It is
due to considering a time variable bottom boundary with a solid
hyperbolic-shaped geometry as the sliding mass (Ataie-Ashtiani
and Najafi-Jilani 2007). Besides, limiting the geometry of the rigid
landslide to a hyperbolic shape in LS3D model causes a relative
error of about 9 % in estimating the an,max of LGW which is
generated with a rigid wedge-shaped body. It is a considerable
point which can be also deduced from BSensitivity analysis^
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section. It seems that the maximum negative amplitudes of LGWs
are more sensitive to landslide deformations than the positive
wave height. Based on Fig. 5, ap,max remains in a close range of
less than about 20 % to experimental measurements while an,max

changes widely for different values of λ1 and λ2. Therefore, with
considering a proper rheological behavior for the sliding mass, the
generated wave amplitudes get more than 30 % closer to the
measurements.

To examine the ability of the present model in predicting the
propagation stage of the LGWs, the predicted time history of water
surface fluctuations is compared with the experimental data re-
corded at the location of the second gauge (St. 2 in Fig. 3) for the
same case of experiment 103 of Ataie-Ashtiani and Najafi-Jilani
(2008). The numerical and experimental results are illustrated in
Fig. 10. The numerical results properly follow the same formation
patterns of the experimental data with a computational error of
about 10 %. As it can be observed in Fig. 10, the numerical model
overestimates the wave amplitudes within the propagation stage.
There is also a time phase difference of about 10–15 % between the
numerical and the experimental results which makes the numer-
ical wave steeper than the experimental wave. Both observed

differences grow with distance from the slide source. These differ-
ences are mainly due to the wave dispersion which cannot be
properly modeled with the shallow-water-type equations applied
in the present model and gradually makes the numerical results far
from the experimental data. The secondary factor affecting the
accuracy of the numerical results is the one-dimensional simula-
tion of an actual three-dimensional experimental condition. The
lateral propagation of LGWs along the flume width magnifies wave
dispersion within the propagation stage.

The same comparisons are also performed for experiment 106
of Ataie-Ashtiani and Najafi-Jilani (2008) in Fig. 11. The experi-
mental data of case numbers 13, 106, and 115 are compared with the
numerical results of the present model. These three experiments
also have the same conditions but different rigidity including a
rigid, unconfined deformable, and confined deformable sliding
mass, respectively. The numerical and experimental waves are in
a good agreement with a computational error less than about 5 %.
The relative errors between numerical and experimental values of
ap,max and an,max are about 5 and 1 %, respectively.

Finally, the second-layer depth profiles, 0.3 and 0.6 s after
releasing the sliding mass are compared with the related

Fig. 8 a Water surface fluctuations at the generation stage (St. 1) for experiment 103 of Ataie-Ashtiani and Najafi-Jilani (2008) for different values of λ1 and λ2. b
Comparison of the slide front location versus time for experiment 106 of Ataie-Ashtiani and Najafi-Jilani (2008) for different values of λ1 and λ2

Fig. 9 Water surface fluctuations at the generation stage (St. 1) for experiments 4, 103, and 112 of Ataie-Ashtiani and Najafi-Jilani (2008); comparison between the
present model, LS3D model, and the experimental measurements for different slide rigidity
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experimental results in Fig. 12. As it mentioned in BCalibration of
the model parameters^ section, the initial landslide profile is
numerically defined with a vertical front face while in the real
experimental conditions, it has an inclined front face. This ex-
plains the computational errors of about 10 % between numerical
and experimental depth profiles at both t=0.3 and t=0.6 s. To
have a more accurate prediction of landslide deformations, a more
proper method should be applied to define the initial landslide
geometry. One solution which is applied by Savage and Hutter
(1989) is considering the initial geometry of landslide the same as
the recorded landslide profile at a short time after the beginning of
its motion. It is possible if there is a detailed experimental data
regarding landslide motion. The relative errors of landslide front
locations illustrated in Fig. 8b are about 0.4 and 1.1 % at t=0.3 and
t=0.6 s, respectively.

Subaerial landslides
In this section, the model is applied to simulate the experimental
data of Ataie-Ashtiani and Nik-Khah (2008) for LGWs caused by
subaerial landslides. The model parameters are calibrated for
subaerial cases in the same way of submarine landslides. The
experiments include releasing a dry mass of sand from a specified
distance outside the water (h0C) which hits the water surface,
enters the flume, and moves beneath the surface until it comes

to rest again. Above the water surface, the slide is dry, but when it
enters the water, it gets wet. Accordingly, the optimum values of
model parameters in this case are different outside and inside the
water body. As long as the slide is on the aerial part, there is no
fluid phase in the second layer. Therefore, λ1 and λ2 are supposed
to be zero. Once the sliding mass enters the water, its pores start to
be filled with water. The calibrated values of λ1, λ2, and ψ0 for the
underwater part of the slide movement are 0.4, 0.7, and 0.4,
respectively. Besides, the internal friction angle of the granular
material should be reduced to 25° for having more accurate nu-
merical results. Outside the water, there is no surrounded water
pressure on the sliding mass. Therefore, grain segregation occurs
faster which may decrease the frictional resistance of the grains
against each other.

Experiment 105 of Ataie-Ashtiani and Nik-Khah (2008) is sim-
ulated with the present model. In this experiment, the initial
distance of the slide from the still water surface, h0C, is 0.5 m over
a 30° slope. The model parameters are Δx=0.02m and rc=0.1.
Figure 13 illustrates the predicted water surface fluctuations at St.
1, compared with the experimental data of tests 6, 105, and 114 of
Ataie-Ashtiani and Nik-Khah (2008) with the same conditions but
different slide rigidity including a rigid, unconfined deformable,
and confined deformable mass, respectively. The numerical results
of LS3D model for the same case are also shown in this figure. As it

Fig. 10 Water surface fluctuations at the propagation stage (St.2) for experiment 103 of Ataie-Ashtiani and Najafi-Jilani (2008); comparison between the present model
and the experimental measurements

Fig. 11 Water surface fluctuations at the generation stage (St.1) for experiments 13, 106, and 115 of Ataie-Ashtiani and Najafi-Jilani (2008); comparison between the
present model and the experimental measurements for different slide rigidity
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can be observed in Fig. 13, the present numerical results are in a
very good agreement with experiment 105 with a computational
error less than 5 %. The present model is more consistent with
unconfined deformable mass (Exp. 105) while LS3D model is
showing a more rigid behavior (more consistent with Exp. 6).
an,max and ap,max are predicted with the relative errors of less than
about 1 and 5 %, respectively. The observed difference between the
predicted and measured ap,max around t=3.5 s is probably due to
the intrinsic limitation of shallow-water-type equations in wave

dispersion modeling and also one-dimensional simulation of the
actual three-dimensional experiments.

Submarine and subaerial LGWs have different pattern of for-
mation. As it can be observed in Figs. 9 and 11, submarine LGWs
start with negative amplitude followed by a positive wave which
are the maximum negative and positive wave heights. On the other
hand, subaerial LGWs start with a positive wave followed by a
negative height and the maximum positive and negative ampli-
tudes generally appear as the second generated wave (Ataie-

Fig. 12 Comparison between numerical and experimental depth profiles of landslide, 0.3 and 0.6 s after releasing the slide for experiment 106 of Ataie-Ashtiani and
Najafi-Jilani (2008)

Fig. 13 Water surface fluctuations at the generation stage (St.1) for experiments 6, 105, and 114 of Ataie-Ashtiani and Nik-Khah (2008); comparison between the present
numerical model, LS3D model, and the experimental measurements with different slide rigidity

Original Paper

Landslides 14 & (2017)218



Ashtiani and Yavari-Ramshe 2011). One intricacy regarding the
extended version of LS3D model from submarine to subaerial
landslide is that the predicted LGWs by LS3D model always show
a submarine LGW pattern even though the waves are induced by a
subaerial landslide hazard (Ataie-Ashtiani and Yavari-Ramshe
2011). It is due to applying a submarine formulation for the sliding
mass with modified values of acceleration and terminal velocity
for subaerial cases (Ataie-Ashtiani and Yavari-Ramshe 2011). In
Fig. 13, for both cases 6 and 105, the second negative height is the
maximum one, but the LS3D results show the first negative wave
amplitude as its maximum negative height. This fact confirms the
importance of landslide rheology not only for predicting the land-
slide deformations and the topographical changes of the bottom
but also for more accurate estimation of LGW generation patterns
and characteristics.

The only drawback regarding the simulation of subaerial cases
is when they have strong vertical accelerations and velocities
which is an intrinsic limitation of shallow-water equations
(Abadie et al. 2010). When the sliding slope increases to 45° or
60° and subaerial mass released from a big initial distance, it may
reach to high vertical accelerations which cannot be considered in
shallow flow models. Moreover, when the subaerial slide strikes
the water surface, a splash zone composed of a three-phase mix-
ture (water-air-soil) happens. In this area, gas phase may have
noticeable effects on the generated wave properties. Finally, in
some cases, a strong vorticity may also happen in near field which
can only be modeled applying fully non-linear Navier–Stokes
equations.

Conclusions
A two-layer shallow-water-type model is developed including a
granular-type layer moving beneath a layer of water to study
LGWs as a fully coupled system. Landslide is modeled as a two-
phase solid–fluid Coulomb mixture, a granular medium filled
with water where the dissipation within its solid phase is de-
scribed by a Coulomb-type friction law and normal and
longitudinal stresses of the solid phase are related by factor K
representing the earth coefficient pressure. A modified definition
of K introduced by Hungr (2008) is applied based on dynamic
reduction of basal friction angle which improves the numerical
treatment of a large depth gradient and the spreading velocity of
granular flow tail. The effects of both solid and fluid phases are
considered in definition of normal stresses within the second
layer by distributer factors λ1 and λ2. The numerical model also
considers the bed curvature effects by transferring the system of
model equations to a local coordinate system connected to the
non-erodible bed.

A second-order Roe-type FVM is proposed to solve the model
equations as a coupled system. The scheme treats wet/dry transi-
tions numerically based on a modified non-linear method. The
proposed method is fully well balanced and satisfies steady-state
solutions concerning water at rest and no movement for the
granular layer when its angle is less than the angle of repose. The
synchronized appearances of flowing/static states can also be cap-
tured by model along the landslide path.

The proposed model is applied to investigate the effects and
importance of landslide rheology and two-phase nature on both
slide deformations and LGW characteristics by comparing the
numerical results with the experimental data of Ataie-Ashtiani

and Najafi-Jilani (2008) for submarine LGWs and Ataie-Ashtiani
and Nik-Khah (2008) for subaerial LGWs. The numerical simula-
tions verify that for proper estimation of both landslide deforma-
tion and water surface fluctuations simultaneously, the effects of
both phases of landslide should be considered in defining the
constitutive structure of the second layer. Ignoring each phase
may result in the relative errors up to about 30 % for maximum
positive and about 70 % for maximum negative wave amplitudes.
Two-phase landslide consideration is especially important for ac-
curate prediction of landslide characteristics including landslide
deformation patterns, temporal depth profiles and velocities, and
maximum traveling distances. Finally, with appropriate definition
of Coulomb mixture parameters including λ1, λ2, ψ0, δ, and φ, the
model is able to predict a diversity of landslide hazards and LGWs
from dry granular material to loose flows and even sediment
transport.

Regarding landslide rheology, numerical results are compared
with experimental measurements and a numerical model which
considers a rigid moving landslide. Comparisons reveal the im-
portance of a proper rheological behavior to predict the conse-
quent tsunamis accurately. With considering a rigid slide,
impulsive wave properties are often overestimated and the pat-
terns of impulsive wave formations are incorrect. With a proper
rheological model, numerical results are about 30 % closer to the
experiments. It is been observed that maximum negative wave
amplitudes are more affected by landslide rigidity than maximum
positive amplitudes. It should be noticed that predicting the topo-
graphical changes of the seabed after landslide, which is an im-
portant matter in continental morphology and geophysics,
requires landslide deformations to be forecasted.

The calibrated model is able to predict both landslide deforma-
tions and induced surface water fluctuations with computational
errors less than about 5 % for both submarine and subaerial cases.
The only drawback is for subaerial cases with strong vertical
accelerations which are in contrast with shallow flow assumption.
The developed and verified model can be applied to study real
cases. Authors’ future work focuses on the application of the
numerical model for a real case setup to explore the influences
of the landslide physical characteristics such as the following:
partial submergence, shapes, and geotechnical properties on
LGW characteristics.
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