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Analytical and approximate expressions predicting
post-failure landslide displacement using
the multi-block model and energy methods

Abstract Amulti-block sliding model has been proposed in order to
simulate the actual geometry of landslides and their rotation with
displacement. The governing equation of motion was formulated with
the force equilibrium approach and solved by numerical integration
in terms of time. The present work derives the formulation of the
multi-block model based on another perspective, the energy conser-
vation principle. This approach, in contrast to the force equilibrium
approach, has the ability to derive analytical equations predicting the
distance moved of masses sliding with resistance exhibiting both
cohesional and frictional components. The most general geometry,
where analytical solution predicting post-failure displacement can be
obtained, is considered. Then, and as this equation is complex, a
simple special case geometry is considered in order to derive easy-
to-apply simple expressions which predict post-failure landslide dis-
placement in terms of soil resistance and geometric parameters of the
sliding mass. The accuracy of this approximate for general geometries
expression is validated by extensive parametric analyses.

Keywords Landslides . Ground displacement . Multi-block
model . Analytical solution . Energymethod . Residual soil
strength

Introduction
A multi-block sliding model has been proposed by Stamatopoulos
et al. (2011), Stamatopoulos and Di (2014) and Stamatopoulos (2015)
in order to simulate the actual geometry of landslides and their
rotation with displacement. These studies formulate the governing
equation of motion with the force equilibrium approach, and they
solve it by numerical integration in terms of time. The present work
derives the formulation of the multi-block model based on another
perspective, the energy conservation principle. This approach, in
contrast to the force equilibrium approach, has the ability to derive
analytical equations predicting the distance moved of masses sliding
with constant resistance exhibiting both cohesional and frictional
components for some specific cases. Such analytical expressions can
be used not only to validate the numerical code associated with the
force equilibrium and its numerical convergence for the case of post-
failure movement but also to obtain exact solutions predicting post-
failure landslide displacement for some cases of great interest.
Furthermore, these analytical solutions for simple special case ge-
ometries can be used in order to derive simple expressions which
predict post-failure landslide displacement in terms of soil resistance
and geometric parameters of the sliding mass. These expressions can
provide easy-to-apply factors predicting the effect of topography and
soil strength on post-failure landslide displacement for mapping
landslide risk.

The paper first describes briefly the multi-block model and the
associated methodology. Then, it derives, validates, and applies a
general analytical equation predicting the post-failure displacement

of the multi-block model using the energy approach. The most
general geometry where analytical solution can be obtained is con-
sidered. Then, as this equation is complex, simple geometries are
considered in order to derive easy-to-apply simple expressions
which predict post-failure landslide displacement. The accuracy of
this approximate for general geometries expression is validated by
extensive parametric analyses.

The multi-block sliding system model and methodology and validation
Similarly to the Sarma (1979) stabilitymethod, shown in Fig. 1a, a general
mass sliding on a slip surface which consists of n linear segments with
inclinations βi is considered. In order for themass tomove, at the nodes
between the linear segments, interfaces inside the sliding mass must be
formed, where resisting forces are exerted. They are situated at angles δi,
measured from the vertical, positive clockwise (Fig. 1a). The manner
which the angles δi are estimated is described below. Thus, the mass is
divided into n blocks sliding in different inclinations. The forces which
are exerted in each block Bi^ are given in Fig. 1a. According to theMohr-
Coulomb criterion, the forces resistingmotion at segment Bi^ of the slip
surface (Fi) and at interface Bi^ (Ti) are equal to

Fi ¼ Ri� Pið Þ tan8i þ ci li
T i ¼ N i� Pbið Þ tan8bi þ cbibi

ð1Þ

where 8i and cι, li, and Pi are the frictional and cohesional com-
ponents of resistance, the slip length, and the pore water pressure at
segment Bi^ of the slip surface counting uphill, while 8bi and cbi, bi
and Pbi are the frictional and cohesional components of resistance,
the length and pore water pressure at interface Bi.^

When the slide moves, two options exist regarding the relative move-
ment of blocks: (a) no separation and (b) separation. Case (b) is not very
commonand is not considered in the present work.Whenblocks are not
separated, the velocity must be continuous at the interfaces. This means
that the displacement of the n blocks is related to each other as:

ui ¼ unqi where

qi ¼ ∏
n�1

j¼i
cos β jþ1 þ δ j

� �
= cos β j þ δ j

� � ð2Þ

where u is shear displacement along the slip surface and the
subscript i was defined above.

Taking equilibrium for each block, 2n equations are formulated,
where n is the number of blocks. The unknown variables are the
(n) normal forces to the slip surface Ri, the (n-1) interslice normal
forces Ni, and the distance moved by the system. Thus, the system
has (2n) equations and (2n) unknowns and thus it can be solved.

As shear displacement develops, mass transfer between blocks
occurs according to Eq. (2). In addition, it is assumed that when
each block is displaced by dũi, each point of the block is also
displaced by dũi and the masses and lengths of the governing
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equation of motion are updated. It is illustrated in Fig. 2(iii)
for actual landslide geometries. A computer program which
estimates the displacement of the multi-block model by

solving numerically the equations based on the force equilib-
rium described above has been developed. Details are given
by Stamatopoulos et al. (2011).

(a) (b)

Fig. 1 a The multi-block stability method proposed by Sarma (1979). b Definition of the lengths bi, li and lθi, the area Ai and the angle θi of each block, that affect the
solution. The x-axis gives the horizontal distance, while the y-axis gives the elevation
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Fig. 2 Applications of Eq. (13): (i) Initial slide configuration and phreatic line assumed, (ii) critical acceleration normalized by the acceleration of gravity for relative
motion at the initial configuration in terms of the interface angles and (iii) computed final configuration and comparison with measured final configuration for (a) the
Vaiont slide (Ciabati 1964; Hedron and Patton, 1985) and (b) the Wangjiayan slide (Wu et al. 2010). For the landslide (b), the water table line was not measured and it is
assumed either to coincide with the slip surface or to be located at mid-depth between the ground and slip surfaces
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For a given slip surface, the steps required to apply the proposed
model are as follows: (a) the slip, ground and water table surfaces are
simulated as a series of linear segments; (b) the inclination of the
interfaces is obtained according to the condition of minimum critical
horizontal acceleration value for stability of the initial slide configura-
tion (Sarma 1979). If more than one interface exists, iteration is needed.
(c) The potential slide deformation is estimated. For steps (b) and (c)
along the slip surface, the residual value of soil strength should be used
because we deal with post-failure very large displacement. At the
interfaces, the peak values of strengthmust be used because the velocity
is assumed continuous and thus relative movement is zero there.

The application procedure above assumes that the residual soil
strength is known. In cases where the residual soil strength is not
known, for back analyses of these slides, the following procedure is
recommended: (1) guess a soil strength; (2) estimate the inclina-
tions of the interfaces in terms of the soil strength, based on the
criterion of minimum critical acceleration value and using these
inclinations back-estimate the soil strength which best predicts the
final deformed geometry; and (3) compare the back-estimated
strength with the strength assumed in (1), and if it is different,
perform again steps (2) and (3) until convergence is achieved.

Derivation of analytical solution using energy equilibrium
In order to derive an analytical solution predicting landslide
displacement, the changes in geometry must be continuous func-
tions of the distance moved. This means that during motion, the
cross-sectional area of the mass which moves from block Bi^ to its
neighbor one, Bi-1,^ must be a trapezium, or referring to Fig. 1b

ui < lθi ð3Þ

where the distance lθi is the projection along the linear segment
Bi^ of the slip surface of the linear segment of the ground surface

just to the right of the interface (i-1). Then, the change in dimen-
sions and masses (mi) of the blocks can be expressed in terms of
the distance moved as:

l1 ¼ l1;o þ q1un
ln ¼ ln;o� un

ð4Þ

bi ¼ bi;o þ qiþ1un
� �

sin θiþ1ð Þ = cos θiþ1 þ βiþ1 þ δi
� �� � ð5Þ

mi ¼ mi;o þ γi=gð Þ
n

unqiþ1

� �
bi;ocos βiþ1 þ δið Þ � unqi

� �
bi�1;0cos βi þ δi�1ð Þ

þ 0:5⋅cos βiþ1 þ δið Þ⋅sinθiþ1

cos θiþ1 þ βiþ1 þ δið Þ ⋅ unqiþ1

� �2− 0:5⋅sinθi⋅cos βi þ δi−1ð Þ
cos θi þ βi þ δi−1ð Þ ⋅ unqi

� �2o
ð6Þ

where the subscript Bo^ indicates initial value and γ and g indicate
the total unit weight and the acceleration of gravity.

The change in the kinetic energy of each of the moving
blocks should equal the change in the potential energy
(Timoshenko and Young 1948). In addition, the change in
the kinetic energy between the initial and the final configura-
tion is zero. Thus,

Z
0

ui−mXn
j¼1

EF j−i � cos EF j−i; v
� �� �

dui ¼ 0 ð7Þ

where for each block i, ui-m is the maximum (and final) slide
displacement, EFj-i are the acting external forces, and (EFj-i,ν)
is the angle that the force EFj-i makes with the direction of
motion.

According to the forces of Fig. 1a, for each block, Eq. (7) gives

0 ¼
Z
0

ui−m

mi g sin βi þ T i sin ‐δi þ βið Þ ‐ T i‐1 sin ‐δi‐1 þ βið Þ ‐Ν icos ‐δi þ βið Þ þ T i‐1cos ‐δi‐1 þ βið Þ‐Fif g dui ð8Þ

In addition, equilibrium at the direction perpendicular to mo-
tion of each block i gives

Ri ¼ mi g cos βi þ T i cos ‐δi þ βið Þ ‐ T i‐1 cos ‐δi‐1 þ βið Þ ‐Ν i sin ‐δi þ βið Þ þ T i‐1 sin ‐δi‐1 þ βið Þ‐Fif g ð9Þ

Finally, combination of Eqs. (8), (9), and (1) gives

0 ¼ ∫
ui−m

0

n
− mi gð Þvi þ xxi ci licos8i�Pisin8ið Þ

þN i�1cos 8bi þ 8bi�1�δi�1 þ βið Þ � N icos 8i þ 8bi�δi þ βið Þ
þsin 8bi�1�δi�1�βið Þ cbi�1bi�1cos 8bi �1ð Þ� Pbi�1sin 8bi �1ð Þ½ �
� sin 8bi�δi�βiþ1ð Þ cbibicos 8bið Þ� Pbisin 8bið Þ½ �

o
dui

ð10aÞ

where

xxi ¼ cos 8i‐βið Þ
vi ¼ sin 8i‐βið Þ ð10bÞ

To produce cancelation of the forces Ni and the same displace-

ment, we multiply Eq. (10) by qi∏
n−1

k¼i
μk

� 	
where:

μk ¼ cos 8kþ1 þ 8bk�βkþ1�δk
� �

= cos 8k þ 8bk�βk�δkð Þ ð11Þ

Addition of all equations (10) for every block i and insertion of
the masses and lengths in terms of the distance moved (un),
according to Eqs. (4–6), gives

Z
0

un−m

A1þ B1un þ C1 unð Þ2½ � dun ¼ 0 ð12aÞ
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where

A1 ¼ ∑
n−1

i¼1
−cbibi;ocos 8bið Þ þ Pbisin 8bið Þ� �

⋅
ssi
f f i

⋅ ∏
n−1

j¼iþ1
μ j

 !

þ ∑
n

i¼1

 n
−vi mi;og
� �þ cili;ocos 8ið Þ−Pisin 8ið Þ

o
⋅ ∏
n−1

j¼i
μ j

!

B1 ¼
n
q2b1;0γ2cos δ1 þ β2ð Þv1 ∏

n−1

j¼1
μ j−b n−1ð Þ;0γncos δn−1 þ βnð Þ⋅vnþ

þ ∑
n−1

i¼2
qiþ1b iþ1ð Þ;0γiþ1cos δi þ βiþ1ð Þ−qibi;0γicos δi−1 þ βið Þ� �

vi ∏
n−1

j¼i
μ j

o

ð12bÞ

þ c1 qn∏
n−1

j¼1
μ j− cn ð12cÞ

C1 ¼ 0:5⋅
n
q1

2 ∏
n−1

j¼1
μ j⋅

cos δ1 þ β2ð Þ
cos δ1 þ β2 þ θ2ð Þ ⋅γ2v1sinθ2

−⋅
cos δn þ βnð Þ

cos δn−1 þ βn þ θnð Þ ⋅γnvn⋅sinθnþ

þ ∑
n−1

i¼2
∏
n−1

j¼1
μ j⋅½−q2i ⋅ cos δi−1 þ βið Þ

cos δi−1 þ βi þ θið Þ ⋅γi⋅sinθi

þ q2iþ1
cos δi þ βiþ1ð Þ

cos δiþ1 þ βiþ1 þ θiþ1ð Þ ⋅γiþ1sinθiþ1�⋅sin βi−8ið Þ
o

ð12dÞ

where un-m is the maximum distance moved by the upper block
and

ssi ¼ sin βiþ1�βi þ 8i þ 8biþ1ð Þ
f f i ¼ cos 8i þ 8bi�βi�δið Þ ð12eÞ

For C1 different than zero, Eq. (12) predicts that

un‐m ¼ 1:5
�
‐0:5 B1 þ 0:25B12‐ 4 A1 C1=3ð Þ0:5= A1 ð13aÞ

When C1=0, Eq. (12) gives

un‐m ¼ ‐ 2 A1=B1 ð13bÞ

It should be noted that Eqs. (13) are valid only for the case
where static instability occurs, or, equivalently, as illustrated be-
low, when A1<0.

Discussion, validation, and application of Eq. (13)
The factor A1 of Eq. (12b) can be expressed as

A1 ¼ g kc−o ∑
n

i¼1
xximi;o ∏

n−1

j¼i
μ j

 !
ð14Þ

where kc-o is the critical horizontal acceleration for limit
stability of the geometry of Fig. 1a at its initial configuration,

normalized by the acceleration of gravity. It is given by
Stamatopoulos et al. (2011) (their equation (3)). Thus, the
factor A1 is proportional to the critical acceleration of the
sliding mass at the initial configuration. In the present study,
it is negative, as instability exists initially. Furthermore, the
factors B1 and C1 represent the effect of the mass transfer
during motion in increasing the critical acceleration and thus
slowing down the slide. In particular, the factor B1 represents
the transfer of the mass at blocks 2 to n with cross-sectional
area with constant height at each block Bi^ governed by the
interface height, bi,o, and length ui. The factor C1 represents
the effect of the remaining transferred mass, governed by the
angles θi. Both factors B1 and C1 increase as the factor (βn–β1)
increases. Additionally, the factor C1 increases as the angles θi in-
crease and diminishes when θi=0.

A computer program was written solving the analytical Eq. (13).
In this program, the slip, ground, and water table surfaces, as well
as the strength parameters along the segments of the slip surface
and at the interfaces are given as input. From this input, the
geometric parameters and pore pressures needed in Eq. (13) are
estimated and then the final displacement (un-m) is computed. In
addition, from un-m the program applies Eq. (2) to estimate the
displacements ui-m and plots the final slide configuration.

For the particular case of a slope consisting of two blocks (n=2)
and only cohesional resistance (81=8b1=82=0), it is easy to show that
Eqs. (13) are identical to equations (C3) of the previous analytical
solution given by Stamatopoulos et al. (2000). In addition, validation
of Eq. (13) was performed by comparing the displacement predicted
by the two numerical codes, the one which predicts the multi-block
displacement numerically, described in BThe multi-block sliding
system model and methodology and validation^ section, and the
one using Eq. (13). The geometries of actual slides of natural slopes,
dams, and embankments studied by Stamatopoulos et al. (2011) and
described in Table 1 were considered. Figure 9 of Stamatopoulos et al.
(2011) gives the multi-block representation of these slides. For all
these geometries, for kc-o=−0.1 and for both cohesional and frictional
components of resistance along the slip surface, it was observed that
the difference of the displacement un-m computed by the two nu-
merical codes was less than 10 %. In addition, in the geometries of
Table 1, the limit displacement (un-lim) for which Eq. (13) can be
applied, based on the restriction (3), is given in Table 1. It can be
observed that un-lim normalized by the slip length (lt) equals to 0.1
and 1, with the larger values corresponding to slides with relatively
planar slip surfaces.

Furthermore, Eq. (13) was applied to back-estimate the residual
friction angle in two cases of actual landslides with relatively
planar slip surfaces: (a) the Vaiont slide, which occurred on 9
October 1963 due to change in water table as a result of dam
construction (Ciabati 1964, Hendron and Patton 1985) and (b)
the Middle School of Beichuan County landslide, triggered by the
powerful 12 May 2008 Wenchuan earthquake (Wu et al. 2010). For
these slides, the initial and deformed slide geometries and water
table elevation at a typical cross-section are given in Fig. 2(i and
iii). For the second landslide, the water table line was not mea-
sured and it is assumed either to coincide with the slip surface or
to be located at mid-depth between the ground and slip surfaces
because (i) as the slide was mobilized presumably by a decrease of
the residual strength caused by excess pore pressure build-up, the
water table surface was on or above the slip surface and (ii) as the
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earthquake occurred just at the start of the annual rainfall season
and as just prior or during the earthquake it did not rain, the water
table was not presumably near the ground surface. For both slides,
uniform strength is taken along the slip surface, the unit weight of
the soil is taken as 2T/m3 and at the interfaces 8=8max=35° and
zero cohesion is assumed. The back analysis procedure described
in BThe multi-block sliding system model and methodology and
validation^ section was applied. For both slides, convergence was
achieved after two iterations and Fig. 2(ii) gives the computed
critical acceleration for relative motion at the initial configuration,
in terms of the interface angles. For the interface angles which
produce minimum critical acceleration, the final slide configura-
tions obtained which best predict the measured deformed geom-
etries is given in Fig. 2(iii). The corresponding strength 8(=8res)
equals for the first slide 9° and for the second slide 25 and 28° if the
water table is at the slip surface or at mid-depth between the
ground and slip surfaces respectively .

It can be observed that the proposed method worked well for
both slides: convergence was achieved when estimating the inter-
face angles. In addition, the computed deformed geometries agree
reasonably with the measured. The discrepancy which exists in the
second slide, where the cross-sectional area of the deformed slide
is larger than the initial, is presumably a result of lateral spread in
the direction not shown in the figure, which is not modeled in the
two-dimensional model used. Last but not least, for the first slide,
the back-estimated residual friction angle is in the range of the
measured values (6–10°) in ring shear tests performed in samples
from the slip surface of the slide by Tika and Hutchinson (1999).

Derivation of simplified expressions predicting landslide displacement
As the analytical expression (13) is complex, and its application
requires knowledge of the interface angles which are usually not

readily known, at this section, simpler expressions are derived. In
particular, the governing equation of motion of the multi-block
model greatly simplifies when (a) 8bi=0 and 8i=8, (b) cbi=0 and
ci=c, (c) δi=−(βi+βi-1)/2, (d) θi=0, (e) γi=γ, and (f) Pi=Pbi=0.
These assumptions are applied in the present section. Figure 3a
gives the geometry corresponding to assumptions (c) and (d). As a
result of provisions (a), (b), and (c), qi=1, μi=1, νi=−sin (8-βi),
xxi=cos βi. Thus, in Eqs. (13), C1=0 and

um�n ¼ � 2 kc�o ∑
n

i¼1
Ai;ocos βi

� �
= h sin β1�sin βnð Þ½ � ð15aÞ

where h is the height of the blocks (Fig. 3a) and

kc−o ¼
clt þ g

Xn
i¼1

n
sin 8−βið Þmi;o

o

g
Xn
i¼1

cosβimi;o
� � ð15bÞ

In order to apply Eq. (15) for the case of a general multi-block
geometry where blocks with different height slide with non-
uniform displacement along a slip surface, we define the average
height (hav) and the average displacement (uav) as

hav ¼ h2 þ…þ hnð Þ= n‐1ð Þ ð16Þ
uav ¼ u1 þ…þ unð Þ=n ð17Þ

where hi is the height of interface Bi-1,^ given in Fig. 3b. In
addition, to further simplify Eq. (15), it can be assumed that

∑
n

i¼1
Ai;ocos βi

� �
≈cos β1 þ βnð Þ=2½ � ∑

n

i¼1
Ai;o ¼ Atcos

"
β1 þ βn

#
=2

 !
ð18Þ

Table 1 Actual slides considered to validate Eq. (13) and estimate the accuracy of Eqs. (19) and (21)

Eq. (19) Eq. (21)
Νο Name β1 βn lt (m) un-lim (m) Nu X’Rc σRc X’Rc σRc

1 Alaska 1 51 237 28 11 0.70 0.23 1.19 0.63

2 Malakassa −15 45 329 37 16 0.82 0.16 0.78 0.36

3 Nikawa 6 32 89 18 25 1.20 0.16 0.82 0.49

4 Choan −2 54 24 5.1 15 1.01 0.13 0.97 0.15

5 Sifnos-1 0 42 12 2.9 15 1.11 0.14 1.28 0.15

6 Sifnos-2 0 18 82 82 17 0.92 0.19 0.73 0.14

7 Rimnio 0 72 57 10 17 0.64 0.22 0.77 0.68

8 Kushiro 0 36 21 4.4 20 0.89 0.09 1.25 0.46

9 Wachusset 0 43 90 8.1 21 1.13 0.18 0.70 0.37

10 Lamarquessa-upstream 0 45 20 6.9 14 0.66 0.08 0.88 0.52

11 Lamarquessa-downstream 0 45 12 5.4 24 1.34 0.08 0.70 0.06

12 Lapalma 10 88 21 3.4 25 0.77 0.09 1.19 0.58

13 Lower San-Fernando −3 62 119 35 21 0.74 0.08 0.61 0.32

14 Kabutono 0 63 28 7.0 21 0.87 0.03 0.73 0.06

ALL 262 0.94 0.18 0.89 0.43

Figure 9 of Stamatopoulos et al. (2011) gives the multi-block representation of these slides. The values of the parameters β1, βn, and lt for each geometry are provided. Regarding the
estimation of the accuracy of Eqs. (19) and (21), the number of cases studied (Nu) and the mean and standard deviation values of the factor Rc (=uma-ap/uma) is given

Landslides 12 & (2015) 1211



where At is the total cross-sectional area of the sliding mass. Then,
Eqs. (15), (16), (17), and (18) give

uma‐ap ¼ ‐ 2 kc‐o At= havð Þ cos β1 þ βnð Þ=2ð Þ = sinβ1‐sinβnð Þ ð19Þ

where the subscripts Bap^ and Bma^ indicate Bapproximate^ and
Bmaximum average^ displacement of the sliding mass respectively.

Furthermore, we define the angle βav as the Baverage
inclination^ of the slope under consideration. The angle βav cor-
responds to the Blimit friction angle for stability^ of the potentially
unstable mass and can be estimated by soil stability analyses, as
the friction angle corresponding to a factor of safety equal to unity.
Alternatively, as a first approximation, it can be estimated as the
average of the inclinations of the top and bottom linear segments
of the slip surface.

Then, it can be assumed that

∑
n

i¼1
Ai;osin 8�βið Þ� �

≈ ∑
n

i¼1
Ai;osin 8�βavð Þ� � ¼ sin 8�βavð Þ At ð20Þ

When the cohesional resistance is zero, Eqs. (15b), (19), and (20) give

uma‐ap ≈ ‐ 2 sin 8‐βavð Þ At= havð Þ = sinβ1‐sinβnð Þ½ � ð21Þ

Finally, as a first approximation, it can be assumed that
the expressions (19) and (20) can be applied at very large
displacements, even in cases where the restriction (3) does
not hold, by replacing the angle βn with the angle β’n that
equals

β’n ¼ ln‐unð Þβn þ βn‐1 unð Þ½ � = ln ð22Þ

Discussion and error analysis Eqs. (19), (21), and (22)
The accuracy of Eqs. (19), (21), and (22) predicting shear displace-
ment for general slide geometries was studied (a) using the actual
slide geometries of Table 1 described above and (b) a two-block
triangular slope, which was also studied by Stamatopoulos et al.
(2011). Figure 5 of Stamatopoulos et al. (2011) gives the geometry.
The parameters defining this triangular slide are the angles giving
the inclinations of the linear segments of the slip surface β1 and β2
(=βn), the interface angle (δ), the inclination of the ground surface
(θ+β1), the slip length lt (=l1+l2), and the water table elevation
(wte). All these parameters were varied in a parametric manner.
The initial and main case considered had the following character-
istics: β1=5°, βn=40°, δ=−10°, θ=30°, lt=20m, wte=0. Then, only
one geometric parameter changed per analysis, as indicated in
Table 2.

The methodology of analysis in all cases was the following:
estimate by trial-and-error a limit minimum value of uniform
strength, which gives critical acceleration value, between 0 and
−0.01 g. Then, decrease the value of strength in small increments
by dividing each time by 1.05. When the critical acceleration is less
than −0.2 g, the analysis stops. Equation (19) was validated for
both the c=0 and φ=0 cases and Eq. (21), by definition, for only
the c=0 case. Regarding Eq. (19), for the critical acceleration, the

(a) (b)
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Fig. 3 a. Simplified multi-block geometries considered in BDerivation of simplified expressions predicting landslide displacement^ section, b Illustration of the manner to
obtain hav in the case of a general multi-block geometry

Table 2 Cases that were considered in the parametric analyses of a two-block triangular slide

Eq. (19) Eq. (21)
Parameter Cases considered Nu X’ Rc σ Rc X’ Rc σ Rc

β1 (°) −30, −20, −10, 0, 5, 10, 20 74 1.06 0.10 0.83 0.11

βn (°) 31, 40, 50, 60 37 1.03 0.12 0.83 0.13

δ (°) −40, −30, −20, −10, 0, 10, 20, 30 96 1.02 0.16 0.81 0.14

θ (°) 15, 20, 25, 30, 35 65 0.93 0.10 1.15 0.28

lt (m) 20, 60, 100, 300, 1000 47 0.99 0.06 1.35 0.12

wte (m) 0, 1, 2, 3 81 1.02 0.05 0.77 0.15

c (kPa) 0, 2, 4, 6, 8 47 0.91 0.12 0.90 0.13

ALL 447 1.00 0.10 0.95 0.15

Figure 5 of Stamatopoulos et al. (2011) gives the geometry of this slide. The number of cases studied (Nu) and the accuracy of Eqs. (19) and (21) are given in terms of the factor Rc
and the parameter that was varied
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actual value for the slide case considered each time is used.
Regarding Eq. (21), for βav the friction angle corresponding to a
critical acceleration value equal to zero is used. The analyses
performed corresponded to a range of un/lt values between 0 and
1 for the slides of Table 1 and 0 to 0.5 for the triangular slides.
Tables 1 and 2 indicate the total number of analyses performed.

From all the results of these analyses, first, it was found that the
factors defined as

E1 ¼ cos βavAt = ∑
n

i¼1
Ai;ocos βi

� �
E2 ¼ Atγsin 8�βavð Þ þ c ltð Þ= kc−oAt γcos βavð Þ

ð23Þ

have an average value equal to 0.92 and 0.93 and a standard
deviation equal to 0.03 and 0.31, respectively. The fact that the
average values are near unity and the standard deviation values
are small, verifies the approximations (18) and (20).

Then, the accuracy of Eqs. (19) and (21) was studied by comparing
the predicted displacement with that computed by the numerical code
described in BThemulti-block sliding systemmodel andmethodology
and validation^ section. The ratio of predicted to the actual computed
values of displacement (Rc=uma-ap/uma), was estimated in all cases.
The average value of this ratio (X’Rc) is an estimate of accuracy and its
standard deviation (σRc) is an estimate of consistency. Tables 1 and 2
give X’Rc and σRc in terms for each case considered, and totally. For all
results, the factor Rc has (a) a mean value near unity (between 0.7 and
1.2) and (b) a standard deviation less than 0.3 and 0.7 for Eqs. (19) and
(22) respectively. Thus, considering the simplicity of the proposed
equations, it can be inferred that their accuracy and consistency for
general slide geometries is satisfactory.

Conclusions
The post-failure displacement of slides is studied using a recently
developed sliding system model. First, the general analytical ex-
pression (13) predicting the displacement of slopes consisting of n
blocks and exhibiting both frictional and cohesional components
of resistance is derived, validated, and applied. The energy ap-
proach is used for this purpose. Then, and as this expression is
complex, simpler geometries and strength assumptions are con-
sidered in order to derive Eqs. (i) (19) and (ii) (21), where the slide
displacement depends only on simple geometrical parameters of
the sliding mass and (i) the critical horizontal acceleration for
stability at the initial configuration of the sliding mass or (ii) the
limit friction angle for stability at the initial configuration of the

sliding mass and the residual soil strength. The accuracy of these
expressions for general geometries was studied by extensive para-
metric analyses.
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