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A new data assimilation procedure to develop a debris
flow run-out model

Abstract Parameter calibration is one of the most problematic
phases of numerical modeling since the choice of parameters
affects the model’s reliability as far as the physical problems being
studied are concerned. In some cases, laboratory tests or physical
models evaluating model parameters cannot be completed and
other strategies must be adopted; numerical models reproducing
debris flow propagation are one of these. Since scale problems
affect the reproduction of real debris flows in the laboratory or
specific tests used to determine rheological parameters, calibration
is usually carried out by comparing in a subjective way only a few
parameters, such as the heights of soil deposits calculated for some
sections of the debris flows or the distance traveled by the debris
flows using the values detected in situ after an event has occurred.
Since no automatic or objective procedure has as yet been pro-
duced, this paper presents a numerical procedure based on the
application of a statistical algorithm, which makes it possible to
define, without ambiguities, the best parameter set. The procedure
has been applied to a study case for which digital elevation models
of both before and after an important event exist, implicating that
a good database for applying the method was available. Its appli-
cation has uncovered insights to better understand debris flows
and related phenomena.
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Introduction
Debris flows are natural phenomena that frequently occur in
mountainous areas as a consequence of intense rainfalls (Iverson
1997) that can cause serious damage to buildings, infrastructures,
and, at worst, to human beings (Takahashi 2014).

Prevention measures to reduce the risk associated to debris flows
may not be possible because interventions at the detachment zone
may be too expensive or difficult to be technically feasible; in those
cases, it is important to install early warning systems (Lacasse and
Nadim 2009). These can be based on continuousmonitoring systems
(Frigerio et al. 2014) or on identifying triggering thresholds of key
parameters (Guzzetti et al. 2008; Capparelli and Versace 2011) that
predict an event with sufficient advance notice to be able to set off an
alarm signaling evacuation procedures (Bossi et al. 2015a, b). Being
able to predict the debris flow behavior and its run-out path are, in
any case, the basic requirements for all early warning systems as they
make it possible to identify potential hazards to people and property
and to plan appropriate emergency procedures.

Over recent decades, researchers have developed several nu-
merical debris flow forecasting models to improve understanding
of their behavior and to identify areas at risk. These models
generally integrate the small-scale shallow equations for a single-
phase approach outlined in the Smoothed Particle Hydro dynamic
method (Liu and Liu 2010) or the Discrete Element method
(Cleary and Prakash 2004), adopting Bingham, Voellmy, or
Coulomb rheological laws to describe the evolving geometry of a

finite mass of granular material and offering different options to
simulate various conditions and processes coupled with propaga-
tion (Pirulli and Pastor 2012). Two‐phase debris flow models have
also been recently proposed (Pudasaini et al. 2005).

Even if these models have found wide approval within the
circles of environmental scientists and have already been applied
to successfully describe artificial debris flows (Cola et al. 2013) as
well as real events (Revellino et al. 2004; Quan Luna et al. 2011; Wu
et al. 2013), accurately predicting future propagation events is still
problematic in view of the difficulty in obtaining accurate knowl-
edge of the site’s geometry and reliable information about suitable
parameters to utilize depending on the rheological model or inte-
gration approach being adopted.

Until now, researchers have concentrated their efforts on using
back analysis to calibrate their models for phenomena that have
already taken place; this has been done to attain the best parameter
combination in order to reproduce one or more characteristics of
debris flow events that have already occurred. Bertolo and
Wieczorek (2005), for example, compared the simulated values of
the flow rate and the run-out distances of a debris flow front with
documented ones of debris flows that occurred in the Yosemite
Valley (CA, USA); Pirulli and Sorbino (2008) compared the heights
of deposited soil in some positions and the overall distance covered
by flows affecting two sites in Sothern Italy; Revellino et al. (2004)
analyzed the total run-out distance, the estimated velocity at some
points along the path, and the thickness and distribution of debris
deposits for 17 debris flows that occurred in the Campania area
between 1998 and 1999. Of course, values obtained from back anal-
ysis unequivocally depend on the correspondence of the simulated
values with real in situ measurements. In the past, researchers often
had only a fewmeasures of the valley’s configuration before and after
the events at their disposal, but the availability of advanced, detailed
technologies is presently reducing errors connected with reproduced
geometry. In many of the documented cases of flow-like analysis, the
calibration procedure is performed manually. Since no automatic
procedure exists, it cannot be considered completely objective be-
cause each individual could obtain different parameter sets.

Parameter calibration is, of course, a problematic phase in devel-
oping numerical modeling, and some strategies have already been
utilized by other research fields to overcome this subjective process
(e.g., Robinson and Wastald 1987; Eckhardt and Arnold 2001). Some
attempts have likewise already been made to use automatic proce-
dures for parameter calibrations for landslide analysis: Schädler et al.
(2015), for example, proposed an inverse identification approach
associated with a back analysis procedure to establish the constitu-
tive parameters of a viscous-elasto-plastic finite element model used
to reproduce displacement evolution over time with regard to the
Corvara landslide in Italy. To the authors’ knowledge, similar at-
tempts have not yet been made for debris flow phenomena.

This paper proposes an automatic procedure that identifies the
best set of parameters to model debris flow propagation.
Belonging to the group known as data assimilation models, the
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method proposed was applied to find the best set of rheological
properties for the GeoFlow–SPH code developed by Pastor and
coworkers (Pastor et al. 2008, 2014). The procedure was applied to
reproduce the debris flow that took place in the Rotolon basin
(Vicenza, Italy) in November 2010.

A specific procedure aiming to consider all pertinent informa-
tion needed to obtain a more complete, predictive calibration was
developed.

Study event

The Rotolon catchment
The Rotolon catchment is located in the Vicentine Prealps, on the
South-eastern flank of the Little Dolomites group in the upper-
most portion of the Agno river valley. It lies under the jurisdiction
of the municipality of Recoaro Terme (NE of Italy) situated at the
border with the Trento province (Fig. 1).

The instability phenomena studied here concern the mountain
portion of the Rotolon stream that is about 5 km long and moves
from an altitude of about 1350 m a.s.l. (the maximum altitude in its
basin is 1942 m a.s.l. of Lovaraste Peak) to about 450 m a.s.l. where
the 17 m high Georgetti dam was constructed in the twenties to
protect the small town of Recoaro Terme from flooding.

From a geomorphological point of view, the Rotolon Mountain
can be ideally subdivided into two segments: an upper part be-
tween 1350 and 850 m of elevation (bed slope around 30 %) and a
lower one having a medium slope of less than 10 %. At the junction
of the two portions, there is a 5 m high hydraulic weir and,
immediately after, the injection of a small lateral stream,

specifically the Agno of Campogrosso, which is generally dry and
holds water only during exceptional rain events.

The path of the stream flows by a variety of formations
(Barbieri et al. 1980; De Zanche and Mietto 1981). The mountain
peaks are constituted by sub-horizontally bedded, intensely frac-
tured, mainly dolomitic limestones (Dolomia Principale, Mt. Spitz
Limestone, Calcareous at Trinodosus, Recoaro Limestone) typical
of the South Alpine Domain and appearing in succession moving
from west to east. It is important to note that the passage from the
Dolomia Principale to Mt. Spitz Limestone is clearly indicated by
the presence of a relatively thin layer of Raibl Formation, a se-
quence of conglomerates, sandstones, marls, and dolomitic evap-
orates showing a discontinuous level of easily alterable and
erodible rhyolitic-dacitic porphyrities at the bottom.

The Werfen Formation can be found at the base of the dolo-
mitic stratigraphic succession consisting of a varied sequence of
sandstone and siltstone that outcrops near the confluence with the
Campogrosso creek, just before the 5 m high weir. Along the lower
portion, the torrent moves through extremely thick talus and
alluvial deposits up to the final area where the outcrops of fillade
metamorphic rocks can be observed on the left-hand side.

As reported and confirmed by local popular, religious, and
administrative reports, instability processes, such as slope failures
in the upper portion and consequent debris flows, have threatened
the basin for centuries (Trivelli 1991). Many mainly hydraulic-
forest interventions were carried out between the two world wars
and in the period between 1985 and 1990, just after the occurrence
of an important landslide followed by a large secondary debris
flow. Those works mitigated the superficial erosion of the lateral

Fig. 1 Location of the Rotolon landslide in the Upper Agno Valley
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slopes along the stream and prevented many flooding events, but
they were unable to stabilize the large landslides still active at the
head of the Rotolon creek.

Many countermeasure structures exist in the second segment:
long stone walls protect the lateral slope of the bed and several
inclined flow deflectors or hydraulic weirs have been realized over
the years to keep the water flow at the center of the bed; two
bridges, i.e., the Parlati and Luna bridges, cross the stream and
connect the small hamlets located in the valley. There is a lateral
basin upstream of the villages that was created after the intense
debris flow that took place in 1985 to contain the transported
material.

The debris flows that took place in 2009 and 2010
Two important debris flows occurred in May 2009 and November
2010 after the detachment of about 50,000 and 330,000 m3, respec-
tively, at the head of the creek. In approximately 10 min, the first
debris flow reached the Parlati and Turcati villages, damaging
some hydraulic weirs and forming a lateral watercourse weld
deposits up to 5 m high. The second one flowed close to the
Parlati village, obstructing a bridge and flooding a public road:
at that time, the inclusion of fresh water from the Agno of
Campogrosso creek facilitated the flow. Fortunately, there were
no fatalities in either of these cases.

After the 2009 event and just before the second debris
flow, the Regional Territorial Service performed a LiDAR
survey of the area and repeated it immediately after the
2010 event. The comparison between the two derived Digital
Terrain Models (DTMs) (Fig. 2) provides a precise map of the
flooded and erosion/deposition areas along the stream (Bossi
et al. 2015a, 2015b) and makes it possible to calibrate a run-
out model.

Some erosive zones were highlighted by the sliding movement:
the detachment area in the upper part with an erosion depth of up
to 27 m and others along the path where the velocity of the flow or

the geometry and the mechanical properties of the bed allowed
excavations.

The basal topography and the initial volume of the sliding mass
were defined and used in the GeoFlow-SPH code on the basis of
these data.

Propagation model
The GeoFlow-SPH designed by Pastor et al. (2008; 2014) is a model
that has been developed over the last 25 years to analyze flow-like
landslide propagation. Just as other models, i.e., DAN3D
(McDougall and Hungr 2004, 2005) or RASH3D (Pirulli 2005), it
is based on the shallow-water wave theory: the hypothesis is that in
these processes, the average depths of the moving mass are small
in comparison with its length and width. This makes it possible to
simplify the 3D propagation model by integrating the velocity
distribution along the vertical axis and substituting a vertical
column of soil with a mass sliding along with an average moving
rate. The resulting 2D depth-integrated model presents an excel-
lent combination of accuracy and simplicity, providing important
information about propagation, such as the velocity or depth of
the flow along the path.

An integration of the 2D model is then obtained using the
Smooth Particle Hydrodynamic (SPH) approach (Monaghan
1992; Liu and Liu 2003), a Lagrangian method in which the inter-
action among the columns is controlled by a kernel-type function
(Pastor et al. 2008).

The vertical integration of the velocity profile of the GeoFlow-
SPH is carried out taking into account the following hypotheses:

& the material is considered an “equivalent fluid” governed by
simple rheological relationships (Bingham, Voellmy, or
Coulomb law) which can vary along the path according to
the superficial material that is encountered;

& the model considers strain-dependent, non-hydrostatic, aniso-
tropic internal stresses due to the 3D deformation of material

Fig. 2 Map of deposited and eroded
material obtained from the DoD
analysis
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with internal shear strength and the centripetal acceleration
due to path curvature;

& the model simulates mass and momentum transfer due to
entrainment and makes it possible to consider corresponding
variations in flow rheology.

According to Pastor et al. (2014), it is better to consider the
rheological law proposed by Voellmy (1955) in debris flows in
which granular particles have high mobility and the drag forces
due to the capillary contacts are important. This law includes, in
the original frictional relation for shear strength, a component
taking into account energy dissipation due to the flow turbulences
strictly depending on the velocity. The shear strength relationship
proposed by Voellmy is:

τ ¼ ρg
v2

ξ
þ ρgh cosθ tanδ ð1Þ

in which the basal friction coefficient (tanδ) and the turbulence
coefficient (ξ) represent the frictional and collisional components
of dissipation.

As underlined by Sosio et al. (2008), some typical value ranges
for rheological parameters can be found in the literature: they
suggest that values between 0.05 and 0.25 be used for the basal
friction coefficient and between 200 and 1000 m/s2 for the turbu-
lence coefficient, depending on the flow type needing to be
simulated.

It has, moreover, been underlined that the GeoFlow-SPH model
makes it possible to have different values for the internal friction
coefficient of a given soil (tanϕ) and the basal one (tanδ) in view of
the fact that the debris composing the mass may have different
compositions and frictional properties with regard to the material
forming the river bed.

The GeoFlow-SPH also makes it possible to take into account
the soil entrainment due to streambed erosion which plays a
fundamental role in many flow-like landslides. Among several
empirical formulas providing an estimation of erosion for depth-
integrated models (Pirulli and Pastor 2012), GeoFlow-SPH adopts
the Hungr erosion law (Hungr 1995) according to which the ero-
sion rate increases in proportion to the flow depth according to the
equation:

dm
ds

¼ Esρh ð2Þ

where m is the engaged mass per unit footprint area (units kg/
m2), s is the distance along the flow path, h is the flow depth, ρ
is the soil density (units kg/m3), and Es (units m−1) is the
displacement erosion rate, the so-called average growth rate,
which represents the bed-normal depth eroded per unit flow
depth and unit longitudinal displacement. The growth rate,
different from the time-dependent erosion rate er (units m/s),
is assumed to be independent of the flow velocity and is related
to the erosion rate er by:

er ¼ Eshv ð3Þ

where v is the depth-averaged flow velocity (Hungr 1995).
Despite the empirical nature of the Hungr erosion law, its

physical basis is that the stress conditions leading to bed failure
and entrainment are related to the total bed-normal stress and
thus to the flow depth. The term Es is related to the variation of
flow volume by the logarithmic relationship:

Es ¼
ln

V fin

V0

� �
d

ð4Þ

where V0 and Vfin are the landslide volumes before and after
propagation and d is the erosion path.

Summarizing, it is necessary to define four parameters to apply
GeoFlow-SPH, three related to the rheological law and one to the
erosion law. These parameters can assume different values along
the propagation path.

It is important to remember that the GeoFlow-SPH is still being
improved by its authors and the version being utilized in this
study offers the possibility to use different values for the frictional
and erosional parameters (δ and E) along the path; the turbulence
and inner kinematical friction coefficients (ξ and ϕ) have, instead,
fixed values. Even if this can be considered a limitation to model-
ing, for the purpose of the study, which was to develop an auto-
matic calibration procedure more than to calibrate parameters,
this was not considered a problem.

Ensemble smoothing
The calibration procedure developed by this project employs an
Ensemble Smoother (ES) or data assimilation algorithm to pro-
vide improved estimations of geotechnical parameters. The ES is
a Bayesian data assimilation method which, by minimizing the
variance of the estimation error, merges “prior” information
from a theoretical system, i.e., the propagation model, with field
data collected from the real phenomena in order to produce a
corrected “posterior” estimate. In our case, the ES algorithm
assimilates the prior information with the deposited soil heights
determined by the comparison of pre- and post-event LiDAR
surveys.

It follows a two-step forecast-update process: the forecast
process is obtained using a Monte Carlo simulation of the
system state, while the update, or correction, of the prior
information takes place when available measurements are
assimilated by applying a specific filter to the forecast model
results.

Monte Carlo forecast and performance indices
In view of the proliferation over recent decades of the number and
types of climatic and environmental models, interest in formula-
tions that produce more accurate and precise estimates of vari-
ables of interest has increased. Using an advanced model in which
the result is influenced by numerous parameters (being np the
parameter number), the Monte Carlo analysis makes it possible
to perform in an automatic way a large number of simulations,
each carried out using an independent initial parameter set ob-
tained by a random selection of values on the basis of a statistical
distribution assigned to each parameter.
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It is essential then to define statistical errors or performance
indices which can be used to compare model-produced estimates
with reliable independent information or reference data.

Statistical comparisons of model estimates or predictions (yt
with t=1, 2…, n) with matched measurements (byt with t=1, 2…, n)
continue to be the most basic means of assessing a model’s
performance. Since individual model-prediction errors are usually
defined as et ¼ yt−byt , the average model-estimation error associ-
ated to an analysis obtained with the parameter set ϑ can be
generically expressed as:

e ϑð Þ ¼ 1
n

X n

t¼1
yt ϑð Þ−�� byt τj

h i1=b ð5Þ

where b≠0 and τ ≥0 are two coefficients and yt (ϑ) expresses the
values yt obtained using the parameter set ϑ.

The most simple relation, assessed with b=1 and τ=1, gives the
average error or Mean Absolute Error (MAE), according to:

MAE ¼ 1
n

X n

t¼1
yt ϑð Þ−byt ¼ 1

n

������ X n

t¼1
etj j ð6Þ

in which the absolute value of individual error is adopted in order
to remove the error sign influence from the computation.

Another commonly defined index is the Root Mean Square
Error (RMSE) which is derived from Eq. 5 with b=nandτ=2. It is
formulated as:

RMSE ¼ 1
n

X n

t¼1
yt ϑð Þ−byt��� ���2h i1=2

¼ 1
n

X n

t¼1
etj j2

h i1=2 ð7Þ

where, again, the stated rationale for squaring each et is to avoid
the influence of the error sign. In this case, each error influences
the total error in proportion to its square: as a result, large errors
have a relatively greater influence on the RMSE with respect to
smaller ones, meaning that the RMSE grows as the error is con-
centrated within a decreasing number of increasingly large indi-
vidual errors.

The MAE and RMSE have the same units as the variable of
interest, but they do reflect the relative error size. To deal with this
problem, the Mean Absolute Percentage Error (MAPE) is defined
as:

MAPE ¼ 100
n

X n

t¼1

yt ϑð Þ−byt��� ���
byt ð8Þ

In this way, MAPE makes it possible to compare forecasts of
different series in different scales.

When a Monte Carlo forecast approach is used, evaluation of
these indices makes it possible to identify which out of all the
simulations carried out is the best one.

Update step or data assimilation phase
The estimated variables (yt(ϑ) with t=1, 2…, n) obtained with nsim
simulations according to the Monte Carlo analysis compose the

forecast ensemble Uprior [nu×nsim], being nu=nhs+np: generally, the
ith column in the Uprior matrix lists the nhs model variables yt(ϑ)
estimated with the ith simulation and, below, the values of the np
model parameters adopted to perform the same simulation. The
forecast ensemble should be corrected or updated using nobs field
measurement data and the data assimilation algorithm. In general,
nobs and nhs can be different. In this case, we decided to extract the
values to be compared byt corresponding to the same positions.
Basically, it means that in the following, the symbol n will express
the number of measured data as well as the number of data
obtained from each simulation. We adopted the Kalman filter for
the assimilation procedure (Baù et al. 2015; Evensen 2003) having
the follow formulation:

Upost ¼ Uprior þ Kt⋅ Dt−H⋅Uprior
� � ð9Þ

where:

– Upost [nu×nsim] is the updated ensemble.
– H [n×nsim] is a matrix that maps measurement locations into

the grid domain so that the product H⋅Uprior indicates model
results at measurement locations. As explained above, the
nodes chosen for the comparison between simulated and ob-
served values are the same. Consequently, the matrix H sim-
plifies by becoming identity one.

– Dt [n×nsim] is a matrix that holds the perturbed measurement
data using an ensemble of Gaussian noises, stored in a matrix E
[n×nsim] representing the measurement random error. If the
measurements are error-free, all nsim columns of Dt are equal
to the data.

At the right-hand side of Eq. 9, the residual Dt−H⋅Uprior defines
the deviation between the forecasted state and the true state at the
measurement locations. This residual forms the basis for
correcting the forecast ensemble. The degree of this correction
depends upon the uncertainty of both the forecast ensemble and
the measurement data, which is contained in the Kalman gain
matrix Kt [nu×n]:

Kt ¼ C HT H C HT þ R
� �−1 ð10Þ

where C [nu×nu] is the forecast error covariance matrix, and R
[n×n] is the measurement error covariance matrix. These two
matrices are defined as:

C ¼
Uprior−U

� �
Uprior−U

� �T

nsim−1
ð11Þ

R ¼ E ET

nsim−1
ð12Þ

where each column of Ū [nu×nsim] holds the average value of the
ensemble for each node height distribution. Thus, the matrices C
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and R contain the spread of the model values and the measure-
ment values, respectively.

As explained by Baù et al. (2015), if the spread of the measure-
ment values is small compared to the spread of the model values,
the residual between the modeled and measured values is weight-
ed more heavily in correcting the model value so that it is closer to
the measurement one. In fact, the matrix Kt assumes the value of 1,
so the prior matrix will be strongly updated. Conversely, if the
spread of the measurements is large with respect to the spread of
the model values, then the residual receives little weight in
correcting the model value, which remains similar to the forecast
estimate: the Kalman matrix approaches zero value, so the poste-
rior results remain equal to the prior ones.

As an additional observation, it is interesting to note that the
reversal operation contained in the calculation of Kt requires
special conditions. In fact, if the matrix Uprior is excessively rect-
angular, the reversal of the residue in Eq. 9 will lead to a nearly
singular matrix, thus compromising the success of the algorithm.
In particular, the more the forecast ensemble is square, the better
the filter applied will converge into a reliable solution. It was for
this reason that it was decided to perform 1000 simulations, equal
to the number of data to compare.

A final explanation aims to clarify what exactly the updated
matrix contains. The lower 8 lines of the Upost represent the
corrected values of the parameters obtained by the filter. It is
possible to plot their normal distributions and to compare them
with the prior ones, as extracted by the Monte Carlo procedure.
The upper part of the updated matrix contains the results of the
application of the Kalman algorithm. The values there are not
obtained from the propagation model, so their distribution only
emphasizes how efficient the filter was in carrying out its work.

Application of data assimilation analysis

Selection of input data
Preliminary analyses carried out by Cola et al. (2014) have shown
that the debris flow that occurred in the Rotolon catchment in
2010 could not be well simulated assuming a unique value for each
parameter, and it was clear that the parameter values depending
on the distance from the triggering zone needed to be varied.

As a result, in order to apply the data assimilation procedure,
the basin was subdivided into six zones with limits identified
according to specific elevations (Table 1). It should be noted that
the zone extensions are very different because the limits were
chosen subdividing the run-out length in homogeneous parts with
respect to the erosion/deposition behavior of the debris flow
resulting from the preliminary analysis by Cola et al. (2014).

The mean value of rheological parameters was estimated using
values indicated in the literature (Pirulli and Sorbino 2008; Bertolo
and Wieczorek 2005) and the preliminary results obtained by Cola
et al. (2014): the latter authors, for example, showed that the basal
friction coefficient decreases along the path of the debris flow,
probably due to an increase in the fluidity of the material or to
an arrest due to large boulders blocking the path as the bed slope
decreased.

The internal friction angle ϕ and the turbulence coefficient ξ
were assumed constant for all the zones, because, as already
explained, the current version of the GeoFlow-SPH does not allow
different values for them: in particular, the internal friction angle Ta
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ϕ is assumed equal to 30° (tanϕ=0.6), the minus value for the
critical angle of a granular soil, the value commonly adopted for
describing debris and rock flow (Sosio et al. 2008); the turbulence
coefficient ξ was chosen equal to 700 m/s2, that is, a reliable value
within the range of 100 and 1000 m/s2, as was suggested by Pirulli
and Sorbino (2008).

Other suggestions about the ξ value were also made by Sosio
et al. (2008) who indicated a range of 450–1000 m/s2 for rock
avalanches and a range of 200–500 m/s2 for debris flows: the use
of a unique value for ξ might contrast with the nature of the
phenomenon studied, which could be more similar to a rock
avalanche in the detaching upper area when, after covering a part
of its trip and receiving water from lateral tributaries, it assumes
the characteristics of a debris flow. The use of a constant param-
eter equal to 700 m/s2 seems in any case to be a compromise with
values reported in the literature that would be compensated by
assuming a normal distribution with a wide standard deviation.

The basal friction coefficient tanδ could be defined differently
for each zone and it is reasonable to think that, along the river,
both the debris flow and the bed material reduce their grain-size
composition and, consequently, the basal friction angle is reduced
as the flow proceeds downstream. In particular, Cola et al. obtain-
ed a good reproduction of the event assuming tanδ equal to 0.41
(δ=22.3°) and 0.02 (δ=1.1°), respectively, in the portions upstream
and downstream the conjunction with the rio Campogrosso. Based
on these observations, here we assumed four different mean values
of δ: two different values for the first and the sixth zones and two
other values for the second and third zones and for the fourth and
fifth zones, respectively. The standard deviation was chosen pro-
portionally to the mean value: for example, the basal friction
coefficient in the first area, which has a mean value of 0.41, is
associated with a relatively wide standard deviation of 0.03, while,
on the contrary, the basal friction angle in the fourth zone has a
smaller variation range because it was important to be sure that
negative values were not included in the parameter set.

The mean value of the erosion parameter in the various zones
was chosen on the basis of the DTM of difference (DoD) analysis:
the Es value was assigned equal to 3·10−4, 8·10−5, or zero if the
comparison between pre- and post-DTMs in a zone prevalently
showed erosion, both erosion and deposition or prevalently depo-
sition, respectively.

Table 1 summarizes the mean value and the standard deviation
assigned to each zone for the forecast phase. There are eight
rheological parameters: four values of the basal friction angles,
two values of the erosion coefficients, one of the internal friction
angles, and one of the turbulence coefficients.

In order to underline the role and the importance of each
parameter, a sensitivity analysis was carried out before the data
assimilation procedure was applied. This step is extremely useful
to uncover to what extent an inaccurate choice of a parameter can
affect model results.

Reference data and measurement error
In order to apply the calibration procedure, two other important
issues needed to be solved: one regards the selection of the refer-
ence values to analyze the likelihood between simulated and mea-
sured values, the other the error associated to the reference data.

First of all, to make the calibration as complete as possible, it
is appropriate to consider the highest number of values possible

out of all those that are available. Each simulation with
GeoFlow-SPH produces more or less 15,000 data referring to
the heights of deposited soil along the river at the end of the
debris flow propagation (in the following briefly indicated as
soil height or hs); in the same way, the comparison between pre-
and post-DTMs could supply a large amount of data, such as a
million and half of values.

On the other hand, to be correctly applied, the Kalman proce-
dure requires the number of simulations to be comparable to the
number of measurements being compared.

In view of the fact that the computational cost of each simula-
tion is approximately an hour, in order to procure a sufficiently
representative sample, we decided to limit the number of compar-
ison data to 1000. The procedure would thus produce 1000 simu-
lations (nsim=1000), and from each of them, it will take 1000 values
of soil heights to compose the upper part of the forecast ensemble
Uprior.

Once the number of data is fixed, another important issue is
that of selecting the data which must describe the phenomenon
as accurately as possible in all the source and deposition areas.
For this reason, the talweg and two parallel polylines 15 m away
from the talweg were identified on the DoD. The variables used
for the comparison were the soil height in a selected number of
nodes belonging to the polylines. In this way, the talweg repre-
sents the longitudinal section of the landslide and the data
along it take into account the total propagation of the debris
flow, while information along the parallel polylines would take
into account the mass spreading along the path. Altogether,
there are about 4000 nodes on the three polylines, but, again,
only 1000 nodes were selected in a random way out of the 4000
nodes that were available, obtaining the n reference data to
compose the vector of the reference heights.

As previously described, the ES algorithm needs to assign the
normal distribution of error associated to LiDAR data in order to
produce matrix E [n×nsim] and the error distribution affects the
final result in a significant manner: a large error would lead to
information that is not sufficiently precise for parameter optimi-
zation, but, conversely, if the error assigned is too small, the
expectation to provide sufficiently precise information could be
excessive and the optimization algorithm may not provide reliable
parameters.

In our case, no information about the Gaussian distribution
of error of the LiDAR data was available: as a result, we set the
error of each derived DTM to 0.2 m, a typical value of airborne
LiDAR surfaces (Cavalli and Tarolli 2011). The propagated error
was consequently assumed constant in the DTM of difference
(DoD) analysis (Bossi et al., 2015a) and equal to ±0.28 m. In the
last part of the paper, a further analysis evaluating the influence
of this parameter is presented together with some of our
comments.

Finally, the procedure was performed extracting 1000 values
from the normal distribution of each rheological parameter, de-
fining 1000 combinations of parameters and performing the cor-
responding simulations. At the end of each simulation, the results
were elaborated and 1000 data values were extracted from as many
nodes. The final matrix has 1000 columns, one for each simula-
tion, and 1000 rows, one for each node. The Uprior matrix is the
result of concatenation of this matrix [1000×1000] with the ran-
dom parameters used for the simulations.
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Model sensitivity
As mentioned in the “Selection of input data” section, in order to
underline the importance of each parameter, the results of a
sensitivity analysis are presented. Once a variation range for each
parameter was chosen, eight series of seven simulations were
developed in which only one parameter at a time was modified:
a total 56 simulations were carried out, as outlined in Table 2. The
central column contains the values that remained the same during
the variation of one parameter.

It should be noted that the values assumed for friction and
turbulence coefficients differ for a constant quantity depending on
the value of the parameter, while the erosion coefficient values
vary according to a geometrical series in one order of magnitude.

In the bar plot of Fig. 3, the range of variation of the MAE,
RMSE, and MAPE errors calculated for the seven simulations of
each series is summarized. The horizontal line joins the error
values obtained with the central combination of parameters. It is
obvious that the larger the error variation is in function of a
parameter variation, the larger is the influence of that parameter.
Figure 3 shows, for example, that the internal friction coefficient
tanϕ has a secondary role because MAPE varies only between 25
and 30.6 %. On the contrary, all the basal friction angles, in
particular, the first three, are fundamental for the calibration
process: in fact, small variations in their value cause significant
fluctuations in the error. The influence of the erosion and turbu-
lence coefficients is likewise very strong.

It is also interesting to observe that the performance indices
were calculated for all the nodes of the simulation, and not only
the 1000 nodes chosen for the subsequent application of the
Kalman filter. This was done in order to evaluate the totality of
the phenomenon that was simulated compared to real values.

A clarification must be made concerning calculation of the
percentage error. The nodes that have a deposit or erosion in the
simulation solutions are compared with the relative measure-
ments. However, if an in situ observed value proves null, division
by zero in formulating MAPE introduces serious problems. To
overcome this situation, it was decided to exclude all nodes that
have null measures or not null simulated values from the calcula-
tion of MAPE: of course, the mean value of error is calculated
correcting the total number of compared data.

In our opinion, the best representative formula of error is the
percentage one, because it weighs any difference in function of the
respective measure. For this reason, in the following analysis, we
decided to refer only to this error formulation.

Data assimilation analysis

Prior results
To obtain the prior ensemble Uprior, 1000 simulations were per-
formed with the parameter sets extracted from the parameter
Gaussian distribution using the Monte Carlo procedure, and then
the soil height values in correspondence to 1000 points belonging
to the three reference polylines were pulled out, as described in the
“Reference data and measurement error” section. The extracted
soil heights are plotted in Fig. 4 forming three longitudinal pro-
files, each of which composed of 333 node values.

The colored lines represent the results of all the simulations,
while the thick black lines indicate the DoD measurements of the
same nodes. Here we see that the prior solutions are quite spread
out, which is an effect on the input parameter variances originally
chosen. It is in any case important that all the measurement lines
are included in the range of the simulation results: in this way, the
statistical algorithm that is applied later can give good results.

A first assessment of these analyses can be obtained by means
of the distribution obtained for the percentage error. The mini-
mum MAPE of all the simulations is 16.2 % while the mean and
maximum values are 40.9 and 68.9 %, respectively.

The soil heights in the reference nodes from each simulation
form a vector 1000 long. By adding the combination of parameters
used for the simulation to it, the vector becomes 1008 long.
Assembling all of these vectors permits us to build the prior
[1008×1000] matrix.

Posterior results
The most important part of the calibration process regards the
stage during which the Kalman filter is applied. As has already
been described, it takes the prior matrix Uprior and restitutes an
updated matrix Upost containing the corrected values. The Kalman
filter was first applied with a measurement error set at ±28 cm
which corresponds, as explained above, to the propagated error of
the DoD analysis.

The upper part of this matrix expresses the performance of the
algorithm applied: a reduction in the variety of the prior data
underlines the fact that the posterior results are more similar to
reality than the prior ones.

The lower part of the updated matrix can be compared with the
lower part of the prior matrix. In particular, Fig. 5 compares the
frequency distribution of each parameter that was obtained from
the prior and post matrices, a comparison which give us some

Table 2 Values of rheological parameters assumed in the sensitivity analysis

Parameter Values

tanϕ 0.450 0.500 0.550 0.600 0.650 0.700 0.750

tanδ1 0.320 0.340 0.360 0.380 0.400 0.420 0.440

tanδ2 0.160 0.180 0.200 0.220 0.240 0.260 0.280

tanδ3 0.090 0.100 0.110 0.120 0.130 0.140 0.150

tanδ4 0.006 0.009 0.012 0.015 0.018 0.240 0.036

ξ [m/s2] 50 200 350 500 650 800 950

E1 [m
−1] 1.25* 10-6 2.50* 10-6 5.00* 10-6 1.00* 10-5 2.00* 10-5 4.00* 10-5 8.00* 10-5

E2 [m
−1] 3.75* 10-6 7.50* 10-6 1.50* 10-5 3.00* 10-5 6.00* 10-5 1.20* 10-4 2.40* 10-4

Original Paper

Landslides 13 & (2016)1090



information about the parameter values to be used and about the
relevance of each parameter for the model. The more the algo-
rithm reduces the variance of the normal distribution of a param-
eter, the more important and better defined it will be.

As the sensitivity analysis previously suggested, the most im-
portant parameters are the basal friction angles: for each of these,
the filter furnishes a better frequency distribution with respect to
the input one. The internal friction angle carries out a secondary
role since its frequency curve seems less restricted after the filter
has been applied. The same can be said about the turbulence
parameter even if the analysis indicates that the mean value is
much smaller with respect to the input one.

A final consideration concerns the filter’s indication about the
erosion parameter: even if the mean value of E1 introduced into
the analysis was greater than E2, its final value is one order of
magnitude minor than the input one and minor than the E2.

The mean values of the updated parameters are reported in
Table 3. It is very interesting to compare the results of the simu-
lation performed using these values as input with the measure-
ments, as outlined in Fig. 6. The correspondence between the total
run-out of debris flow in situ and in the model is very good, and

the soil height distribution along the stream is also well described
by the numerical model, even if the model seems to overestimate
the deposition in the lower portion of the basin and, on the
contrary, to underestimate the soil height in the upper part.

The second Kalman filter application
The last step of the procedure consists in carrying out 1000 new
simulations with the parameters obtained using the Monte Carlo
procedure from the updated frequency distribution and then once
again applying the Kaman filter. The same steps as those adopted
previously should be used; even in this case, it is possible to plot
the soil height profiles along the reference polylines (Fig. 4).

The spread of the soil height profiles is lower than the one in
the first analyses (Fig. 4). In fact, the orange lines remain closer to
the line of the observed values (black line) than do the previous
ones (yellow lines).

As before, the application of the Kalman algorithm provides a
new updated matrix and new frequency distributions of parame-
ters are obtained and compared with the input frequency distri-
butions (Fig. 5). With the second application of the Kaman
algorithm, some distributions maintain the same mean value and
further reduce the variance, as occurred for tanδ3 (Fig. 5d), while,
on the contrary, for other distributions, as in the case of the
turbulence (Fig. 5f), the algorithm gives new corrections even with
regard to the mean value. It is necessary to clarify that the statis-
tical filter applied considers each parameter as a number and does
not take into account its physical meaning. This is the reason why

Fig. 3 MAE (a), RMSE (b), and MAPE (c) of the analyses performed to evaluate the
model’s sensitivity

Fig. 4 Soil height obtained with the 1000 GeoFlow-SPH forecast analyses of the
nodes composing the talweg line (a) and the two parallel polylines (b, c)
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the second application of the Kalman filter gives a negative value
for the erosion coefficient E1 (Fig. 5g). We have interpreted this
result as meaning that we need to set a null value of erosion in the
areas where we entered E1.

Again, in Fig. 6d, the soil heights of the DoD are compared with
the heights obtained with a new simulation performed setting the
average value of the updated normal distribution for each parameter.
The MAPE of this last result reached the value of 26.9 % (Table 4).

Discussion of results

Comparison among errors
Some initial comments can be made about the comparison of the
distribution of the performance index defined in Eq. 8, i.e., the
MAPE. Figure 7 presents the comparison between the distribution
of the percentage errors for the prior and post simulations, i.e., the
simulations carried out with parameters extracted from the up-
dated frequency distribution.

It is evident that the Kalman algorithm produces an im-
portant improvement in the distribution of the MAPE
displayed here but also of other performance indices. Even if
the lowest values of the three errors for the updated group of
simulations did not decrease, a significant reduction in the
highest and mean values was observed. The improvement of
the MAPE, which fell from 40.9 to 28.3 %, is particularly
evident (Table 5).

After the second application of the Kalman algorithm, we
could also compare the performance indices of the third group
of simulations, i.e., those carried out with parameters extracted
using the frequency distribution suggested by the second
Kalman filter.

As shown in the Table 4, the best MAPE obtained from the first
simulation reached the value of 36.9 %. After the first application
of the filter, we obtained a MAPE of 33.9 % from the simulation
developed. At the end, after a new improvement procedure was
implemented, we attained a MAPE of 26.9 %.

Fig. 5 Frequency distribution of the rheological parameters in input and output from the data assimilation analysis of the three procedure steps. (a) tanf; (b) tand1; (c)
tand2; (d) tand3; (e) tand4; (f) x; (g) E1; (h) E2

Table 3 Mean of the updated parameters after the first Kalman filter was implemented

Parameters tanϕ tanδ1 tanδ2 tanδ3 tanδ4 ξ E1 E2

Value 0.77 0.38 0.21 0.13 0.03 203.44 2.93×10−5 8.65×10−5
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The effect of measurement error
The algorithm makes it necessary to make some assumptions
about the distribution of errors affecting the reference data. As
has been explained before, the propagated error of the DoD was
set at a constant value but it may also be interesting to evaluate
how the error value influences the optimization process results. In
fact, if the assumed reference data are sufficiently descriptive of
the debris flow and the model is really able to reproduce the
phenomena, the posterior results should be stable regardless of
error values.

To verify this condition, the Kalman algorithm was applied ten
times to the same prior matrix adopting error values varying from
10 cm to 1 m in a logarithmic way: the boxplot of Fig. 8 summarizes
distribution indicated by the filter for each parameter plotted
versus the assumed error value and compares them with the
forecast boxplot representing the normal distribution of the same
parameter assumed at the beginning of the procedure. On each
box, the central thick mark indicates the median value, the box
edges the 25th and 75th percentiles respectively and the whiskers
the 2.7σ ÷ 99.3σ range, σ being the standard deviation of the
normal distribution of each parameter. The model sensitivity to

the error value is represented by the filter’s ability to reduce the
variance of the parameter distribution and to supply a unique
mean value regardless of the assumed error.

All the posterior boxplots are more precise than the forecast
distribution since in all cases the standard deviation is reduced,
confirming that is algorithm is working well. Moreover, the results
of Fig. 8 are consistent with those already obtained by the sensi-
tivity analysis outlined in the “Model sensitivity” section. In fact,
the error value does not change the posterior values of the basal
friction angles (tanδ) and this confirms that these parameters have
a strong influence on model calibration. Similar reasoning is
appropriate for the erosion parameter in the lower part of basin
E2, but not for the erosion coefficient in the upper part of E1 which
has a mean value in output that is strongly dependent on the

Fig. 6 Comparison between the deposition and erosion maps of the data measured (a) and of the data before (b) and after the Kalman filter was applied (c, d)

Table 4 Percentage errors of the simulation obtained with the user-defined
parameter set and the two obtained with the simulations using the parameter
set suggested by the Kalman filter

User-
defined
parameter

1° Kalman
filter

application

2° Kalman
filter

application

MAPE % 36.9 33.9 26.9
Fig. 7 Normal distribution of the percentage errors of the first 1000 simulations
compared with the normal distribution of the simulation after the Kalman filter was
applied
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definition of the measurement error. Even this result confirms
what was obtained in the previous sensitivity analysis.

Finally, modifications in the definition of error also produced
different output values for the turbulence and internal friction
parameters, but, after the filter was applied, their variance was
reduced to a lesser extent with respect to the other parameters.
This result can be justified by a variety of explanations. On the one
hand, the internal friction angle seems to play a secondary role for
the model because the model shows a greater tolerance in relating
this parameter to the reference data. On the other, in view of the
fact that the turbulence coefficient is extremely important for
model calibration, it would probably be better to define different
parameters for different zones. This consideration is made in the
effort to explain the very different values for the turbulence coef-
ficient that are found in the literature. In this way, it is probable
that the values found in the literature in the future will be in better
agreement with the real behavior of debris flows.

Conclusion
Models analyzing debris flow propagation are usually calibrated
by comparing in a subjective way the predicted and measured
lengths of the flow or heights of deposited soil in some particular

sections. This procedure is, however, likely to be inaccurate if it is
based on inappropriate performance indicators and may be fur-
ther complicated by the fact that different combinations of values
often lead to similar results.

The procedure proposed here, based on a data assimilation
algorithm and the systematic use of performance indices, can be
a useful tool because it presents some evident advantages, includ-
ing the following ones:

& it is applied starting from a large number of possible parameter
combinations obtained extracting values in a random manner
from reliable statistical distributions;

& the comparison takes into account the totality of deposits
along the debris flow path;

& the evaluation is carried out using indices that are not affected
by subjective interpretation;

& it may be implemented in an automatic code in order to easily
repeat its application numerous times and analyzing the effects
of different initial assumptions;

& it can be improved by including other rheological parameters
or the most probable distribution of error in measurements.

It is also important to indicate critical points that need to be
checked for the correct application of a similar calibration proce-
dure. The most important are the following:

& a large number of simulations have high computational costs
depending on the time required to perform a single propagation
analysis. At the same time, being able to simultaneously perform
more than one simulation, depending on the number of processors
that are available, may significantly reduce the computational time;

Table 5 Percentage errors of the prior 1000 simulations compared with the 1000
ones obtained after the first Kalman filter was implemented

User-defined
parameter

After 1° Kalman
Filter application

Min MAPE % 16.2 20.2

Mean MAPE % 40.9 28.3

Max MAPE % 68.9 41.5

Fig. 8 Boxplots of the results using different values for the measurements error for each parameter after the Kalman filter was applied. (a) tanf1; (b) tand2, tand2, tand3
and tand4; (c) x; (d) E1 and E2
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& the choice of the performance index is extremely important
since not all error formulations are sufficiently representative
and reliable;

& identifying the nodes to be considered for the Kalman filter
application is an important step to converge to an optimal
solution.

Some comments can also be made about the application of the
data assimilation to the specific case history presented here. First
of all, the subdivision of the basin into different portions with
different parameters proved to be a good strategy that could be
improved if it were possible to use different parameters and not
just the basal friction angle.

In this case, the erosion evaluated using the Hungr formula
resulted limited and the calibration of the representative parame-
ters in the upper part of the basin did not furnish a reliable value,
probably due to the minor relevance of the phenomena.

The basal friction angle, the turbulence coefficient, and the
erosion rate in the lower basin are the most significant rheological
parameters that must be carefully selected in order to reach a
proper reproduction of the Rotolon debris flow.

The turbulence coefficient seems to play an ambiguous role:
while in sensitivity analysis, the degree of uncertainty of this
parameter seems to be important, with the data assimilation ap-
plication its effect appears partially weaker. Moreover, this param-
eter is not stable with changing the distribution of errors affecting
the reference data, so it could be concluded that the calibration of
this parameter is not really important for the model. On the other
hand, the discrepancies found applying different analyses were not
completely understood and they may be partially explained with
the fact that, in our model, the turbulence coefficient cannot
change along the topography (as for other parameters like basal
friction which results more “flexible”) or with different soil
heights. Moreover, it was calibrated on the base of soil height
measurements while the turbulence terms mainly influence flow
velocity (Hürlimann et al. 2008).

These facts probably limits the achievement of the best possible
calibration, which may be improved in the future incorporating
the variability of this coefficient in the code and the possibility of a
combined use of kinematic data in the assimilation procedure.

Finally, even if turbulence and friction coefficients have oppos-
ing influences on the model results, the assimilation of such a large
number of data allow us to understand, which sets among all the
combinations that lead to similar results.
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