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study

Abstract Ten small rock slides (with a volume ranging from 10' to
10°m®) on a slope affected by working activities were detected,
located, and timed using pictures collected by an automatic camera
during 4omonths of continuous monitoring with terrestrial SAR
interferometry (TInSAR). These landslides were analyzed in detail
by examining their pre-failure time series of displacement inferred
from high-sampling frequency (approximately smin) TInSAR mon-
itoring. In most of these cases, a typical creep behavior was observed
with the displacement starting 370 to 12h before the collapse.
Additionally, an evident acceleration decrease of the displacement
a few hours before the failure was observed in some rock/debris
slides, thus suggesting the possibility of a mechanical feature of the
slope that differs from the classical creep theory. The efficacy of the
linear Fukuzono approach for the prediction of time of failure was
tested by back-analyzing the ten landslides. Furthermore, a modified
Fukuzono approach named average data Fukuzono (ADF) was im-
plemented and applied to our dataset. Such an approach is able to
improve forecasting effectiveness by reducing the error due to anom-
alies in the time series of displacement, like the acceleration decrease
before failure. A prediction with a temporal accuracy of at least 2h
was obtained for all the analyzed rock/debris slides.

Keywords Terrestrial SAR interferometry - Landslide
forecasting - Displacement time series - Average data
Fukuzono - Failure

Introduction

Landslide prediction is a major step toward reducing the impact of
natural disasters and risks related to human activities in mountainous
and hilly areas. Landslides are complex natural phenomena involving
volumes ranging from some cubic meters up to some hundreds of
millions of cubic meters. Landslides do not behave as a perfectly rigid
and brittle body; hence, they are always affected by deformation before
the failure (Siddle et al. 2007). The trend of deformation vs. time is
considered one key factor in allowing the prediction of time of failure.
The amount of pre-failure deformation spans several orders of mag-
nitude (from a few millimeters to several meters) depending on the
type of material involved in the landslide, the slope geometry, and the
landslide trigger. However, landslides are often characterized by a
complex geometry and a combination of heterogeneous materials with
different features, thus leading to a nonlinear behavior before the
failure. Temporal variation of preconditioning and triggering factors
such as climate, river activity, tectonics, and human activities further
complicate the evolution of landslides over time.

Since the 1960s, several studies have been carried out with the
aim to define rules and procedures to estimate the time of failure
of landslides (i.e., Saito 1965; Fukuzono 1990; Voight 1988; Crosta
and Agliardi 2002). Semi-empirical approaches based on the anal-
ysis of displacement (or derived values) time series have been
developed and tested on both laboratory-scale and real events,

Paolo Mazzanti - Francesca Bozzano - Ivan Cipriani - Alberto Prestininzi

New insights into the temporal prediction of landslides
by a terrestrial SAR interferometry monitoring case

sometimes obtaining good results in terms of landslide forecast-
ing. All these approaches require the collection of displacement
data before the failure by a suitable displacement monitoring
technique. Back-analysis of large landslides, e.g., the 1963 Vajont
landslide (Kilburn and Petley 2003), has demonstrated the efficacy
of these approaches in predicting past landslides, but it also
highlights the difficulties in predicting the failure time of present
landslides (Crosta and Agliardi 2003). All these past studies suffer
from the great complexity and infinite variety of landslides from
the low quality of displacement data available in terms of temporal
resolution in data collection, accuracy, and spatial resolution. In
fact, the most recent studies still employ point-based techniques
(e.g., inclinometers, extensometers) or monitoring systems with a
low temporal frequency in data collection (days to hours) or low
accuracy in displacement measurement, etc. In other words, little
attention has been given to the importance of monitoring data and
to related monitoring methods (Dunnicliff 1988) to improve the
forecasting efficacy, even if over the last few years innovative and
advanced monitoring techniques have been developed, especially
in the remote sensing field (Mazzanti 2012).

Terrestrial SAR interferometry (TInSAR) (Mazzanti 2011; Luzi
2010), also known as ground-based SAR interferometry
(GBInSAR), is one of the most recent and most powerful of these
techniques for monitoring landslides. This technique has the fol-
lowing main advantages: (1) fully remote monitoring (no installa-
tion in dangerous areas is required); (2) widespread monitoring
instead of the monitoring of single points; (3) simultaneous mon-
itoring of a high number of points (up to hundreds of thousands);
(4) high accuracy in surface displacement monitoring (up to dec-
imal millimeters); and (5) a high data sampling rate (up to a few
seconds). These improved capabilities play a fundamental role in
the attempt to predict the time of landslide failures, thus allowing,
for example, identification of the precise area affected by the
movement (widespread view), cross-validation of the displace-
ment time series by the enormous number of monitoring points,
and the acquisition of dense and accurate time series.

A field experiment was carried out to evaluate the new oppor-
tunities offered by the TInSAR monitoring data for time of failure
prediction purposes. Four years of continuous monitoring of an
unstable slope by TInSAR with a data sampling rate of 5 min
allowed the study of the pre-failure behavior of ten small-scale
landslides identified on optical images. The relevant improve-
ments in the forecasting methods for landslide time of failure are
also investigated in detail.

Landslide failure prediction by displacement time series

The first attempts to predict the time of failure of unstable slopes
on the basis of displacement time evolution date back to the early
1960s (Saito and Uezawa 1961; Saito 1965, 1969). By analyzing the
rupture of 80 samples on triaxial compression lab tests, Saito
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observed that displacement was the most useful parameter to
predict the time of failure. Hence, Saito (1965) developed a method
based on the “slope creep” theory (Terzaghi 1950; Haefeli 1953) to
obtain the time before failure using slope displacement data. The
creep process is a time-dependent deformation of materials under
the action of stresses (e.g., gravity) and is usually divided into
three main phases: primary, secondary, and tertiary creep. The
failure of materials and slopes usually occurs in the tertiary creep.
Therefore, Saito (1969) modified the method to fit nonsteady
behavior of landslides in the tertiary creep prior to failure. In the
1980s, improvements to Saito’s prediction model were made by
Fukuzono (1985) and Voight (1988, 1989a). Fukuzono showed that
the logarithm of velocity of the surface displacement is propor-
tional to the logarithm of the acceleration. In other words, under
invariant loading conditions, pre-failure behavior can be described
by a power law equation in the following form:

d*t dx\*
F: a E (1)

where x is the downward surface displacement along the slope, ¢ is
the time, and a and « are dimensionless constant parameters.

According to the results of the experiments by Fukuzono (1985,
1989) and the studies of Varnes (1983) and Yoshida and Yachi (1984),
o commonly varies within a range of 1.5-2.2. Therefore, the following
equation has been suggested to predict the time of failure:

L o (o) ) B

where v is the surface displacement velocity and ¢ is the failure time.
For av=2, the resulting curve is linear; for o >2, it is convex; and for
1> o <2, it is concave (Fukuzono 1985). Hence, in the case of =2, the
failure time can be simply computed by the following equation:

_ ()60,
BECEC Y
1 v/2
and the time of failure corresponds to the interception of the x-axis
of the interpolated straight line in the diagram’s inverse velocity vs.
time (Fukuzono 1985).

A more generalized relationship to describe rate-dependent
material failure was given by Voight (1988):

0= A (4)

and ) are the acceleration and velocity of the
displacement, respectively.

In terms of time of failure prediction, the following equation
can be obtained by assuming ¢ (velocity at #) = infinite:

where and €}

'(1—()) . (1—a)
_Qf

t¢—t= |[——7ri—
f A(a—1)

(5)

This assumption leads to nonconservative forecasts, but the
error is often small and may not be important to decision makers
(Voight 1988).
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The efficacy of this method in predicting landslide time of
failure has been demonstrated by several authors, including
Voight and Kennedy (1979), Voight (1989b), Cornelius and Voight
(1990, 1994, 1995), Voight and Cornelius (1990, 1991), Rose and
Hungr (2007), and Gigli et al. (2011).

Landslide monitoring by terrestrial SAR interferometry

Continuous monitoring is a key requirement for the prediction of
a landslide. Failure prediction can be based on the monitoring of
landslide-triggering factors (e.g., rainfall, groundwater level) or of
landslide effects (e.g., ground displacement). Over the years, it has
been demonstrated that the monitoring of landslide effects is the
most effective solution for the control and prediction of landslides.
Hence, several technical solutions for the monitoring of ground
displacement are currently available. These techniques can be
divided into two main categories:

- Geotechnical contact techniques, including extensometers, in-
clinometers, and strainmeters (see Dunnicliff (1988) for an
extensive review)

- Remote techniques, including topographic systems, photo-
grammetry, laser scanning and SAR Interferometry (see
Mazzanti (2012) for an extensive review)

Of these techniques, differential SAR interferometry (DInSAR)
is among the newest and most powerful, and its features fit well
with landslide monitoring requirements. DInSAR was developed
for satellite applications in the early 1990s and was originally used
to measure ground displacements at a regional scale (Curlander
and McDonough 1991; Massonet and Fiegl 1998; Hanssen 2001). In
the late 1990s and early 2000s, several innovation occurred in the
SAR field such as the development of innovative approaches for
satellite data processing based on data stacking (Ferretti et al.
2001) and the development of the first ground-based SAR equip-
ment prototypes. Over the last 10 years, both satellite and terres-
trial InSAR have been extensively used for landslide monitoring,
thus demonstrating their efficacy (Pieraccini et al. 2002; Leva et al.
2003; Tarchi et al. 2003; Antonello et al. 2004; Hilley et al. 2004;
Strozzi et al. 2005; Noferini et al. 2005; Casagli et al. 2006;
Colesanti and Wasowski 2006; Farina et al. 2006; Herrera et al.
2009; Bozzano et al. 2010; Intrieri et al. 2012).

The TInSAR technique is based on an active radar sensor that
emits microwaves and receives the return of scattering objects. In
the most common configuration, the sensor, which has two anten-
nas (one emitting and one receiving), moves along a linear rail,
thus collecting an enormous number of radar images with a single
resolution (range resolution). Then, by combining images collect-
ed during a single scan through the synthetic aperture radar
principle, bidimensional images are derived, thus introducing the
cross-range resolution (Fig. 1). The ground cross-range resolution
can be approximated as

A

Aa =—
2L

(6)

where Aa is the cross-range resolution, r is the range distance
(i.e., the distance between the GB-SAR system and the measured
point), A is the central wavelength, and L is the length of the rail.



Cross-range resolution

Fig. 1 Example of grid resolution

This means that considering a wavelength of approximately
17 mm and a rail length of 2 m (the features of the equipment
used in this paper), the cross-range resolution is on the order of
0.4 and 4 m at a distance of 100 and 1,000 m, respectively.

For the range resolution, the equipment used in this study is
based on the stepped frequency-continuous wave (SF-CW) prin-
ciple, in which a band of continuous electromagnetic waves having
different frequencies are emitted. The range resolution is equal to:

Ar :E (7)

where ¢ is the light velocity and B is the radiofrequency
bandwidth. By Eq. 7, we can observe that the range resolution
is constant (i.e., it is independent of the range distance) and
that it only depends on the bandwidth. For example, with a
bandwidth of 200 MHz, the maximum range resolution is on
the order of o0.75 m.

The final result of TInSAR data acquisition is a
bidimensional image made of pixels (up to some millions),
whose footprint size increases with increasing instrument tar-
get distance.

Each pixel of the image is featured by a complex number,
namely amplitude and phase values that are specific for a certain
polarization, electromagnetic frequency, and incidence angle
(Ulaby et al. 1982).

The signal to noise ratio (SNR) value is one of the parameters
for assessing the backscattering features of a specific target (i.e.,

Table 1 Instrumental configuration of the TInSAR instrument

localized area) inside the investigated scenario. Both mean values
or variability over time of this value on data stack are used.

The phase at each pixel can be used for the estimation of
displacement through the interferometric technique. In other
words, the phase difference of each pixel of two or more SAR
images collected at different times is computed and, in the
case of long stacks of images, cumulated over time. In terres-
trial SAR interferometry, the computed phase difference (Ag)
is mainly controlled by the following factors:

A(ﬂ = A(pdispl + A(ﬂatmos + A(ﬂnoise (8)

where A@qgjsp is the phase shift contribution due to the
ground displacement, A@,mos is the phase shift contribution
due to the atmospheric changes, and A@y;se is the phase shift
contribution due to the instrumental noise. By assuming that
the A@uoise is random and not relevant, once the AQuimos iS
computed, the A@gip can be derived. Therefore, the displace-
ment is computed by the following equation:

A
d="A
e (9)

where d is the displacement computed along the line of sight
(LOS), A is the wavelength of the radar signal, and A¢ is the
phase difference between the two acquisitions.

Hence, the accuracy in the displacement measurement depends
on the signal’s wavelength, the atmospheric conditions, and the
sensing distance. Specifically, the lesser the distance and the more
stable the atmospheric conditions, the higher the accuracy of the
displacement measurements (from o.01 mm in the lab to a few
millimeters in the field).

It is worth noting that the interferometric analysis implies some
limitations concerning the displacement measurement due to the
cyclic behavior of the phase. As a matter of fact, the phase
unwrapping (e.g., Goldstein et al. 1988) is a key part of the inter-
ferometric analysis for displacement measurement. Considering
the wavelength of the herein used GBSAR equipment, the phase
ambiguity is on the order of 4.5 mm (i.e., the A\/4 value) that can be
assumed as 9 mm if we assume that inversion of displacement
direction along the line of sight cannot occur.

Rail length 2m
Central frequency 16.75 GHz
Bandwidth 300 MHz
Polarization w
Antenna gain 20 dB
Number of scans in the SAR image 401
Range resolution 0.50 m
Cross-range resolution 4.5 mrad (3.6 m at a distance of 800 m)
Max distance 1,200 m
Inter-scan delay (waiting time between the end of one scan and the start of the next) 6s
Measurement time interval ~5 min

Landslides 12  (2015) | 57



| Original Paper

600

500

TInSAR

o EERDE| itored slope
400
Range direction ]7

INNEERE

‘I's'ew

200

0 100 200 300 400 500 600 700 800 900 1000
m

Fig. 2 Sketch showing the monitoring geometry

The coherence value, which evaluates the correlation among the
phases at each pixel, is a good estimator of the phase stability and,
therefore, can be used for a preliminary evaluation of the expected
displacement accuracy. This value ranges between o and 1, where o
is the complete decorrelation of the phase and 1 is the complete
correlation (Hanssen 2001). Hence, multitemporal analysis allows
LOS displacement time histories of each pixel of the image to be
obtained (Bozzano et al. 2011).

In summary, the following operational features make the TInSAR
technique particularly suitable for the monitoring of landslides and for
failure forecasting: (1) the ability to yield data and answers within a
brief time (a few minutes); (2) efficacy under any weather and lighting
conditions; (3) completely remote operability (it does not require the
installation of sensors or targets on the monitored slope); (4) contin-
uous distributed monitoring of the entire slope with a high pixel
resolution; and (5) long-range monitoring (up to some kilometers).

Notwithstanding the numerous TInSAR successfully applica-
tions cited above, little attention has been devoted to the oppor-
tunities offered by this technique for landslide prediction purposes
and still less for small-scale landslides.

The study area

The field experiment presented herein concerns a slope affected by a
major deep-seated landslide characterized by a very complex geo-
logical and geomorphological setting (Bozzano et al. 2008, 2011). Due
to the development of a major communication road, the slope has
been extensively investigated since 2007 and controlled for more
than 4 years by an integrated monitoring platform composed of
traditional sensors (inclinometers, piezometers, load cells, and topo-
graphic measures) and a remote station equipped with an IBIS-L
terrestrial SAR interferometer, by IDS S.p.A (Table 1), a weather
station, and an automatic camera. These equipment was housed in a
specially designed box and installed on the opposite slope to the one
involved in the project, at a distance ranging from 700 to 900 m
(Fig. 2). The remote monitoring network has been active 24/7 from
November 2007 until now. Collecting TInSAR data at a sampling rate
of approximately 5 min, the network has thus far collected more than
20,000 pictures, 400,000 measurements of weather data, and
400,000 SAR images (Bozzano et al. 2011). The digital camera and
the weather station, featuring an automatic data acquisition and
transfer system, have played a key role in the monitoring activity.
The images continuously supplied by the camera have made it
possible to continuously monitor the construction activities and
the engineering works on the investigated slope, thereby optimizing
data collection and processing. This functionality also facilitates the
interpretation of the results and the optical first identification and
timing of landslides. In fact, during the experimental period, the
slope was frequently affected by shallow translational landslides
(with a volume ranging from 10" to 10* m?), which represent surface
evidence of a deep landslide (Bozzano et al. 2011). These landslides
were identified and located by optical photos (Figs. 3 and 4) and then
detailed in terms of location over the slope and time of occurrence by
TInSAR displacement images. Detailed and accurate SAR displace-
ment images and cumulative time series of each pixel inside the
landslide area were derived for each landslide.

Fig. 3 a, b Pictures before and after
landslide 1 (red circle); ¢, d TInSAR
displacement images before and after
the landslide overlain on the picture
(a, b)
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Fig. 4 Picture of the slope showing
the location of the ten shallow
landslides described in Table 2

These landslides were investigated in detail by examining their
size and geometry, geological material, and location (Table 2). The
landslide volumes range from 10" to 5 X 10 m?, with an estimated
maximum thickness of approximately 3 m. The landslides were
classified as translational and roto-translational movements in-
volving weathered and fractured gneiss widely outcropping over
the slope. These landslides were mainly triggered by rainfall. Some
of these landslides occurred in portions of the slope covered by
spritz beton. It is worth noting that the sizes of some of the
landslides reported in Table 2 are similar to those of the experi-
mental landslides described in the papers by Fukuzono (1990) and
Moriwaki et al. (2004).

Pre-failure behavior of small-scale landslides detected by continuous
TInSAR monitoring

The displacement behavior of the ten shallow landslides described
above, especially at their pre-failure stage, were analyzed in detail
to infer information about the total amount of displacement, the
duration of the entire process, the velocity, the acceleration, and
other factors (Table 3).

For each landslide, we computed the time series of displace-
ment of those pixels that were considered the most representative
of the overall landslide behavior. Specifically, pixels were chosen
on the basis of the following criteria: (1) the highest quality
TInSAR data available on the basis of SNR and coherence analysis;
(2) pixels clearly located within the main landslide body (and not
in the surrounding parts affected by tensional release); and (3)
pixels located preferably in the topographic upper part of the
landslides, as they are assumed to be less influenced by internal
deformation.

Thanks to the high temporal information density (one displace-
ment value every about 5 min), it was possible to process the
identified time series using a digital filter to remove the noise. A
direct-form FIR equiripple lowpass filter, implemented in the
“filtfilt” algorithm (Matlab 7), was used for the filtering, thus
significantly improving the quality of the time series (Fig. 5).
Data filtering is very important for our purposes, as the used
models for landslide prediction are based on landslide velocity,
i.e., the displacement noise is commonly amplified.

Once achieved, the final time series landslides were analyzed,
thus deriving the following:

1. The temporal evolution of displacement, i.e., the initiation of
the movement (manually identified on the time series as the
intersection point between horizontal trend lines and a clearly
detectable inclined trend lines when a cumulative displace-
ment of 2 mm is achieved), and the final collapse of each
landslide were exactly dated and timed with a precision of a
few minutes, thus obtaining values ranging from a couple of
weeks to a few hours (Fig. 6).

2. The total landslide displacement from its onset to its collapse,
thus achieving values ranging from a couple of centimeters up
to 1 m (Fig. 7).

3. Maximum velocity, thus achieving values ranging from 8 to
64 mm/h (Fig. 8).

It is worth noting that all the landslides, apart from 2, 4, and 8,
were characterized by the maximum velocity just before the col-
lapse, thus showing a trend of velocity continuously increasing

Landslides 12 + (2015) | 59



Original Paper

15 days
cumulative
displacement
before landslide
238

24 January 2009; h 14:32-15:32

Failure time

v
wvy
5}
=
=
=
=
=

105
14
80

15

Mobilized gneiss

Material

Rotational slide

Type

Landslide ID

Table 2 Synoptic table showing the physical features of the investigated landslides
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since the landslide start until the failure. The peak of acceleration
was registered in all the landslides some hours before the collapse
instead (Fig. 8).

In other words, the final stage of the landslide displacement was
characterized by an increasing velocity but a decreasing accelera-
tion rate. The peak acceleration of the landslides ranged from 1 to
82 mm/h’ depending on the landslide. The value of acceleration
decrease (computed as the difference between the peak accelera-
tion and the last value available before the failure) ranged from 2
to 154 mm/h’ Furthermore, the value of acceleration decrease is
closely proportional to the peak acceleration value of the land-
slides. Specifically, the ratio between the value of acceleration
decrease and the acceleration peak ranges from 0.8 to 2.1. It is
worth noting that the achieved values of total displacement, ve-
locity, and acceleration were very similar to those measured in the
experiments by Fukuzono (1985) and Moriwaki et al. (2004), which
is a further confirmation of the quality of the dataset presented
herein, which is comparable to the data derived from a controlled
experiment.

Nevertheless, it is worth noting that pre-failure acceleration
decrease is something never observed before, whether in field or
experimental landslides. This evidence, which could play a rele-
vant role in time of failure prediction, was obtained thanks to the
availability of accurate and high-sampling rate data.

Time of failure analysis of detected landslides

The large dataset of events occurred on the same slope (which
means similar conditions and features of the landslides), and
the detailed displacement data available represent a rare oc-
casion to test the efficacy of semi-empirical approaches based
on time series of displacements (or derived quantities such as
velocity and acceleration). Furthermore, to the authors’
knowledge, semi-empirical approaches have previously been
tested mainly on large-scale real landslides, except for the
large-scale experiments by Fukuzono (1985) and Moriwaki et
al. (2004). Hence, the presented dataset is quite new in this
field of research.

In this paper, analyses based on the simple linear Fukuzono
(a=2) approach are presented (as it is the most commonly used
for time of failure prediction purposes) to infer their efficacy in
predicting the time of failure of the landslides investigated here-
in. For each landslide, the predicted time of failure was computed
iteratively since the beginning of the displacement phase
(looking at the tertiary creep phase) by increasing the number
of displacement data step by step. Hence, the real prediction of
the time of failure based on the newly collected data over time
was computed. In other words, the dataset used for the compu-
tation of the time of failure is progressively enlarging with time,
and consequently, the prediction is updated. For each landslide,
the obtained results were plotted in a diagram showing the
predicted time of failure in the x-axis and the time of elaboration
before failure (in hours) in the y-right axis (blue line in Fig. 9).
For example, 1.6 h before failure, the predicted time of failure of
landslide 3 computed by using the time series of displacement
allowable until this time was 14:42 instead of 15:36 (red line in
Fig. 9) as what really occurred. In contrast, 0.1 h before failure,
the time of failure of landslide 3 was exactly predicted. Starting
elaboration time (yellow line in Fig. 9) was roughly identified on
the time series of displacement by using a graphical method



Table 3 Synoptic table showing the pre-failure behavior of the investigated landslides

Time span Total Maximum Maximum Delay between the Delay between the last
deformation displacement velocity acceleration acceleration peak and significant rainfall and the
(min) (mm) (mm/h) (mm/h?) the collapse (min) acceleration peak (min)

1 6,585 144.52 17.07 2.85 203 4,686

2 13,080 769.42 13.23 0.83 2,225 7,236

3 455 20.29 9.81 6.74 77 1,236

4 416 23.26 33.75 82.11 42 654

5 1,255 21.89 8.08 3.87 137 2,646

6 2,460 63.98 10.63 225 132 138

7 3,920 105.14 19.56 5.87 52 798

8 753 99.22 27.21 16.18 132 84

9 22,255 764 4437 5.61 223 6,420

10 1,340 148.18 64.06 41.92 47 2,658

similar to that one used in soil mechanics to identify yield stress
on the stress-strain odometric curve.

Diagrams showing the temporal discrepancy between the
real and predicted time of failure over time (e.g., the quality
of prediction over time) were obtained for the ten landslides
(Fig. 10).

Three hours is the maximum absolute error in the land-
slide time of failure prediction except for landslides 2 and 9
(Figs. 4 and 11 and Tables 2 and 3). In these two cases, the
maximum error was on the order of 600 to 1,000 h, i.e.,
longer than the entire timespan of the landslide. Landslides
2 and 9 were characterized by longer time series of displace-
ment and by a spurious creep behavior characterized by
several acceleration increase and decrease phases before the

failure. Such a pattern of displacement can be considered the
main reason for the low performances of the linear Fukuzono
analysis.

For the other eight remaining landslides, the error in the
predicted time of failure is very small. Specifically, for five
landslides (1, 3, 6, 8, and 10), positive prediction error was
found (i.e., predicted time of failure postponed with respect to
the real landslide occurrence), while for two landslides (4 and
7), negative error (i.e., predicted time of failure anticipated
respect to the real one) was found. Our attention was mainly
concentrated on the positive errors as they are contrary to
general precautionary principles.

To ameliorate these problems, a new approach named average
data Fukuzono (ADF) was developed. ADF is a modified version of
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Fig. 6 Example of time series of displacement derived from TInNSAR monitoring data (landslide n.10). The failure time can be clearly identified with a precision of a few

minutes thanks to the sudden stop in the displacement
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Fig. 7 Time series of displacement of the ten landslides of Fig. 5 and Table 2
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Fig. 8 Time series of velocity and acceleration of the ten landslides of Fig. 5 and Table 2

the Fukuzono method consisting of the average and moving aver- averaged by using half of the dataset moved iteratively by one
age velocity computed from temporal consecutive data. In the first ~ single step until the last half before the failure.

case, the data were averaged iteratively, starting from the first data Figure 11 shows the results achieved using the ADF approach for
collected. In the case of the moving average, the data were landslide 2. As can be seen, both the average and the moving
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Fig. 10 Temporal discrepancy between the real and predicted time of failure over time for the ten landslides of Fig. 5 and Table 2

average approaches (Fig. 11b, ¢, e, f) significantly reduce the pre-
diction error achieved by using the standard Fukuzono method

and reported in Fig. 11a, d.

Figure 12 shows the results achieved by using the ADF approach
for landslide 10. In this case, the error obtained by the standard
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Fukuzono analysis (Fig. 12a, d) is quite small; hence, the quality of
the prediction is only slightly improved by the ADF approach

(Fig. 12b, ¢, e, f). However, the moving average significantly re-
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duces the error in the final phase of displacement, thus avoiding
the negative effect due to the decelerating phase.
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Fig. 11 a—f From left to right (upper and lower diagrams), the results of the Fukuzono analysis using the conventional approach, the average approach, and the

moving average approach for landslide 2
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Fig. 12 a—f From left to right (upper and lower diagrams), the results of the Fukuzono analysis using the conventional approach, the average approach, and the
moving average approach for landslide 10

The efficacy of the ADF approach in reducing the positive pre-  Discussion
diction errors is clearly visualized in Fig. 13, where the mean value of A long-term continuous monitoring of the displacement of an
the prediction error and the related standard deviation of the dataset  unstable slope (whose size is on the order of 0.2 km®) by TInSAR
of the five landslides are shown by normalizing the time. allowed us to build a spatio-temporally high-resolution dataset
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Fig. 13 Comparison between the error of the prediction of the failure time for landslides 1, 3, 6, 8, and 10 by using the linear Fukuzono method and the moving average
ADF method. Time in abscissa is normalized with respect to the time of failure of each five landslides and error at each normalized time step is the mean error value for the
five landslides; bars are referred to the standard deviation associated to the mean value at each time step
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describing the pre-failure behavior of minor small and shallow
landslides (a few tenths of cubic meters) with an accuracy of
1 mm. Some of these landslides were similar in size to the
experimental ones proposed by Fukuzono (1985) and Moriwaki
et al. (2004) and were characterized by similar displacement
behavior before failure (in terms of total displacement, velocity,
and acceleration values). However, while the abovementioned
experiments were performed on a single “ideal” landslide (whose
features were previously defined), our dataset was made of ten
landslides that occurred in a field environment. Continuous
monitoring by terrestrial SAR interferometry provided an un-
questionable contribution to this study, thus allowing us to
achieve data as of high quality as can be achieved on a lab
experiment. Specifically,

1. The high temporal resolution (about 5 min) on data collection
allowed us to characterize also the displacement of landslides
that occurred in a short time span (few hours) with a high data
sampling rate, thus allowing us to identify the last steps of the
creep process before failure.

2. The spatially continuous monitoring (i.e., displacement
maps instead of single points) with a high ground resolu-
tion (few meters) allowed us to measure the displacement
also of small landslides (few tenths of square meters) and,
in some cases, to cross-check the inferred displacement
from adjacent pixels.

3. The high accuracy in the displacement measurement allowed
us both to characterize landslides with a small pre-failure
displacement (even a couple of centimeters) and to well define
their acceleration behavior.

4. The capability of TInSAR to collect data under any weather
and lighting conditions allowed us to get information about
events that occurred on complex environmental conditions
and during the night.

Furthermore, it is worth stressing that the opportunity of mon-
itoring an entire slope with a high spatial continuity was a key
feature that allowed us to detect and characterize landslides that
occurred also in sectors that were not originally planned.

Nevertheless, it is important to account also for some of the
limitations of terrestrial InNSAR monitoring and on their effects on
the results achieved in this study:

1. First of all, as TInSAR provides only surface displacement data,
no information was available on the deep behavior of the
investigated landslides. However, considering the shallow fea-
ture of the herein discussed landslides, such a limitation is not
considered relevant for this study.

2. Phase ambiguity problem, especially in the final evolution phases
before the failure when the displacement velocities are higher. As a
matter of fact, considering the usual small size of the landslides,
spatial unwrapping algorithms demonstrated to be not very effec-
tive and only a temporal phase unwrapping was used, supported by
the authors’ expertise in the TInSAR data processing. In this regard,
it is worth noting that, for most of the landslides, the velocity in the
final stage is well below the phase ambiguity threshold (4.5 or 9 mm
in 5 min, if we assume that inversion of direction of movement is
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not reasonable for a landslide), and it is more than reasonable to
assume that the phase ambiguity problems have not happened.
However, in some cases (such as numbers 4, 9, and 10), this
occurrence cannot be excluded. Furthermore, no other data de-
rived from different sensors have been collected.

Anyway, instead of what was stated above, all these landslides
were characterized by a similar displacement pattern in terms of
peak values of velocity and acceleration and time-dependent
evolution. However, a peculiar acceleration decrease before fail-
ure was observed in several landslides in our dataset. Such a
behavior represents an anomaly with respect to available data
from the literature and, at present, cannot be explained by
existing theoretical creep models that assume a continuous in-
creasing of acceleration until failure. This pre-failure accelera-
tion decrease has several implications in the application of the
already-existing semi-empirical models based on the creep the-
ory, as demonstrated by the analyses performed by the simple
linear Fukuzono approach (Fig. 9). The pre-failure acceleration
decrease leads to a delay in the failure time with respect to that
previously predicted by using the linear Fukuzono approach.
Such behavior cannot be fully understood by the available data,
and it requires further study. Nevertheless, we cannot neglect
that the creep theory assumes a deformation under the condition
of constant stress. Such a condition is not considered in our
experiments because rainfall occurred during the experiments;
hence, we cannot exclude the possibility that this condition could
be one of the reasons for the pre-failure acceleration decrease.
However, it is worth noting that the constant strain condition is
also not considered in actual large landslides, such as those
studied by Crosta and Agliardi (2003). The effect of rainfall was
observed in landslides 2 and 9, where multiple acceleration and
acceleration decrease phases occurred before the failure. In fact,
these landslides are characterized by a high prediction error
using the linear Fukuzono approach. The other landslides are
always predicted with an error lower than 3.5 h. A drastic reduc-
tion in the forecasting errors was achieved by the herein pro-
posed average data Fukuzono (ADF) approach (Fig. 10). This
method, which consists of the average and moving average of
the displacement data over time, is very effective at reducing the
forecasting error, especially for unsteady cases characterized by
important decelerating phases (Fig. 11). Furthermore, the ADF
approach seems to be very effective in reducing the effect of the
final decelerating phase (Fig. 13).

However, it is worth noting that the ADF approach is very
sensitive to the number of available data, i.e., detailed time series
significantly increase its efficacy, thus confirming the importance
of high-resolution monitoring data for landslide prediction.

Conclusions

With the aim of deepening our understanding of landslide pre-
failure behavior and, therefore, landslide prediction capabilities, a
long-term field experiment using TInSAR was carried out. By
analyzing the pre-failure behavior of ten landslides that occurred
during the experiment, we showed that high-accuracy and high-
sampling rate (a few minutes) of surface displacement data can be
successfully used to obtain a good prediction of a landslide’s time



of failure. Furthermore, the widespread and high-resolution infor-
mation retrieved by TInSAR displacement images allows investi-
gation from a remote position and the assessment of the pre-
failure behavior of small landslides. In fact, traditional contact
monitoring methods may fail due to a low data sampling rate,
low accuracy and, particularly, punctual and localized information
that may lead to a lack of information or to misinterpretations,
especially for small-sized landslides.

A landslide is a very complex process characterized by an
infinite range of variable features. The ability to obtain detailed
and accurate information about the behavior of landslides is
crucial to predict their future evolution (i.e., failure). Existing
semi-empirical models based on the creep theory are very effective
at predicting time of failure in laboratory experiments, but they
are effective for real landslides only in a few cases. However, we
demonstrated that by using accurate and high-sampling rate data,
these models may be effectively used in real practice. Furthermore,
a high data sampling rate allows the effective use of the ADF
approach, which is able to drastically improve the efficacy of
creep-based prediction methods in the case of “unsteady land-
slides.” Hence, it can be said that by using TInSAR continuous
monitoring and advanced data processing solution such as the
ADF approach, we can achieve the same results previously
achieved for “ideal” laboratory landslides for real field landslides.
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