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Abstract This study shows a quantitative rockfall risk assessment
(QRA) for a slope of the Feifeng Mountain (China), including an
explicit assessment of the uncertainties. For rockfall risk analysis,
the annual probability of occurrence, reach probability, temporal–
spatial probability and vulnerability of tourists were calculated for
both dry and rainy day conditions. The resulting individual risk
for exposed people visiting the historical site can be considered as
acceptable for all scenarios, whereas the overall societal risk lies
within the as low as reasonably practicable (ALARP) zone and
therefore requires some mitigation actions. For the explicit assess-
ment of uncertainty, an error propagation technique (first-order
second moment (FOSM)) was adopted, starting from expert
knowledge heuristic estimations of the coefficient of variation for
each component of the risk analysis procedure. As a result, coef-
ficients of variation of the calculated risk were obtained, ranging
from 48 to 132%, thus demonstrating the importance of accounting
for uncertainty in rockfall risk modelling. A multi-criteria meth-
odology is also proposed for the assessment of the standard
deviation of the parameters adopted for the stochastic rockfall
run-out model.
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Introduction
Rockfall risk analysis is inherently complex and difficult. Such
difficulties derive from several factors: lack of accurate data,
strongly site-specific nature of rockfall, difficulty in quantifying
and modelling spatial rockfall distribution, quantifying the het-
erogeneity of vulnerability of different elements at risk and vari-
ability in temporal vulnerability (Glade 2003; Crosta and Agliardi
2004; Michoud et al. 2012; Frattini et al. 2008, 2012).

Rockfall risk can be defined as a measure of probability and
severity of an adverse effect to health, property or the envi-
ronment (Hungr et al. 1999; Zhang et al. 2004; Corominas et al.
2005; Fell et al. 2008). Rockfall risk for exposed people can be
estimated by the product of three conditional probabilities
(annual probability of occurrence, reach probability and tem-
poral–spatial probability) and vulnerability, summed up for all
the considered scenarios.

The annual probability of occurrence of a rockfall event, P(L), is
modelled in the literature by using historical data in order to
assess a frequency of events which can be converted into an
exceedance probability by using an appropriate probabilistic mod-
el (e.g. Poisson or binomial). Since the frequency is recognised to
depend on rockfall volume, frequency–magnitude relationships
have been used in the literature (Hungr et al. 1999; Guzzetti et al.
2002a). P(L) may also be determined by establishing relationships
with triggering event frequencies (e.g. rainfall, earthquake) with
known annual exceedance probabilities. However, because of the
different site-specific characteristics, the lack of statistically sound

historical inventories and the difficulty to model slope stability
along the cliffs, the assessment of probability of occurrence is
affected by large uncertainties. Moreover, the conditions respon-
sible for a given landslide frequency in the past may no longer
exist, due to climatic or land use changes (Cascini et al. 2005).

The reach probability, P(T|L), depends on the propagation of
rockfalls along the slope, and it is controlled by slope surface
morphology (e.g. slope gradient, curvature), slope roughness,
block material, slope deposit grain size and vegetation (Azzoni et
al. 1995; Jones et al. 2000; Crosta and Agliardi 2004). Several
approaches have been used to assess rockfall run-out, such as
empirical methods (shadow angle or reach angle methods) (Evans
and Hungr 1993; Corominas 1996) or mathematical modelling in
2D (Stevens 1998; Jones et al. 2000) or 3D (Guzzetti et al. 2002b;
Crosta et al. 2004; Dorren et al. 2006). Empirical approaches are
useful for a preliminary estimation of rockfall susceptibility, but
they are unsuitable for risk analysis because they do not provide
the frequency of blocks passing through each position along the
slope, without the introduction of strong simplifications (Copons
et al. 2009). Hence, mathematical models are needed for risk
analysis. However, large uncertainties exist in computing the tra-
jectory and the arrest of blocks along the slope. These uncer-
tainties are related to the size, shape and mechanical properties
of the rockfall blocks; the relevant parameters in the modelling
and their variation in space and time, but also the geometrical and
mechanical characteristics of the surface material (Azzoni et al.
1995; Agliardi and Crosta 2003; Crosta and Agliardi 2004; Frattini
et al. 2012).

The temporal–spatial probability P(I|T) is the probability that
the exposed element is affected by the hazard at the time of its
occurrence (Fell et al. 2005). It depends on the mobility of the
exposed element, and it is usually assessed by assuming an average
behaviour of the exposed element (Bunce et al. 1997; Budetta 2004;
Michoud et al. 2012), without a discrimination based on season,
weather or daylight. For example, for all the vehicles which pass
below a single landslide, P(I|T) can be evaluated as the proportion
of time in a year a vehicle will be in the path of the landslide (Fell
et al. 2005). This approach is suitable for the assessment of ex-
pected annual losses but can result in a large underestimation of
maximum individual risk for people.

According to the glossary of terms for the risk assessment of the
International Society of Soil Mechanics and Geotechnical Engi-
neering (ISSMGE) Technical Committee, physical vulnerability is
defined as the degree of loss to a given element or set of elements
within the area affected by a hazard (http://140.112.12.21/issmge/
tc304.htm). The methods for the estimation of physical vulnera-
bility have been developed and well established for earthquake
(e.g. Kappos et al. 2006) and flood risk (e.g. USACE 1996). On the
contrary, the quantitative assessment of vulnerability to rockfall is
made difficult by the lack of accurate damage data and the inher-
ent complexity of rockfall kinematics and interaction (Agliardi et
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al. 2009). Vulnerability in rockfall depends on rockfall intensity
(e.g. velocity and volume), the relative location of the vulnerable
element in relation to the rockfall trajectory and the characteristics
of the exposed elements (construction materials, state of mainte-
nance, age). For site-specific vulnerability assessment, Agliardi et
al. (2009) simulated the energy of rockfall impacts against each
building damaged from velocity values, by means of a numerical
back calibration of the event, and got the empirical vulnerability
function of kinetic energy (Mavrouli and Corominas 2010). How-
ever, the difficulty in assessing rockfall intensity, the lack of data
regarding the characteristics of the exposed elements and their
potential damage makes the assessment of vulnerability extremely
uncertain (Uzielli et al. 2008).

From the above “Introduction”, it is clear that a number of
quantities needed for rockfall risk assessment suffer from both
epistemic and aleatory uncertainty (Baecher and Christian 2003).
Epistemic uncertainty refers to the uncertainty due to the lack of
knowledge on a variable. It includes measurement uncertainty,
statistical uncertainty (due to limited information) and model
uncertainty (Nadim et al. 2005). Epistemic uncertainty can be
reduced, for example, by increasing the number of samples or by
improving the measurement method and technology (Wang et al.
2012). In rockfall risk analysis, this uncertainty affects the location
and volume of the rockfall source, the scale or resolution of the
topographic data, the selection for the modelling method and the
parameters used for modelling. On the other hand, aleatory un-
certainty refers to the natural randomness of a variable. In rockfall
risk analysis, aleatory uncertainty affects the topography of the
slope and the mechanics property of the rockfall source areas, the
latter being dependent on lithology, random distribution of frac-
tures in rock or geological movement experience. Although several
authors (e.g. Hoffman and Hammonds 1994; Paté-Cornell 1996;
Parry 1996; Merz and Thieken 2005) underline the necessity of
keeping the distinction between aleatory and epistemic uncer-
tainty in the analyses, others (Hora 1996; Hofer 2001) observe
that sometimes it is difficult to distinguish between the two
types of uncertainty, especially when modelling the occurrence
or the impacts of extreme physical phenomena, which can be
outside our direct experience. In this work, no distinction is
made among epistemic and aleatory uncertainties, being
strongly connected.

This study is aimed at the following:

– the identification and quantification of the uncertainties and
error propagation in risk analysis;

– the development of a new approach for the assessment of the
uncertainty connected with restitution and friction coefficients
in rockfall run-out modelling;

– the assessment of rockfall risk for people at Feifeng Mountain
southern slope, considering different weather conditions.

Methodology

Rockfall risk assessment
In this paper, rockfall risk assessment is based on two risk
measures of loss of life (Jonkman et al. 2003). The first is the
individual risk (IR), defined, after Bottelberghs (2000), as the
probability that an average unprotected person, permanently

present at a certain location, is killed due to a rockfall (Fell et
al. 2005):

IR ¼ P Lð Þ⋅P TjLð Þ⋅V ð1Þ

where P(L) is the annual probability of occurrence of a rock-
fall event in a given magnitude (i.e. volume) class, P(T|L) is
the probability for blocks related to a rockfall event to reach
the exposed elements (i.e. reach probability), and V is the
vulnerability (i.e. expected degree of loss) of a given exposed
element.

The second risk measure is a descriptor of societal risk, i.e. the
expected value of the number of fatalities per year, in the literature
often referred to as the potential loss of life (PLL):

PLL ¼ P Lð Þ⋅P TjLð Þ⋅P IjTð Þ⋅V⋅n ð2Þ

where P(I|T) is the probability that a given exposed element is at
the impact location at the time of impact (i.e. temporal–spatial
probability or exposure), and n is the number of exposed people
with vulnerability V.

For rockfall study, it is extremely complex to define P(L) value.
Assuming that rockfall occurrence follows a Poisson distribution
(Crovelli 2000; Straub and Schubert 2008; Frattini et al. 2012), the
annual probability of occurrence for rare events can be approxi-
mated in practice as the annual frequency, being the numerical
difference very small (<5 % for annual frequency of <0.1; Hungr
and Beckie 1998). Hence, the probability of occurrence can be
derived from a magnitude–cumulative frequency (MCF) distribu-
tion of rockfall events. As several authors demonstrated (Hungr et
al. 1999; Dussauge et al. 2003; Malamud et al. 2004), this distribu-
tion can be described by a power law, as:

logN M > M0ð Þ ¼ N0 þ b⋅logM ð3Þ

where N(M) is the cumulative annual frequency of rockfall events
exceeding a given magnitude,M0; N0 is the total annual number of
rockfall events with magnitude larger than 1 m3, and b is the power
law exponent that should be based on complete local rockfall
inventory.

The reach probability for a location, P(T|L) is here evaluated as
the ratio of the total number of blocks passing a specified location
to the total number of blocks launched in the model (Agliardi et al.
2009). When the considered slope is steep and almost planar (i.e.
its topography is neither significantly channelled nor convex), the
use of 2D rockfall run-out modelling approaches can be consid-
ered appropriate for local-scale analysis. However, 3D effects such
as lateral dispersion can be observed even on planar slopes due to
the effect of slope roughness (Agliardi and Crosta 2003; Frattini et
al. 2012). Moreover, 2D models are easier to calibrate where data
available for calibration are scarce. In this work, a lumped mass
approach is used to calculate energy, velocity and bounce height of
falling blocks along 2D slope profiles. Simulation outputs relevant
for hazard and risk assessment are the maximum height and
velocity along the slope and the distribution of arrested blocks.
For 2D simulation, slope profiles have been extracted from a 3D
point cloud derived from terrestrial laser scanning, along lines
assumed a priori as the most likely rockfall paths. The calibration
of normal and tangential coefficients of restitution and the rolling

Original Paper

Landslides 11 & (2014)712



friction coefficient was performed by back calibration of historical
events. For the temporal–spatial probability, P(I|T), the exposed
elements considered in this study are people moving in the area
potentially affected by rockfalls. The temporal–spatial probability
is then calculated using the following equation (after Fell et al.
2005):

P IjTð Þ ¼ n
24

⋅
L

1; 000
⋅
1
v

ð4Þ

where n is the number of exposed elements per day moving
in the area threatened by rockfalls, characterised by length L
(in meters) depending on the considered rockfall scenario,
and v is the average velocity (in kilometre per hour) of the
moving elements.

In this study, we focus on the physical vulnerability of human
beings to rockfall only. Because of the lack of damage statistics and

the scarcity of published studies proposing vulnerability curves
(Hungr et al. 1999; Corominas et al. 2005; Agliardi et al. 2009),
physical vulnerability is difficult to estimate. We assume that, since
the velocity of rockfall is usually too high for people to escape, the
vulnerability for walking people could be defined as 1 (e.g. all
rockfall impacts on people result in death). For people sailing on
the boats, a vulnerability of 0.5 was assumed, since in case of
impact, only part of the boat would be destroyed.

Uncertainty evaluation
To calculate how the uncertainty propagates along the risk
assessment algorithm and affects the final results, a first-order
second-moment procedure has been adopted (Baecher and
Christian 2003). The method consists in the truncation of
Taylor's series expansion, keeping only the first-order terms.
It provides an estimate of the mean and the variance (first
two moments) of the output through computation of its
derivative to the input at a single point (e.g. in Baecher and
Christian 2003; Uzielli et al. 2008). The first-order approxima-
tion of uncertainty for Eq. 2, aimed at the calculation of PLL,
leads to:

1þΩ2
PLL ¼ 1þΩ2

P Lð Þ
� �

1þΩ2
P TjLð Þ

� �
1þΩ2

P IjTð Þ
� �

1þΩ2
V

� � ð5Þ

where Ω is the coefficient of variation, defined as the ratio
between the standard deviation (σ) and the expected value (μ)
of the variable.

In this paper, the assignment of Ω values for random
variables was performed in different ways. For the coefficients
of variation of rockfall run-out parameters (i.e. coefficients of
restitution and rolling friction), a specific semi-quantitative
methodology was developed. In other cases (e.g. for the num-
ber of exposed elements, n, and for their velocity, v), the
assignment of Ω values relies on statistical data. Otherwise,
for the annual probability of occurrence, vulnerability and the
reach probability, Ω values were assigned according to expert
knowledge, since the values proposed in the literature for
random variables in risk assessment (e.g. Harr 1996; Merz et
al. 2004; Kaynia et al. 2008) were adaptable only to the
specific case studies. Uncertainty, in fact, is strictly related
to the intrinsic characteristics of each phenomenon and to
the level of knowledge of the system.

Fig. 1 Study area location and topographic map of the Feifeng Mountain southern
slope, with profiles used for simulation and tourist tracks along the study area

N-NW to S-SE

a

b

Fig. 2 Study area geology. a Regional geological setting, b typical lithological profile of the Feifeng Mountain southern slope (profile 2) with position of the underground cave
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Case study
The large underground mines of Feifeng Mountain, located at
Zhejiang Province (E China, Fig. 1), were excavated in tuffaceous
rocks to obtain building stones in the ancient China. At the toe of
the southern mountain slope, the Yongan River provides a river
drifting tourist resort. Because of steep terrain and the occurrence
of weak rock masses (i.e. weathered tuffs with thick soft layers)
damaged by ancient mining practices, the area is seriously affected
by rockfalls threatening human life.

The study area lies at the contact between Upper Jurassic and
Upper Cretaceous volcano-sedimentary units (Fig. 2) (RGSTZJ 1978).
The Upper Jurassic units are dominant in the area and composed of
cinerite tuff, locally with angular gravel and sandstone. The Upper
Cretaceous units, composed of amaranth, silicic tuff, locally with
sandstone and conglomerate, outcrop nearby the bank of Yongan
River. Holocenic alluvium,mainly consisting of loose gravel and sandy
clay, also outcrops along the Yongan River. Considering the southern
slope of the Feifeng Mountain where the ancient caves are located, we
observe the presence of a soft muddy limestone layer separating
different tuffaceous units. The thickness of the soft layer is about
15 m and plays an important role in the stability of the slope (Fig. 2).
Three main faults control the structural setting of Feifeng Mountain
(Fig. 2): a thrust-compressional fault, with dip of 70° to 80° and dip
direction of 300°; a NW fault, with dip of 75° to 85°and dip direction of
210°; and a EW fault near Feifeng Mountain.

The detailed geometry of southern slope (Fig. 3) was obtained
by using the Leica ScanStation 2 terrestrial laser scanner (TLS).

The survey was performed from the toe of the cliff at a distance of
about 100 m, with an accuracy of 6 mm at 50 m and a point density
between 5 and 10 mm, depending on the distance between the
scanner and the surveyed points (Fig. 3). TLS provided a 3D point
cloud that was used for 2D modelling profile extraction and rock
mass characterization (Fig. 3).

Risk analysis

Identification of rockfall source
The rock mass forming the studied slope was characterised by
identifying 57 daylighting discontinuity planes using the TLS
point cloud and the software COLTOP 3D (Jaboyedoff et al.
2007). Discontinuities cluster in five main joint sets (Fig. 4)
statistically characterised in terms of their mean vector orien-
tations (poles) and dispersion (angular variability limits cor-
responding to 2 and 3 standard deviations, respectively,
according to Priest 1985). Discontinuity persistence ranges
between 2 and 15 m, and the aperture is tight to open (from
1 mm to 10 cm).

A kinematic analysis of feasible modes of failure, generated by
critical joint sets, allowed to outline the expected rockfall source
areas on the cliff and to constrain potential volume scenarios.
Basic failure modes are controlled by five main joint sets, allowing
for toppling (joint set 4), planar sliding (joint sets 1 and 2), and
wedge failure (joint sets 2 and 3).

Fig. 3 Feifeng Mountain southern slope. a Photo from the south-western side of the study area, b 3D points cloud collected through a terrestrial laser scanner

Fig. 4 Kinematic slope stability analysis for main joint sets (the poles in pink area): a toppling, b plane sliding and c wedge failure

Original Paper

Landslides 11 & (2014)714



Site investigation and ground truth allowed detecting field
evidence of block instabilities corresponding to critical failure
modes within the source areas identified by geomechanical site
characterization. In particular, three blocks (A, B and C) were
recognised as most probable rockfall sources (Fig. 5). The stability
of block A is controlled by joints 1 and 5. The stability of block B is
controlled by joints 2 and 5. The stability of block C is controlled

by joints 1, 4 and 5. Moreover, a database of more than 60 blocks
corresponding to past rockfall events measured on the surface of
the southern slope was prepared.

Annual probability of occurrence, P(L)
To define P(L) by means of MCF relationships, block volume data
collected in the field have been used. Since the historical database
for smaller blocks is probably incomplete, only 27 blocks with a
volume larger than 1 m3 were used to set up the MCF curve. The
resulting curve shows a power-law behaviour at magnitude greater
than 1 m3 with a power-law exponent equal to −0.625 (Fig. 6).
Based on historical records, excavation of the caves ended up
about 200 years ago. This time constraint was assumed as the time
interval during which the 27 rockfall events happened. Hence, the
parameters N0 and b in Eq. (2) were defined as 0.135 (27/200) and
−0.625, respectively. The annual exceedance probability of the
three blocks was therefore calculated, on the basis of the MCF
curve, as P(L)A=0.043, P(L)B=0.072 and P(L)C=0.019. Consider-
ing the large uncertainties in the procedure adopted for defining
P(L) (e.g. completeness of the inventory, selection of the time
frame for frequency calculation, MCF parameterization), large
uncertainty values, Ω, were assigned to P(L), corresponding to
0.2, 0.3 and 0.2 for blocks A, B and C, respectively. The Ω value
for block B is assumed to be higher because of the smaller size of
the block, which makes larger the uncertainty related to the adop-
tion of MCF relationship.

The reach probability, P(T|L)
The run-out distance, bounce height and velocity of the three
blocks (A, B and C) were simulated along the 2D slope profiles

Fig. 5 Main characteristics of unstable blocks A, B and C used for calibration and
their profiles shape

Fig. 6 Magnitude–cumulative frequency curve for rockfall events occurred in the
study area (N=27) over a 200-year period. Annual exceedance probabilities for the
three most unstable blocks are reported

Fig. 7 Slope profile, sectors and rockfall trajectories used for the back calibration
of the two historical events

Table 1 Mean values for slope parameters resulting from back calibration of past
events

Slope segments Normal
restitution
coefficient

Tangential
restitution
coefficient

Rolling
friction
angle

1 (tuff) 0.45 0.85 30

2 (limestone) 0.43 0.81 32

3 (talus) 0.31 0.71 38

4 (river) 0 0 90
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by Rocfall™ (Rocscience, Inc. 2002). This simulation model is
based on a kinematic (lumped mass) approach for trajectories
calculation (Stevens 1998). The energy dissipation by bouncing
and rolling is simulated by using empirical restitution coefficients
and rolling friction angle (Stevens 1998). The model provides as
output values of velocity and bounce height for any point along a
predictive slope profile and the locations of arrested blocks.
Among the parameters used in the model, the slope profile geom-
etry and the coefficients of restitution and friction are the most
significant. The former was acquired on the field by using a TLS.
The other parameters were obtained by back calibrating two his-
torical rockfall events. For this reason, the slope was initially
divided into four sectors based on superficial lithology and mate-
rial: tuff, muddy limestone, debris talus and river. Then, the
coefficients of restitution and friction have been assigned to each
sector by back calibration of the historical events (Fig. 7, Table 1).
The same parameter values have been assigned to slope profiles of
rockfall scenarios A, B and C.

To account for the uncertainty related to restitution and fric-
tion coefficients, the simulation was performed with a stochastic
approach that allows, at each impact, to randomly sample, the
value of the parameter from a normal distribution with given
mean and standard deviation. The standard deviations of coeffi-
cients of restitution and friction are normally defined by an expert
knowledge (Wang et al. 2012). Given the importance in the selec-
tion of appropriate and non-arbitrary values of standard devia-
tions, a semi-quantitative methodology was developed.

This methodology is based on the degree of difference
between the topographic and physical characteristics of a
given slope profile to be used for 2D rockfall prediction and
those of a reference profile used for parameter calibration;
higher diversity is likely to correspond to higher uncertainty
about rockfall run-out parameters. The diversity is assessed

for a few factors controlling the rockfall dynamics: slope
shape, slope materials, source of area position along the slope,
shape and size of the blocks (Table 2).

The methodology involves four steps of evaluation:

1. for each ith slope profile to be used for predictive modelling,
comparison with the reference slope profile and assignment of
the diversity score for each controlling factor is accomplished;

2. weighting of the controlling factors by means of the analytic
hierarchy process (AHP);

3. calculation of a weighted sum of all the controlling factors to
assess the index of diversity for each slope profile, Di;

4. transformation of Di into Ω values.

For each model profile, the similarity between these factors and
those characterising the reference profile has been expressed by
assigning a diversity score ranging from 1 to 5 (Table 2).

As an example, block A presents a slope profile with the same
material as the reference profile (slope material diversity score of
1) and a similar shape (slope shape score of 2). The characteristics
of the block are slightly different (block shape score, 3; block
location, 3; and block size, 3) as illustrated in Fig. 5.

Controlling factors are then weighted by using the AHP
(Saaty 1980; Saaty and Vargas 2001; Nefeslioglu et al. 2013).
Numerical scores are assigned by means of subjective judge-
ment on the relative importance of each factor, by the con-
struction of an AHP pairwise comparison matrix. In this
matrix, each factor is rated against the others by assigning a
relative dominant score between 1 (equal dominance) and 9
(strongly dominant) (Table 3). The maximum eigenvalue
(λmax) of the AHP pairwise comparison matrix and its corre-
sponding eigenvector provide the weights of the factors. To
quantify the consistency and reliability of AHP pairwise com-
parison matrix, the consistency ratio (CR) was calculated. A
CR lower than 0.1 is normally acceptable (Ayalew et al. 2004),
although this depends on the objective of the study (Wang et
al. 2013). In this study, a CR of 0.03 was obtained.

The diversity index of potentially unstable block i (i=A, B, and
C) is calculated as the weighted sum of the diversity scores:

Di ¼
X
j

di; j⋅wj ð6Þ

where di, j is the diversity score of the unstable block i for the
controlling factor j, and wj is the weight of controlling factor j. For
example, the calculation of DA leads to DA=(1×0.46)+(2×
0.24)+(3×0.08)+(3×0.05)+(3×0.17)=1.8

Table 2 Diversity scores assigned to the slope profiles associated to each poten-
tially unstable blocks A, B and C (Fig. 5). The diversity scores are as follows: 1=very
similar, 2=similar, 3=slightly different, 4=different and 5=very different

Factors Block A Block B Block C
Diversity scores

Slope material 1 1 2

Slope shape 2 1 4

Block shape 3 1 1

Block location 3 2 2

Block size 3 4 1

Table 3 AHP pairwise comparison matrix for calculating weights. The rating of comparison is the following: 1=equal, 3=moderately higher, 5=higher, 7=strongly
higher and 9=extremely higher. Values 2, 4, 6 and 8 are intermediate values. Consistency ratio is equal to 0.03

Slope material Slope shape Block shape Block location Block size Weight

Slope material 1 3 5 7 3 0.46

Slope shape 1/3 1 4 5 2 0.24

Block shape 1/5 1/4 1 2 1/3 0.08

Block location 1/7 1/5 1/2 1 1/5 0.05

Block size 1/3 1/2 3 5 1 0.17
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To assess Ω, a linear relationship between D and Ω is
proposed, allowing to rescale the values of index D in Ω
values ranging from 0 to 1 (Fig. 8). Finally, from the Ω value,
the standard deviation of restitution and rolling friction coef-
ficients are obtained (Table 4).

The simulation of rockfall propagation was performed for each
unstable block using the model parameters presented in Table 5.

The distribution of the arrested blocks was used to assess the
reach probability as the percentage of blocks that stop uphill to a
certain location along the slope. Based on the results of the models
(Figs. 9 and 10), the reach probabilities of block A in correspon-
dence to track 1, track 2 and the river bank (Fig. 3) are 0.96, 0.095
and 0, respectively; for block B, 0.998, 0.58 and 0, respectively; and
for block C, 0.977, 0.551 and 0.056, respectively.

The uncertainty associated to reach probability is explicitly
considered within the stochastic simulation of rockfall run-out.
For this reason, only a small residual uncertainty (Ω=0.1) is
associated to the reach probability, P(T|L), of the three potentially
unstable blocks.

Temporal–spatial probability, P(I|T)
In the study area, two groups of exposed elements are considered
significant: (1) the tourists visiting the underground caves in
Feifeng Mountain, moving along the two existing tracks (Fig. 1),
and (2) the tourists drifting in the Yongan River (Figs. 1 and 3),
which are, by far, the most numerous. The record of visitors to the
area was provided by the administrative department for river
navigation tourism and shows that the temporal–spatial probabil-
ity for the tourists is strongly affected by weather conditions. This

is especially true for the second group, because the number of
tourists drifting in the Yongan River increases greatly during dry
days and dramatically decreases during rainy days. From local
rainfall records, it can be observed that the months with heavy
rainfall are June, July and August, for a total of about 90 days.
Considering the characteristics of groups 1 and 2, it was possible to
calculate the temporal–spatial probability (Table 6) based on Eq.
(4). In this formulation, the large uncertainties derive from the
number of exposed elements, n, and the transit velocity of the
elements at risk, v. The uncertainty is strictly related to the char-
acteristics of each site-specific phenomenon and the quality of the
available data. The assignment of Ω values was performed based
on the statistic information given by the local administrative
department for river navigation tourism and a statistic analysis
on velocity of boats drifting in the river (Table 7).

Vulnerability, V
Evaluating the expected damage to each exposed element is a
difficult and uncertain operation. Due to the large volume and
expected velocity of potential blocks (Fig. 9), the vulnerability of
the tourists is assumed as 1; in case of impact, the person would
die. As shown in Figs. 9 and 10, only block C has the possibility to
reach the river, where the exposed elements are the tourists on the
drifting boats. For risk calculation, eight tourists for each boat
were considered on average, and a vulnerability of 0.5 was as-
sumed; in case of impact, only part of the boat would be destroyed,
thus allowing half of the people to survive. Giving the large uncer-
tainty associated to this vulnerability value, we assigned a coeffi-
cient of variation (Ω) equals to 0.5.

Rockfall risk to people
By adopting Eqs. (1), (2) and (5), the IR and the PLL and related
uncertainties have been calculated for each rockfall scenario at

Fig. 8 Linear relationship between Ω and D values

Table 4 Statistical parameters (mean, μ; standard deviation, σ) of normal distribution of coefficients used in the simulation for blocks A, B and C

Sector Normal restitution coefficient Tangential restitution coefficient Rolling friction angle
μ σA σB σC μ σA σB σC μ (°) σA σB σC

1 (tuff) 0.45 0.09 0.07 0.14 0.85 0.17 0.13 0.26 30 6 4.5 9

2 (siltstone) 0.43 0.09 0.06 0.13 0.81 0.16 0.12 0.24 32 6.4 4.8 9.6

3 (talus) 0.31 0.06 0.05 0.09 0.71 0.14 0.11 0.21 38 7.6 5.7 1.8

4 (river) 0 0 0 0 90 0

Table 5 Model parameters used in the simulation of rockfall propagation

Parameters Value

Block volume Fig. 2

Number of simulated blocks 1,000

Coefficient of normal restitution Table 4

Coefficient of tangential restitution Table 4

Rotational friction angle Table 4

Initial velocity (m/s) 0

Surface roughness (°) 2

Minimum velocity cut-off (m/s) 0.1
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three different locations along the slope (track 1, track 2 and river)
(Fig. 1, Table 7).

Risk evaluation
The values of IR (Table 7) are significantly above the limit defined
by the tolerability line (10−5 per year for new developments, 10−4

per year for existing developments) for non-volunteer risk such as
rockfalls, as proposed by Geotechnical Engineering (1998). This

means that in the study area, the individual risk is not acceptable,
and some actions are requested in order to lower the risk. It must
be considered that a passive countermeasure is already present at
the toe of the slope (Table 2), and it was not taken into account for
risk assessment.

Regarding the societal risk, the following scenarios have been
analysed: one person was killed by blocks A, B and C at tracks 1
and 2 during dry or rainy days, and eight people were killed by

Fig. 9 Rockfall simulation for potentially unstable blocks. a, c, e Rockfall trajectories. b, d, f Plots representing the percentage of arrested blocks, bounce height,
translational velocity and total kinetic energy as a function of the distance from the source area along the slope
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block C along the river during dry or rainy days. In order to plot
the societal risk as F–N curve, the annual exceedance probability
of each scenario and the number of deaths were extracted from
PLL and used as coordinates in the F–N chart. Then, the F–N
curve was built up by summing the different scenarios
(Fig. 11). The F–N curve for societal risk falls within the as
low as reasonably practicable (ALARP, Smith 1990; HSE 1992)
between the objective and the limit thresholds for acceptabil-
ity defined for Hong Kong by Geotechnical Engineering (1998)
(Fig. 11). Considering the uncertainty (Table 7), the societal
risk could be higher or lower than the mean value shown in
Table 7, but still within the ALARP zone.

Discussion and conclusion
The overall societal risk calculated summing up the different
scenarios (Fig. 11), also considering the related uncertainties, lies
within the ALARP zone and therefore requires some mitigation

actions to be taken in order to reduce the risk level. These could
include the following:

1. Engineering countermeasures to reduce the frequency of
rockfall. For instance, the possible unstable blocks could
be investigated and removed in advance. Alternatively,
since the instability of the three most critical blocks is
controlled by apparent joints, rock bolting can be used
to stabilise them.

2. Actions to reduce the rockfall run-out. In the study area, the
most effective remedial measures may be a retaining wall or an
elastoplastic barrier to protect the river bank. Considering the
water level fluctuations, the optimal position for these works
could be 3 m away from the river bank (Fig. 3). The dimen-
sioning of the retaining wall/barrier could be done based on
the behaviour of block C, considering a lateral dispersion of
rockfall trajectories, which will determine the length of the

Fig. 10 Cumulative frequency of the arrested blocks and reach probability as a function of the distance from the source area for the potentially unstable blocks A, B and C

Table 6 Parameters for the calculation of temporal–spatial probability for 14 potential risk scenarios; n = number of people along track 1 or 2, number of boats along the
river; L = estimated length of the endangered sector along tracks and river; v = velocity of the people along track 1 or 2, velocity of the boat along the river

Scenario Weather condition Block Track n L (m) v (m/s) P(I|T)

s1 Dry A 1 5 7 1 1.5×10−3

s2 Dry B 1 5 11 1 2.3×10−3

s3 Dry C 1 5 15 1 3.1×10−3

s4 Rainy A 1 1 7 1 2.9×10−4

s5 Rainy B 1 1 11 1 4.6×10−4

s6 Rainy C 1 1 15 1 6.3×10−4

s7 Dry A 2 1 7 1 2.9×10−4

s8 Dry B 2 1 11 1 4.6×10−4

s9 Dry C 2 1 15 1 6.3×10−4

s10 Rainy A 2 0 7 1 0

s11 Rainy B 2 0 11 1 0

s12 Rainy C 2 0 15 1 0

s13 Dry C River 40 15 3 8.3×10−3

s14 Rainy C River 5 15 3 1.0×10−3
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countermeasures. Lateral dispersion can be assumed from
literature values (e.g. 20° according to empirical observa-
tions, Bozzolo and Pamini 1986; Evans and Hungr 1993;
Azzoni et al. 1995) or explicitly modelled by using 3D
simulation models (Volkwein et al. 2011; Frattini et al.
2012). Besides retaining wall/barrier, forest management
can be used to reduce the rockfall run-out. On site survey
revealed that at least 12 fallen blocks were stopped by
trees along the slope. The plantation of new stronger trees
on the southern slopes of Feifeng Mountain could effi-
ciently protect the Yongan River.

3. Actions to reduce the probability of tourists being below a
rockfall when it occurs. Since the two tracks on the southern

slope are not strictly needed for visiting the underground
caves, it is suggested to close them.

The uncertainty about the estimated rockfall risk, expressed as 1
standard deviation, ranges between 48 and 132 % of the mean
value. Hence, the error rate can be extremely high, depending on
the large uncertainties in the estimation of the onset probability
and the temporal–spatial probability. These results demonstrate
the importance of accounting for uncertainty in rockfall risk
modelling. For scientists, this provides a tool to identify potential
needs for the improvement in data collection, in order to decrease
the uncertainty. For instance, from our analysis the assessment of

Table 7 Rockfall risk calculation. P(L), annual exceedance probability of rockfall occurrence; P(T|L), reach probability; P(I|T), temporal–spatial probability; IR, individual
risk in terms of annual exceedance probability; PLL, potential loss of life in terms of annual expected number of deaths; Ω, coefficient of variation

Scenario P(L) P(T|L) P(I|T) V IR PLL ΩP(L) ΩP(T|L) ΩP(I|T) ΩV ΩIR ΩPLL

s1 0.043 0.964 1.5×10−3 1 4.1×10−2 6.0×10−5 0.2 0.1 0.41 0 0.22 0.48

s2 0.072 0.998 2.3×10−3 1 7.2×10−2 1.6×10−4 0.3 0.1 0.41 0 0.32 0.53

s3 0.019 0.977 3.1×10−3 1 1.9×10−2 5.8×10−5 0.3 0.1 0.41 0 0.32 0.53

s4 0.043 0.964 2.9×10−4 1 4.1×10−2 1.2×10−5 0.2 0.1 1.0 0 0.22 1.05

s5 0.072 0.998 4.6×10−4 1 7.2×10−2 3.3×10−5 0.3 0.1 1.0 0 0.32 1.10

s6 0.019 0.977 6.3×10−4 1 1.9×10−2 1.2×10−5 0.3 0.1 1.0 0 0.32 1.10

s7 0.043 0.095 2.9×10−4 1 4.1×10−3 1.2×10−6 0.2 0.1 1.0 0 0.22 1.05

s8 0.072 0.586 4.6×10−4 1 4.2×10−2 1.9×10−5 0.3 0.1 1.0 0 0.32 1.10

s9 0.019 0.551 6.3×10−4 1 1.0×10−2 6.5×10−6 0.3 0.1 1.0 0 0.32 1.10

s10 0.043 0.095 0 1 4.1×10−3 0 0.2 0.1 0.51 0 0.22 0.57

s11 0.072 0.586 0 1 4.2×10−2 0 0.3 0.1 0.51 0 0.32 0.62

s12 0.019 0.551 0 1 1.0×10−2 0 0.3 0.1 0.51 0 0.32 0.62

s13 0.019 0.056 8.3×10−3 0.5 5.3×10−4 3.5×10−5 0.3 0.1 0.2 0.5 0.61 0.66

s14 0.019 0.056 1.0×10−3 0.5 5.3×10−4 4.43×10−6 0.3 0.1 1 0.5 0.61 1.32

V vulnerability

Fig. 11 F–N curves for rockfall societal risk considering all scenarios. Scenarios s10, s11 and s12 are not in the plot, because the number of people at risk is equal to 0 (see
Tables 6 and 7)
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the temporal–spatial probability is the most critical and uncertain
step of the risk analysis procedure. Hence, a better monitoring of
the movement of people at risk needs to be implemented. For
administrators and decision makers, accounting for the uncertain-
ty could be extremely important to have an evaluation of the
degree of confidence of the results to be used for the implemen-
tation of mitigation actions.
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