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An empirical model for landslide travel distance
prediction in Wenchuan earthquake area

Abstract Sliding mass of landslides highly endangered the area
along travel path, especially landslides with long travel distance. It
is necessary to develop an effective prediction model for
preliminarily evaluating landslide travel distance so as to improve
disaster prevention and relocation. This paper collected 54
landslides with 347–4,170m travel distance triggered by the 2008
Wenchuan earthquake to discuss the effectiveness of various
influential factors on landslide travel distance and obtained an
empirical model for its prediction. The results revealed that rock
type, sliding source volume, and slope transition angle were the
predominant factors on landslide travel distance. The validity of
proposed model was verified by the satisfactory agreement
between observations and predictions. Therefore, this model
might be practically applicable in Wenchuan earthquake area
and other similar geomorphological and geological regions.

Keywords Landslide . Travel distance prediction . Statistical
analysis . Influential factors . Wenchuan earthquake

Introduction
Landslide is a major geomorphological process affecting landscape
evolution in mountainous area (Roering et al. 2005); it may be
triggered by rainfall or earthquake. During the 2008 Wenchuan
earthquake, 197,481 slope failures were triggered in about
110,000 km2 (Xu et al. 2013), about 20,000 deaths were attributed
to landslides (Huang and Li, 2008, 2009a). Numerous authors have
analyzed the relations between landslide spatial distribution and
influential factors so as to serve landslide hazard map (Huang and
Li 2009a, b; Xu et al. 2009b, 2010; Chigira et al. 2010; Qi et al. 2010;
Dai et al. 2011; Gorum et al. 2011; Guo and Hamada 2013). However,
there are few studies having explored the effectiveness of various
factors on landslide travel distance and its prediction in Wenchuan
earthquake area, except that Qi et al. (2011) delineated six typical
destructive long travel landslides and listed 66 valuable cases, but
this research was limited to analyze the relationship between
elevation loss and sliding area and travel distance. Yin et al.
(2009) pointed out that at least 4,970 sites were highly potential
to develop into geo-hazards. Therefore, if it was possible to
preliminarily estimate landslide travel distance and endangered
area, besides landslide spatial distribution, the quality of landslide
hazard map would be highly improved and more applicable to
disaster mitigation and relocation.

However, landslide travel distance prediction is a complicate
issue because it was governed by the properties of materials (i.e.,
grain size distribution and water content), topographical factors,
mobile mechanics of failed mass, the confinement attribute of
travel path, and so on. In order to research this topic to mitigate
geo-hazard caused by landslide, there are three techniques to
evaluate landslide travel distance: empirical model (for example,
Rickenmann 1999, 2005; Legros 2002), theoretical model (for
example, Takahashi 1981, 1991), and numerical simulation model
(for example, McDougall and Hungr 2003). Theoretical model

requires two parameters which are difficult to be accurately
estimated, that is, velocity of sliding mass and frictional parameter,
whereas the predictive result of numerical simulation model
highly depends on input data, which would be variable during
sliding process. Simplifying assumptions are often made for
theoretical model and numerical simulation model, especially
where input parameters cannot be measured easily.

Since the parameters of a landslide may change during
movement to avoid the usage of uncertainly and highly variable
parameters to predict landslide travel distance, empirical model
was widely applied to preliminary assessment of landslide travel
distance, as a result of no requirement of the parameters of
rheology or detail mechanics of movement, besides, it is a
relatively simple tool to offer a practical means of prediction.
Hence, there are lots of previous researches to use this approach,
such as Scheidegger 1973; Corominas 1996; Fannin and Wise 2001;
Hunter and Fell 2003; Okura et al. 2003; Berti and Simoni 2007;
Prochaska et al. 2008; Hattanji and Moriwaki 2009, 2011. Among
these studies, a common index for expressing landslide mobility
was widely used and firstly designated by Heim (1932) as
fahrböschung, which is the angle of the line connecting the head
of sliding source and the toe of the deposited mass. Shreve (1968)
and Scheidegger (1973) later called the tangent of this angle as
equivalent coefficient of friction. More recently, some authors
named this angle as angle of reach (Corominas 1996) or travel
distance angle (Hunter and Fell 2003). Further, equivalent
coefficient of friction has a significant correlation with landslide
volume, as demonstrated by Scheidegger (1973), Corominas (1996),
Fannin and Wise (2001), Rickenmann (1999, 2005) and also has a
significant correlation with slope angle (Hunter and Fell 2003;
Hattanji and Moriwaki 2009, 2011). However, these previous
studies neither have revealed the comprehensive relationship
between landslide travel distance and various influential factors
nor have discussed the effectiveness of each influential factor on
travel distance. Hence, a new model is needed to consider more
influential factors on landslide travel distance simultaneously.
Finlay et al. (1999) made use of multiple regression model to study
over 1,100 man-modified slopes in Hong Kong; however, most of
these landslide scales and travel distances are much smaller than
those landslides from natural slopes. Meanwhile, most of previous
researches were about non-seismically induced landslides;
therefore, it is meaningful to explore the prediction of
earthquake-induced landslide travel distance by simultaneously
taking numerous influential factors into consideration.

This paper collected 54 well-documented landslides triggered
by the 2008 Wenchuan earthquake to study the relations between
landslide travel distance and six influential factors. It was divided
into six sections and proceeded as follows: section 2 introduced
the data source, section 3 reported the relations between landslide
travel distance and landslide characteristic parameters, section 4
analyzed the effectiveness of influential factors on landslide travel
distance and developed a new model to its prediction, and section
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5 and section 6 presented the discussions and conclusions,
respectively.

Data selection of landslide and its parameters
In this paper, the collected data excluded not only landslides
obstructed by relatively large river, valley, and infrastructures but
also travel path sharply confined by steep lateral slope and
landslides with big deflection travel path, as a result of that, the
attributes of travel path had significant effect on the mobilization
of failed mass (Shaller 1991; Corominas, 1996). However, the
characteristics of confinement are difficult to be quantitatively
expressed. Hence, the travel path of selected landslides was
relatively open or confined by gentle lateral slope and the travel
path with relatively small deflection. Totally, 54 landslides were
collected based on remote sensing interpretation, field
investigation, and descriptions of published papers and books.
The source volume range of these landslides is 4.5×104–
2.75×107 m3; horizontal travel distance is within 347–4,170 m.

Figure 1 illustrates the basic terminologies and notations. The
longitudinal profile of a slope was obtained by using topographic
map. Based on the density of contour lines, slope was divided into
several segments. Contour lines appear relatively sparser; the
inclination of corresponding segment will be smaller and the
contour lines become much denser; the corresponding segment
has relatively larger slope angle. The interval changing segments of
contour lines (marked by ellipse in Fig. 1) along longitudinal
section correspond with the inclination changing segments along
a slope. The boundary of contour line interval apparent changing

in the topographic map along slope longitudinal section was
regarded as the turning point of different segments of a slope;
hence, a slope will be divided into several segments, and the
average inclination and slope height of each segment will be
obtained. Slope angle, θ, is the average inclination of the sectional
slope with failed part. Slope height, h, is the elevation difference of
the sectional slope with failed part. Travel distance, Lmax, is the
horizontal distance between the crest of the sliding source and the
distal of debris. Landslide height, Hmax, is the maximum elevation
loss between sliding source and debris. α represents fahrböschung
(Heim 1932) or travel distance angle (Hunter and Fell 2003). Slope
transition angle, β, is the angle between the upper slope (failed
section) and lower slope, indicating the change degree of slope
inclination. During investigation, the area of sliding source, in situ
outlined on the map, was calculated by ArcGIS software, and the
volume of sliding source was obtained from multiplying the area
of sliding source by average collapse depth. The average collapse
depth was estimated from typical longitudinal profile of slope, as
shown in Fig. 2. According to the rock strength and weathered
degree, rock materials were assorted into two types, such as hard
rock and soft rock, further divided into two subclasses,
respectively, as listed in Table 1.

Topographical factors play an important role in the
mobilization of landslide (Okura et al. 2003). The topography of
a slope can be described by slope angle (θ), slope transition angle
(β), and slope height (h). Slope angle has positive correlation
between internal friction coefficient (Okura et al. 2003), which
decides the energy consumption by internal friction; meanwhile,
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Fig. 1 The sketch of landslide for the definitions of geometric parameters
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the steeper the slope is, the bigger the component of gravity to
accelerate the sliding mass is and higher consumption of kinetic
energy due to the impact at the foot of upper slope. The changing
degree of slope inclination between upper slope and lower slope
can be expressed by slope transition angle (β), which has a strong
effect on the impact of sliding mass; it will affect the postimpact
mobile motion of sliding mass. For slope height (h), it implies the
preimpact potential energy of sliding mass and governs the
available space to accelerate the failed mass; the bigger slope
height, the faster sliding velocity; the larger kinetic energy was
consumed during impact at the slope transition section.

The influence of seismic wave on landslide travel distance was
explored in terms of energy by Kokusho et al. (2007, 2009).
Furthermore, Wang and Lin (2011) researched seismic effect on
landslide initiation and displacement by shaking model test and
proposed that “the final runout displacement is not proportional
with the relationship of law of similitude but can be obtained from
a normalized displacement relationship with maximum loading
amplitude.” Since peak ground acceleration is one of the most
important parameters to represent seismic energy, and horizontal
peak ground acceleration was widely used to evaluate slope
stability; hence, horizontal peak ground acceleration (PHA) was
applied during the following study about influential factors on
landslide travel distance, but it is impossible to install monitoring
equipment at each investigated landslide before Wenchuan
earthquake, so PHAs of landslides were estimated by Eq. (1), which

was derived from 183 seismic stations and considered hanging-foot
wall effect (Guo and Hamada 2013).

lnPHA ¼ a1ln Drup þ a2
� �þ a3Drup þ a4 ð1Þ

Where PHA is the horizontal peak ground acceleration
(centimeters per square second); Drup represents nearest distance
from site to Yingxiu-Beichuan surface fault rupture (kilometer)
located by using USGS result (Ji and Hayes, 2008); and a1, a2, a3,
and a4 are the regression coefficients, listed in Table 2, in which R2

stands for coefficient of determination.
The distribution of 46 landslides was illustrated in Fig. 3, and

their parameters were listed in Table 3, which were used to obtain
statistical model for landslide travel distance. Other eight
landslides were applied to verify the validity of proposed statistical
model in following section 4.

Relationships between landslide travel distance and landslide
parameters
Figures 4 and 5 illustrate the relations between landslide travel
distance and sliding source volume and area, respectively;
nevertheless, the statistical significance levels are relatively weak;
these two results both suggest that landslide travel distance had
exponential correlation with landslide scale (sliding source volume
and area); it means landslide travel distance would generally and
rapidly increase with landslide scale. Figure 6 illustrates that
horizontal travel distance (Lmax) had a relatively strong linear
correlation with landslide height (Hmax, total elevation loss). The
relation between landslide horizontal travel distance and landslide
height were further explored based on nonvolcanic and volcanic
landslides (Hayashi and Self 1992; Legros 2002), as shown in Fig. 7,
which also suggests that landslide travel distance increased with
the elevation loss of failed mass. The reason was attributed to that
failed mass was forced to travel down by gravity, and the potential
energy was transformed to kinetic energy.

Statistical model of landslide travel distance
Although landslide travel distance (Lmax) had a relatively
significant correlation with landslide height (Hmax) in Fig. 6, it
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Fig. 2 Typical longitudinal profile of landslide

Table 1 Classification standard of rock type (Chang et al. 2006)

Rock type Weathered degree and typical rock Uniaxial compression strength (σ, MPa)

Hard rock RT1 Non-weathered ∼ slightly weathered magmatic rock, diorite, basalt, andesite, gneiss,
and quartzite, etc.

σ>60

RT2 Non-weathered ∼ slightly weathered marble, slate, limestone, dolomite, metamorphic
quartz rock, etc.

30<σ≤60

Moderately weathered magmatic rock, diorite, basalt, andesite, gneiss, and quartzite,
etc.

Soft rock RT3 Non-weathered or slightly weathered tuff, phyllite, marl, sandy mudstone, etc. 15<σ≤30

Moderately ∼ strongly weathered hard rock

RT4 Non-weathered ∼ slightly weathered shale, mudstone, shaly sand, etc. σ≤15

Strongly weathered hard rock

Moderately ∼ strongly weathered tuff, phyllite, marl, sandy mudstone, etc.
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cannot be used to predict landslide travel distance because the
stop place of failed mass and the top of sliding source were both
unaware before landslide occurrence. Since landslide movement
was affected by numerous factors, hence, the predictive model of
landslide travel distance had better consider as many influential
factors as possible simultaneously. Under the linear assumption,
multiple linear regression and backward elimination approach
were applied to obtain optimization model of landslide travel
distance in the aid of F test and t test. The regression procedures
and results were listed in Table 4.

In Table 4, Lmax refers to landslide horizontal travel distance
(meters); RT refers to rock type, it was qualitatively considered and
4, 3, 2, and 1 were, respectively, assigned to RT1, RT2, RT3, and RT4;
V represents the volume of sliding source (cubic meter); β
represents slope transition angle (°); h represents slope height of
the sectional slope with failed part (meters); PHA refers to
horizontal peak ground acceleration (meters per square second)
estimated from Eq. (1); and θ denotes slope angle of the sectional
slope with failed part (°). The basis of logarithm is 10. Multiple R
means multiple correlation coefficient, which represents the
correlated level between dependent variable and independent
variables. F-stat denotes regressive F value, F0.05 denotes F test
threshold value with 95 % significance level. If F-stat is bigger than
F0.05, it suggests overall regression of the model satisfies statistical
significance level. t-stat denotes regressive t value of each
regression coefficient, t0.05 denotes t test threshold value with
95 % significance level; if t-stat is larger than t0.05, it suggests

corresponding regression coefficient, ni , which satisfies
significance level of regression. However, not all regression
coefficients have statistical significance during regression
procedures; therefore, the variable with smallest absolute t-stat
value (bold digit in Table 4) was eliminated and then re-regressed
step by step until overall regression of the model and all regressive
coefficients both satisfy statistical significance level. These
procedures are named as backward elimination regression.
Because the units of independent variables affect regression
coefficient, ni , therefore, standardized regression coefficient, n′i ,
was applied to exclude the effect of unit dimension, so as to have
insight into the effectiveness of each independent variable
(influential factors) on dependent variable (landslide travel
distance).

Compared to four models in Table 4, F tests suggest that all of
these hypothetical models have statistical significance and satisfy
linear assumption. Based on backward elimination procedures
and those absolute values of each standardized regression
coefficient in six variables model, they both suggest that rock type,
sliding source volume, and slope transition angle were more
influential than slope height, seismic acceleration, and slope angle
on landslide travel distance. Furthermore, the optimization model
with three variables satisfies not only overall statistical significance
(F-test) but also the significance of each regression coefficient (t
test), listed in Table 4, the empirical model for predicting landslide
travel distance based on presented dataset in Wenchuan
earthquake area was shown as Eq. (2):

Table 2 Regression parameters of seismic acceleration attenuation (Guo and Hamada 2013)

Hanging wall or footwall a1 a2 a3 a4 R2

Hanging wall −0.8203 13.767 −0.0042 9.169 0.64

Footwall −0.6907 5.618 −0.0072 7.939 0.55

Landslide (46)

Epicenter

Fig. 3 The distribution of 46 landslides (based on Qi. et al. 2011)
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logLmax ¼ 0:136RT þ 0:159logV þ 0:529sinβ þ 1:497 R2 ¼ 0:51ð Þ
ð2Þ

However, coefficient of determination (R2) indicates the
regressive correlation of optimization empirical model is
moderate; its validity need to be confirmed. By using Eq. (2) to
predict the travel distance of surveyed 46 landslides, the
comparison between predictions and observations was shown in
Fig. 8; the estimation error of each landslide, |Lpredicted−Lobserved|/
Lobserved×100%, was listed in the column of “Error” in Table 3. This
self-verification suggests that proposed statistical model for travel
distance prediction is valid for most landslides. In order to further
verify its applicability, eight landslides in Wenchuan earthquake
area were used to check the validity of Eq. (2); the parameters of
each landslides and the predictive results were listed in Table 5,
and the corresponding eight landslides were compared; their
observed and predicted travel distances in Fig. 8, which further
suggest that the proposed model may be valid. Therefore, it might
be useful to preliminarily assess the travel distance of potential

landslide in Wenchuan earthquake area and other similar
geological and geomorphological regions. Nevertheless, the
reliability of this empirical model needs to be further verified by
some techniques, such as ROC curves and success rate curves
(Frattini et al. 2010).

Discussions
Based on the empirical model, it suggests that landslide travel
distance had positive correlation with rock type (from soft rock
to hard rock), landslide volume, and the sine of slope transition
angle. It was inferred that landslide consisting of much softer rock
(RT smaller), more kinetic energy would be consumed by friction,
then failed mass would have shorter travel distance. The relation
between landslide volume and travel distance was shown in Fig. 9
besides the data from Wenchuan earthquake, which reveals that
landslide travel distance increased with landslide volume.
Regarding the correlation between travel distance and the sine of
slope transition angle, when a slope had several sections with
different inclination, the failed mass would impact at the portion
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of slope transition. The fragment effect due to impact would
enable failed mass to become high mobility, then making landslide
travel longer. The range of slope transition angle of surveyed
landslides was within 140°∼176°, with the decrease of slope
transition angle (namely, the increment of sinβ); the fragment
effect became more significant, causing failed mass to have higher
mobility and travel longer. Therefore, landslide travel distance had
positive relation with the sine of slope transition angle.

In order to directly estimate landslide travel distance,
Rickenmann (1999) and Legros (2002) developed empirical models
for this issue, being listed in Table 6. Making use of these two
previous models to estimate landslide travel distance of these 54
landslides in Wenchuan earthquake area, the results were shown
in Fig. 10. It suggests that the model proposed by Rickenmann

(1999) and Legros (2002) cannot obtain satisfactory assessment;
the average errors of these two models are 248.26 and 116.77 %,
respectively. From the above plot of Fig. 10, most of predicted
travel distances by the model of Rickenmann (1999) are
significantly longer than the observations (above the dash line
with 2:1 gradient); this comparison suggests that the model
proposed by Rickenmann is not suitable for the prediction of
landslides triggered by the 2008 Wenchuan earthquake because
Rickenmann model is based on debris flow dataset. However,
dataset in this paper mainly included rock (soil) slide and debris
(rock) avalanche; therefore, it may draw a conclusion that the
mechanism of debris flow is very different from rock (soil) slide
and debris (rock) avalanche and results in the failed application of
Rickemann model in Wenchuan earthquake area; on the other
hand, most of predictions by Rickemann model are significantly
bigger than the observations (above the dash line with 2:1
gradient), and there is no prediction smaller than observation; it
means that under the same conditions (volume, rock type, and
slope transition angle, etc.), debris flow usually will travel longer
than rock (soil) slide and debris (rock) avalanche. The reason was
inferred that the lubrication of water content in the failed mass of
debris flow increased travel distance. This comparison
reconfirmed and implied that landslide travel distance was heavily
affected by mobile mechanism of sliding mass, especially failed
mass with relatively abundant water content; it would cause the
mobilization of debris flow that was quite different from other
types of landslides. For the model of Legros, its invalidity of usage
in Wenchuan earthquake area might be due to the difference of
geological and hydrogeological conditions.

The mobile motion of slope failure was affected by numerous
factors, such as topography, rock (soil) properties, mobile
mechanisms, ground water, and so on. As many influential factors
as the authors could collect, 46 well-documented landslides with
nine parameters were used to develop empirical model of
landslide travel distance, and eight landslides were applied to

Table 4 Multiple analysis of landslide travel distance by backward elimination approach

logLmax=n1RT+n2logV+n3sinβ+n4logh+n5logPHA+n6tanθ+n0

Variable and parameter n1 n2 n3 n4 n5 n6 n0 Multiple R F-stat F0.05 t test (t0.05)

six variables ni 0.139 0.189 0.618 −0.182 −0.133 0.049 1.795

t-stat 4.439 3.280 2.749 −0.737 −0.555 0.351 3.544 0.719 6.973 2.342 2.023

n′i 0.507 0.475 0.403 −0.120 −0.070 0.044 -

five variables ni 0.137 0.185 0.633 −0.165 −0.125 – 1.811

t-stat 4.491 3.312 2.911 −0.689 −0.530 – 3.630 0.718 8.530 2.449 2.021

n′i 0.501 0.465 0.413 −0.109 −0.066 – –

four variables ni 0.137 0.176 0.584 −0.129 – – 1.686

t-stat 4.534 3.324 2.994 −0.568 – – 3.867 0.716 10.781 2.600 2.020

n′i 0.501 0.444 0.381 −0.085 – – –

three variables ni 0.136 0.159 0.529 – – – 1.497

t-stat 4.539 3.692 3.150 – – – 5.345 0.713 14.501 2.827 2.018

n′i 0.496 0.401 0.345 – – –
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verify the validity of presented model. Our data exclude landslides
obstructed by relatively large river, valley, and infrastructures that
neither included travel path sharply confined by steep side
slope nor big deflection of travel path. However, it was difficult
to judge the confinement degree during the investigation; the
boundary between partly confined and confined not only relied
on the experience of investigator but also affected by the
relative magnitude between landslide volume and obstacles or

topographical changes; hence, the estimation error of several
predictions was too large to be valid, such as landslide no. 11
and no. 17 in Table 3. Moreover, travel distance of 46 landslides
in Table 3 is 91.3 % (42 out of 46) shorter than 2000 m; it may
cause the predicted results of landslides with over 2,000 m
observed travel distance that are more scattering than others
in Fig. 8. However, compared with observations, the overall
outcome by presented empirical model mainly yielded
satisfactory results, which implies that the judgment about
the degree of confinement during data collection and linear
hypothesis for statistical model were both reasonable. One
more reason for the scattering of comparison plot might be
attributed to the discretization of data because some data are
from field investigation and some data are from the published
papers and books.

The limitation of this study is that the effects of ground water,
geological structure, and landslide type on travel distance were not
discussed. Previous studies have been found that pore-water
pressure caused shear strength significant reduction (Takarada et
al. 1999; Major and Iverson 1999; Wang and Sassa 2003; Sassa et al.
2004, 2005), and then resulting in failed mass might perform
different mobile motions during sliding. The effect of geological
structure on slope failure mode was demonstrated by Aydan and
Hamada (2006, 2009), and Corominas (1996) proposed that
different landslide types appeared different mobile abilities based
on empirical relations of different landslide types. Therefore,
discussion on landslide travel distance should consider the
influence of geological structure and landslide type. However, in
this paper, our data are limited to 54 landslides, and the types of
slope failure mainly included rock (or soil) slide, rock avalanche,

Table 5 The verification of proposed statistical model for landslide travel distance by case studies

Landslide Slope
transition
angle,
β (°)

Sliding
volume, V
(104 m3)

Main lithology Rock type, RT Hmax
(m)

Observed
Lmax (m)

Predicted
Lmax (m)

Estimation
error (%)

Reference

Taipingba no. 2 150 30 Weakly weathered
phyllite

RT3 (RT=2) 540 770 802.35 4.20 % Gou 2012

Weijiawan 172 10 Weakly weathered
phyllite and
limestone

RT3 (RT=2) 200 400 434.13 8.53 % Gou 2012

Gaojiamo 168 113 Weakly weathered
phyllite and
limestone

RT3 (RT=2) 340 722 694.10 3.86 % Gou 2012

Maochongshan
no. 2

171 58 Weakly weathered
metasandstone

RT3 (RT=2) 534 860 586.33 31.82 % Gou 2012

Ma'anshi 151 148 Weakly weathered
phyllite

RT3 (RT=2) 464 1500 1015.16 32.32 % Gou 2012

Shawan no. 3 172 30 Moderately ∼ strongly
weathered
metasandstone

RT4 (RT=1) 240 360 377.99 5.00 % Gou 2012

Tongziliang 146 256 Moderately ∼ strongly
weathered
metasandstone

RT4 (RT=1) 110 800 886.59 10.82 % Gou 2012

Liangshang 155 600 Weakly weathered shale
and moderately
weathered limestone

RT4 (RT=1) 620 800 859.59 7.45 % Gou 2012
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Fig. 9 The relation between landslide horizontal travel distance and volume [the
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Legros (2002)]
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and debris avalanche. If these data were further classified into
several groups, the regression model of each type of landslide
would be uncertainty. Hence, a more generalized model of landslide
was derived to estimated landslide travel distance. In spite of
ignoring the influences of ground water, geological structure, and
landslide type on landslide travel distance in proposed model, most
of the predicted results are reasonable compared with observations,
as listed in Table 3 and Fig. 8. Notwithstanding, the applicability of
proposed model needs to be further verified, and more influential

factors on landslide travel distance were recommended to take into
consideration during improvement.

Conclusions
In this study, the authors collected 54 well-documented landslides
triggered by the 2008 Wenchuan earthquake, and landslides were
delineated by following parameters, such as slope angle (θ), slope
transition angle (β), slope height (h), horizontal travel distance (Lmax),
landslide height (Hmax), the volume of sliding source (V) and sliding
source area (A), rock type (RT), and horizontal peak ground
acceleration (PHA). The results of multivariable analysis revealed that
rock type, sliding source volume, and slope transition angle had
predominant effect on landslide travel distance during Wenchuan
earthquake and followed by slope height, seismic acceleration, and
slope angle. An empirical model, as Eq. (2), was developed to predict
landslide travel distance in similar geomorphological and geological
region as Wenchuan earthquake affected area.
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