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Stability of sandy slopes under seepage conditions

Abstract Stability against shallow mass sliding in saturated sandy
slopes under seepage depends on the flow direction and hydraulic
gradient, particularly near the ground surface. Two modes of
instability i.e., Coulomb sliding and liquefaction have been studied
and the critical flow directions discussed. The utility of the
numerical approach in solving complex flow problems with
irregular boundaries and surface topography is demonstrated by
means of two slope examples with different internal drainage
conditions. The numerical results for the seepage gradients at
different points are compared with those predicted by the simple
expression derived in this study, and the corresponding effects on
the stability are evaluated.
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Introduction
Sandy slopes may be dry, moist, or saturated as a result of surface
flow, infiltration or seepage. Saturated slopes with seepage are the
most critical. In this situation, the slope may fail as a result of
greatly reduced shear resistance and shear failure along a critical
sliding surface. Alternatively, the slope may fail as a result of
complete loss of effective contact stress between particles and
subsequent liquefaction.

Many references in the literature describe the slope failure or
landslide due to seeping water, and define the process by different
terms as piping, sapping or spring sapping, internal erosion,
subsurface or seepage erosion, and tunnel scouring (Terzaghi and
Peck 1967; Hutchinson 1968, 1982; Higgins 1984; Iverson and Major
1986; Jones 1990; Dunne 1990; Hagerty 1991a, b; Koenders and
Selimeyer 1992; Worman 1993; Skempton and Brogan 1994).
Distinctions have however been made by some investigators
between different mechanisms involved in the instability caused by
seepage (Dunne 1990; Crosta and Prisco 1999).

Iverson and Major considered the possibility of both liquefac-
tion and Coulomb sliding for hillslope failure and debris flow
mobilization. For some upward seepage conditions, slope stability
is limited by static liquefaction rather than by Coulomb failure.
Close association between these liquefaction conditions and
certain Coulomb failure conditions tends to initiate spontaneous
and catastrophic flowage of the soil mass. This study however
considers the seepage gradient as an independent component with
respect to the flow regime. A condition that may occur for cases
such as an artesian seepage condition where the gradient is mainly
controlled by the artesian system rather than the slope itself
whereas in normal situations where the slope becomes saturated
due to the rainfall and subsequent runup, the slope configuration
in fact influences the seepage pattern in regard to both seepage
direction and gradient. The study presented here attempts to

elaborate this subject by presenting the results of some seepage
analysis and corresponding effects on the slope stability. The
stability is considered only in view of soil mass movement
(landsliding), not surficial erosion, although sandy slopes are
susceptible to both types of failure. The former instability typically
occurs on slopes steeper that 2:1 (horizontal to vertical) during
periods of prolonged or intense rain or due to excessive irrigation
or waterline breaks. Surficial erosion, on the other hand, is due to
the wearing away of soil particles by tractive stresses exerted via
overland flow, wind, and ice.

Coulomb sliding failure
A saturated slope under seepage condition is shown in Fig. 1. The
magnitude of the seepage force Fw is directly proportional to the
hydraulic gradient ‘i’ and the soil volume. The gradient can be
derived as a function of seepage direction (l) and slope angle (β),
as depicted in the figure. This is in fact an “exit” gradient for a
locally uniform seepage.

i ¼ sinβ
sin l

(1)

Some important seepage directions and corresponding values
of hydraulic gradient are presented in Table 1.

Infinite slope theory
The so-called infinite slope model can be used to analyze
translational slope movement. The failed mass progresses along
a more or less planar surface approximately parallel to the ground
surface, with little rotary movement or backward tilting charac-
teristic of rotational slides or slumps (Schuster and Krizek 1978).
The movement of translational slides is normally controlled by
surfaces of weakness, such as faults, joints, bedding planes, and
variations in shear strength between layers of bedded deposits. A
translational slide can also occur in homogeneous slopes of coarse-
textured, cohesionless soil such as sand dunes, sandy banks, and
levees. In the infinite slope analysis of homogeneous slopes, the
slip surface is assumed to be a plane parallel to the ground surface
where the end effects can be neglected (Huang 1982). This analysis
is valid if the ratio of depth to length of the sliding mass is small (a
ratio of 1/20 or less is commonly used).

An infinite slope element subjected to both uniform seepage
and gravitational forces is shown in Fig. 2. For the sake of
convenience and efficiency, the “seepage force” approach is used
although the “boundary pore pressure” approach gives identical
results (Lambe and Whitman 1969). In the former approach, only
the buoyant weight of an element and the seepage force are
considered in the equilibrium equations; boundary water forces
are not required.
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The safety factor expression of the element in Fig. 2 can be
derived as follows:

Wb ¼ Vγb ¼ zb cosβγb

Fw ¼ iVγw

N ¼ Wb cos β � Fw cos l

S ¼ N tanφ 0 þ c 0 b ¼ Wb cos β � Fw cos lð Þ tanφ 0 þ c 0 b

F:S: ¼ S
Wb sinβ þ Fw sin l

¼ Wb cosβ � Fw cos lð Þ tanφ 0 þ c 0b
Wb sinβ þ Fw sin l

F:S: ¼
cos β � i γwγb cos l

sin β þ i γwγb sin l
tanφ 0 þ

c 0 b
Wb

sinβ þ i γwγb sin l

F:S: ¼ cos β � Ab cos l
sin β þ Ab sin l

tanφ0 þ mb

sinβ þ Ab sin l
(2)

where:

Ab ¼ i
γw
γb

¼ sinβ
sin l

γw
γb

mb ¼ cb
Wb

¼ c
γbz cosβ

Ab and mb are called the buoyant seepage and buoyant cohesion
coefficients respectively.

For cases in which c′=0, the factor of safety simplifies to:

F:S: ¼ cos β � Ab cos l
sin β þ Ab sin l

tanφ (3)

Fig. 1 Derivation of exit seepage gradient in slopes with locally uniform flow

Table 1 Common flow directions and corresponding hydraulic gradients

Limiting cases Seepage direction Hydraulic gradient
Parallel flow l=90° i=sin β
Horizontal flow l=90°−β i=tan β
Nearly normal (upward) flow l→0 i→∞
Vertical (downward) flow l=180°−β i=1

Fig. 2 Forces acting in an infinite slope subjected to gravitational body or soil
weight force (Wb), and seepage force (Fw) with a variable seepage direction 0<l<
(180°−β)
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For F.S.=1 and assuming γsat≈2γw, Eq. (4) establishes the
relationship between critical slope angle (βcrit) for a given seepage
vector (i and l) and friction angle ϕ′.

tanφ 0 � sin βcrit þ i sin l
cos βcrit � i cos l

(4)

Limiting cases

Case (1)
Parallel flow (l=90°, i=sin β)

tanφ0 � sin βcrit þ sinβcrit sin 90
�

cos βcrit � sinβcrit cos 90�
� 2

sin βcrit

cosβcrit

� 2 tan βcrit ) βcrit � tan�1 0:5 tanφ0ð Þ
Case (2)

Vertical (downward) flow (l=180°−β, i=1)

tanφ0 � sinβcrit þ sin 180� � βcritð Þ
cosβcrit � cos 180� � βcritð Þ

� 2 sinβcrit

2 cosβcrit
� tan βcrit ) βcrit � φ0

Case (3)
Horizontal Flow (l=90°−β, i=tan β)

tanφ0 � sinβcrit þ tan βcrit sin 90� � βcritð Þ
cosβcrit � tan βcrit cos 90� � βcritð Þ

� sinβcrit þ tanβcrit cos βcrit

cosβcrit � tan βcrit sin βcrit
� tan βcrit þ tan βcrit

1� tan2 βcrit

� 2 sin βcrit cosβcrit

cos2 βcrit � sin2 βcrit
� tan 2βcrit

βcrit � 0:5φ0

A summary of the above derivations is presented in Table 2. The
minimum stability against Coulomb sliding in the above three
cases occurs when seepage direction is l=90°−β which corre-
sponds to a horizontal flow. The stability can decrease even more if
seepage emerges from the slope with a smaller l. The most critical
seepage gradient is when the flow direction approaches zero, i.e.,
perpendicular to the slope (i→∞).

Liquefaction failure
A static, saturated cohesionless mass of soil will liquefy when
subjected to a seepage force that has an upward, vertical
component equal in magnitude to the submerged weight of the
soil. In this case, effective contact stresses between all particles go
to zero and the soil loses all its strength and deforms by “flowing”

rather than by “frictional” sliding. The condition for liquefaction in
terms of the variables (l, β) and geometry of Fig. 2 can be
expressed by (Iverson and Major 1986):

Ab cos lþ φ 0ð Þ þ β � φ 0ð Þ½ � ¼ 1 (5)

For a condition of l=−β, i.e., vertically upward seepage, this
equation is satisfied if Ab=1. However, this state or condition may
be impossible to attain. The analysis presented by Iverson and
Major is based on an assumption that the components of seepage
vector viz., gradient i and direction l, vary independently. While
this assumption may be justified for cases of non-uniform flow
such as an artesian seepage condition where the gradient is mainly
controlled by the artesian system rather than the slope itself, it is
not applicable to the seepage condition in Fig. 1 where the gradient
(i) is a function of l (Eq. 1). Using this equation and setting l=−β,
the magnitude of Ab becomes −1 which is different from the value
predicted by Eq. (5). This contradiction arises because the
condition of l=−β is beyond the acceptable range of l which is
from zero to 180°−β.

Failure mode criteria
By substituting Eq. (1) into Eqs. (3) (F.S.=1) and (5), and assuming
γb=γw, the limiting seepage direction lcrit for generating Coulomb
sliding or liquefaction failure can be obtained for various values of
slope angle β and friction angle ϕ′.

lcrit � tan�1 tanβ tanφ0

tanφ0 � 2 tanβ

� �
Coulomb slidingð Þ (6)

lcrit � tan�1 tan β
2 tan2 β þ 1

� �
liquefactionð Þ (7)

These results have been plotted in Fig. 3 for various seepage
direction (l), slope angle (β), and effective friction angle (ϕ′). It
can be seen in this figure that Coulomb failure always preempts or
coincides with liquefaction failure. This result is slightly different
from the findings presented by Iverson and Major in which
liquefaction failure may preempt Coulomb failure under some
circumstances.

The influence of seepage direction on the stability of infinite
slopes can also be shown in terms of its effect on the factor of safety
as shown in Fig. 4. The ratio of safety factor for cohesionless slopes
with seepage to that for dry slopes has been plotted versus seepage
direction for various slope angles. The stability of a previously dry
slope drops by one-half (assuming γb=γw) when water seeps
parallel to the slope (l=90°). The stability is decreased even more
when the seepage emerges from the slope (l<90°). On the other
hand, the stability is equivalent to that of a dry slope when the
water flows vertically downward (l=180°−β).

Table 2 Critical slope angles for various seepage directions

Seepage direction l i βcrit βcrit (for �′=30°)
Vertical 180°−β 1 �′ 30°
Parallel 90° sin β tan−1 (0.5 tan �′) 16.1°
Horizontal 90°−β tan β 0.5�′ 15°
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Seepage analysis
The stability analysis presented in Fig. 2 for an infinite slope with
water flow assumed that the seepage condition was identical at all
points vertically downward the slope, i.e., locally uniform. In
reality, however, boundary conditions can influence the flow
regime in the slope, particularly in the vicinity of the boundaries.
This effect would be more pronounced if drains exist in the slope.
In the following sections, two slope configurations are considered,
and flow nets have been obtained using a numerical approach.
Then, the actual seepage gradient and the flow direction at all
points in the slope are compared to those assumed in the analysis
(Fig. 1). Finally, the implementations of these differences on the
stability are discussed.

Numerical solution
A numerical approach based on the Laplace equation was
employed to obtain the flow net in the slope. The Laplace equation
for three-dimensional flow in porous media is expressed as:

@2h
@x2

þ @2h
@y2

þ @2h
@z2

¼ 0 (8)

where h=hydraulic or piezometric head at any point, equal to the
sum of he (the elevation head) and hp (the pressure head). The
solution of the above equation for any given set of boundary
conditions is a function h(x, y, z) that describes the value of head at
any point in the field. This solution can be used to produce a

Fig. 3 Analysis of slopes for liquefac-
tion and Coulomb sliding failure

Fig. 4 Influence of seepage on the
stability of sandy slopes as a function
of slope angle (β) and seepage
direction (l)
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contoured equipotential map of h and/or a flow net. For a two-
dimensional flow field, the solution becomes a function h(x, y).

The fundamental analytical technique for solving boundary-
value problems such as the Laplace equation is separation of
variables (Pipes 1958; Pinsky 1991). However, this technique does
not work on all equations. It is not clear which equation can or can
not be solved by this method. Powers (1972) states that the region
in which the solution is to be found also limits the applicability of
the method. He states that the region must be a “generalized
rectangle” which means a region described by inequalities whose
endpoints are fixed. Freeze and Cherry (1979) state that there is no
exact analytical solution for a trapezoidal region except in the case
of impermeable top and bottom end boundaries. An approximate
solution for this case was presented by Toth (1962); however, it
appears to be satisfactory only for small ground slopes of about 3°
or less (Toth 1963).

Numerical methods can solve many complex flow problems for
irregular regions, boundary conditions, and geohydrologic set-
tings. These methods often use the finite-difference technique
applied to the Laplace equation. This iterative technique is based
on a “relaxation process” that simultaneously calculates hydraulic
heads at various node points in a network (Shaw and Southwell
1941; Freeze and Witherspoon 1966, 1967). The iteration continues
until the difference between two consecutively computed heads at
all points become very small. The technique is simple and efficient
for solving a set of finite-difference equations. Numerical methods
are also capable of treating general, nonhomogeneous, anisotropic,
and three-dimensional problems (Southwell 1946; Freeze and
Witherspoon 1966, 1967). Electronic spreadsheets have also been
used successfully to solve finite-difference problems by the
relaxation technique (Das 1983; Kleiner 1985). Many finite-
difference problems, which previously required fairly sophisticated
programming, can be solved with relative ease and adequate
accuracy on a spreadsheet. The solutions presented here are based
on the spreadsheet solution. Calculated values of the hydraulic
heads or stream potentials at nodal points were used to plot
contours of equipotential lines or flow lines.

Slopes with no drain
A generic configuration of a slope with a flat surface and two
horizontal and vertical impervious boundaries is shown in Fig. 5. It
is assumed that the slope is at β=45°, under a fully saturated
condition, and a steady seepage is established. While a full
saturation condition may not always exist in field situations, the
treatment of the slope surface here as a piezometric surface is
reasonable. According to Toth (1962) and Freeze and Witherspoon
(1966), there is, in general, a close correlation of the piezometric
surface with the slope topography, and the average water table
position for an unconfined flow system can be viewed as a subdued
replica of the surface topography. Besides, the assumed full
saturation represents the most critical situation that the slope may
experience with respect to the mass stability.

It can be realized in Fig. 5 that the flow direction is not generally
uniform at any point. Exceptions exist for specific boundary
conditions which may rarely occur in the field (Ghiassian 1996). It
is seen that at the upper face of the slope, water is seeping into the
slope (recharge) whereas at the lower face, water is emerging from
the slope (discharge). The most critical part of the slope with
respect to the mass stability and piping resistance would be near
the toe where emerging seepage occurs and the seepage angle is the

smallest. Conversely, the top of the slope is more stable since the
seeping water in this region will increase the component of
effective stress normal to a potential failure surface. The maximum
seepage angle occurs right at the crest of the slope, where seepage is
vertically downward.

It should be noted that Eq. (1) was derived based on an
assumption that the seepage direction near the slope surface (exit
region) was locally uniform. In order to evaluate the accuracy of
Eq. (1) in calculating the gradients at deep points in the slope, a
comparison can be made between the gradients calculated from
Eq. (1) and the actual gradients calculated from the numerical
solution (see Fig. 6), by defining gradient ratio (GR) as:

GR ¼ iuniform From Fig:1ð Þ
ireal From Fig:6ð Þ (9)

Figure 7 illustrates the variation of GR in the slope. It is seen
that the value of GR increases with depth. Near the slope face, GR
becomes almost one, that means Eq. (1) gives an accurate
estimation of the gradient. This zone in the slope, in fact, appears
to be where an infinite slope failure is likely to occur. At deeper
points in the slope, where boundary condition effects gradually
become important to influence the flow regime, and consequently
the stability, GR becomes larger than one, meaning that the
gradient calculated by Eq. (1) is deviating from the real value;
therefore it is not accurate. Nevertheless as mentioned above, the
Coulomb sliding failure would occur at shallow depths, indicating
that the use of simple expression 1 for the gradient evaluation
should be sound and justified. If the critical seepage direction is
uniform over a large portion of the slope surface, the translational
instability would expect to occur in this portion, with an associated
higher slide thickness. A real example for this condition is often
seen in the lower portions of natural slopes where a fairly uniform
seepage parallel to the slope face (l=90°) is reached (Lambe and
Whitman 1969).

Fig. 5 Flow lines (contours) obtained by a numerical analysis for slope with
vertical and horizontal impervious boundaries, and no drain
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Slopes with drain
The preceding example shows that the boundary conditions can
influence the flow field significantly. The flow field, in turn, can
greatly affect the stability of a sandy slope as explained before. It
was shown in Fig. 3 that the mass stability decreases as the seepage
direction (l) becomes smaller and flow starts emerging from the

slope. The resistance to piping is also dependent on the seepage
angle at the exit points. At small seepage angles, seepage forces
exceed intergranular stresses or forces of cohesion, and cause the
detachment and movement of soil particles. Once a pipe forms, it
enlarges quickly because of further concentration of flow lines in
the pipe area. Therefore, the most vulnerable portion of a slope for
surficial instability is where water is emerging from the slope, i.e.,
the discharge area. In these situations, where groundwater appears
to be a major detrimental factor on the stability, horizontal drains
have proved to be a cost-effective and viable measure in preventing
and correcting the failure (Smith and Stafford 1955; Tong and
Maher 1975; Kenney et al. 1977; Barrett 1980; Ruff 1980; Nonveiller
1981; Chan 1987; Singer 1990; Whiteside 1997; Cai et al. 1998;
Rahardjo et al. 2003). They act effectively only when the ground is
sufficiently permeable to allow drainage.

Figure 8 shows the influence of a horizontal drain on the flow
field in the slope example. It is seen that the horizontal drain
causes the flow direction in the slope changes favorably in regard
to the mass stability, with this effect more pronounced in the
vicinity of the drain. Some portion of the collected water comes to
the surface through the drain where it once again becomes
beneficial recharge. This is clear in Fig. 8 by comparing the number
of stream channels entering the drain to the number of channels
exiting the drain. Since all channels transmit an equal amount of
water per unit time (flow rate), it is quite obvious that some
portion of the water in the drain should come to the surface to flow
over the slope face as runup.

The variation of GR, similar to the case of the slope with no
drain, was examined as shown in Fig. 9. It is clear that some
portion of the slope above the drain is greatly affected by the drain
such that the GR values at points near the drain are even less than

Fig. 6 Determination of gradient ratio (GR) from the total heads at nodal points in
finite-difference numerical solution of flownet

Fig. 7 Variation of gradient ratio (GR)
for slope with vertical and horizontal
impervious boundaries, and no drain
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one. This means that the gradient calculated by Eq. (1) is smaller
than the real values obtained from the flow net. Therefore, the
stability analysis based on Eqs. (1) and (3) for the portion of the
slope above the drain would be less conservative. On the other

hand, the lower portion of the slope below the drain is influenced
such that the trend of the GR change is similar to that observed for
the slope with no drain (Fig. 7) although the variation of GR is
much more abrupt, particularly in the vicinity of the drain.

Fig. 8 Flow lines (contours) obtained
by a numerical analysis for slope with
vertical and horizontal impervious
boundaries and horizontal drain

Fig. 9 Variation of gradient ratio (GR)
for slope with vertical and horizontal
impervious boundaries, and horizontal
drain
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Therefore, the stability analysis based on Eq. (1) for the slope
portion below the drain would still be conservative.

It was realized that the presence of a horizontal drain in the
slope can cause the flow direction to become vertically downward,
which in turn can increase the stability of the slope significantly. In
order to better understand this important effect, the variation of
local safety factor ratios, defined as F.S.seepage/F.S.dry, are shown in
Figs. 10 and 11 for the plain slope and the slope with the drain,
respectively. The safety factors have been calculated using the local
hydraulic gradient (i) and seepage direction (l) values at specific
(nodal) points within the slope according to the following
expressions.

F:S:seepage ¼ cosβ�Ab cosλ
sinβþAb sin λ

tanφ

F:S:dry ¼ tanφ
tanβ

( )

) F:S:seepage
F:S:dry

¼ sin β � Ab cosλ tan β
sinβ þ Ab sinλ

(10)

The great influence of the horizontal drain in increasing the
stability of the slope particularly at shallow depths near the slope
face can be realized from the comparison between these two
figures. This effect, however, gradually diminishes by moving away
from the drain. It is seen in Fig. 10 that the stability increases by
moving toward the upslope due to the increase of the seepage
direction. This effect of the seepage orientation is more evident in
Fig. 11 where the stability around the drain has increased
remarkably due to the vertical downward seepage direction caused
by the drain. The portion of the slope above the drain appears to
benefit further from the stabilizing influence of the drain compare
to the lower portion below the drain. However, in actual situations,
this effect is mainly controlled by the vertical spacing and

dimension of the drains (Cai et al. 1998). Also, it can be concluded
from Fig. 11 that for cases of one drainage layer, horizontal drains
are most effective when located at the base of a slope, as also
reported previously by Rahardjo et al. (2003).

Conclusions
The mass stability of homogenous, saturated sandy slopes under
seepage were considered in view of both Coulomb sliding and
liquefaction failures. Numerical seepage analyses were performed
for the two slope examples with and without horizontal drains, and
the hydraulic gradient results were compared with those
determined by Eq. (1). Important conclusions from this study
can be summarized as follows:

– The most critical stability condition is when the flow direction
approaches zero (l=0°), i.e., perpendicular and emerging from
the slope, and the least critical condition is when the flow
direction is vertically downward (l=180°−β).

– Coulomb sliding failure always preempts or coincides with
liquefaction failure.

– In slopes with no drain, the exit seepage gradient can be
obtained by the simple expression given in Eq. (1), which gives a
conservative estimate of the gradient at any point in the slope.
This predicted value approaches the exact as the depth of the
point from the slope surface decreases.

– In slopes with horizontal drains positioned at the slope face, the
estimation of the gradient by Eq. (1) for the slope portion above
the drain would result in a less conservative stability analysis.
Conversely, for the slope portion beneath the drain, the results
are similar to those for the slope without drain but with the effect
more pronounced.

Fig. 10 Variation of local factor of
safety ratio (F.S.seepage/F.S.dry) for slope
with vertical and horizontal impervious
boundaries, and no drain
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– The influence of a horizontal drain in increasing the mass stability
was demonstrated by counters of safety factor ratios; this effect
appears to be significant particularly for the areas around the drain.
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