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Regional bias of landslide data in generating susceptibility maps
using logistic regression: Case of Hong Kong Island

Abstract On the basis of 1,834 landslide data for Hong Kong Island
(HKI), landslide susceptibility maps were generated using logistic re-
gression and GIS. Regional bias of the landslide inventory is examined
by dividing the whole HKI into a southern and a northern region,
separated by an east-west trending water divide. It was found that the
susceptibility map of southern HKI generated by using the southern
data differs significantly from that generated by using northern data,
and similar conclusion can be drawn for the northern HKI. Therefore,
a susceptibility map of HKI was established based on regional data
analysis, and it was found to reflect closely the spatial distributions
of historical landslides. Elevation appears to be the most dominant
factor in controlling landslide occurrence, and this probably reflects
that human developments are concentrated at certain elevations on
the island. Classification plot, goodness of fit, and occurrence ratio
were used to examine the reliability of the proposed susceptibility
map. The size of landslide susceptible zones varies depending on the
data sets used, thus this demonstrates that the historical landslide data
may be biased and affected by human activities and geological settings
on a regional basis. Therefore, indiscriminate use of regional-biased
data should be avoided.

Keywords Landslide data . Inventory . GIS . Regional bias . Hong
Kong . China

Introduction

Different methods for landslide susceptibility mapping
Susceptibility map is found very useful in estimating, managing
and mitigating landslide hazard for a region (e.g. Corominas and
Santacana 2003; Sassa et al. 2004). The terms of landslide hazard
and landslide susceptibility have been used in the literature in
an interchangeable manner (e.g. Saha et al. 2005), but hazard
normally include magnitude and frequency whereas susceptibil-
ity usually does not (Corominas et al. 2003). In this paper, we
will mainly use the term susceptibility instead of hazard. Many
review articles have addressed the issue of landslide suscepti-
bility, risk analysis and management, including Leroi (1997),
Hansen (1984), Fell and Hartford (1997), Einstein (1988, 1997), Varnes
(1984), and Hungr (1997). When landslide susceptibility is estimated,
historical landslide records were usually correlated to the local
geology, lithology, structure, geomorphology, hydrologic conditions,
vegetation, and climate. Although statistical means may be used for
such correlation analysis, the most appropriate and popular choice
appears to be the logistic regression (e.g. Marquinez et al. 2003;
Menendez-Duarte et al. 2003; Rowbotham and Dudycha 1998; Dai
and Lee 2001, 2002, 2003; Dai et al. 2001; Myster et al. 1997; Lee and
Min 2001; Chau et al. 2004b; Ohlmacher and Davis 2003; Yesilnacar
and Topal 2005; Wang and Sassa 2005; Lee 2004, 2005a, b; Ayalew
and Yamagishi 2005). For example, Rowlotham and Dudycha (1998)

concluded that logistic regression was the most useful method for
landslide. Ideally, a reliable landslide susceptibility map should carry
appropriate weights from historical landslide events, from geomor-
phological analysis, and from mechanics analysis of slides (e.g. Chau
and Lo 2004). Since all three aspects of susceptibility analysis involve
the handling and interpreting a large amount of factual, geological
and simulated data, the use of computer or information technology
is essential. Geographical Information System (GIS) appears to be
an appropriate choice (Coppock 1995). Some of these GIS-based sus-
ceptibility analyses focus on earthquake-induced landslides (e.g. Luzi
et al. 2000; Miles and Keefer 1999; Refice and Capolongo 2002), and
some focus on rockfall susceptibility (e.g. Cancelli and Crosta 1994).

Aims and objectives of this study
As mentioned in Chau et al. (2004a), GIS technology has been used
in analyzing landslide data in many different parts of the world, in-
cluding both developed and developing countries. However, none of
the previous studies examines the possibility of regional bias of the
landslide data. In other words, the landslide dependency on slope
angle, geology, and slope aspect may change from one region to
another. When a region consists mainly of south-facing and north-
facing slopes, the amount of sunshine, rainfall and wind received
by the north-facing and south-facing slopes may not be the same.
This difference may play a key role in the process of erosion and
weathering in such a way that the possibility of landslide occurrence
may also vary. Therefore, it seems necessary and reasonable to first
examine whether the local landslide inventory may reflect such dif-
ferences, otherwise the landslide data analysis may not yield reliable
predictions. However, to the best of our knowledge, there is no com-
prehensive study on the probable regional dependence of landslide
data within an area. The only related study is on the size of landslide
buffer zones around roads by Larsen and Parks (1997).

In the case of Hong Kong, GIS-assisted landslide hazard analysis has
only been proposed for Lantau Island, where the new International
Airport is located (Dai et al. 2001, 2002; Dai and Lee 2001, 2002; Lee
et al. 2001). However, most of the population of Hong Kong does
not locate at Lantau Island, but instead on the Hong Kong Island.
Therefore, both rockfall (Chau et al. 2003, 2004b) and landslide (Chau
et al. 2004a) hazards for Hong Kong Island have been considered.
However, as mentioned in the last paragraph, the possibilities of
regional bias of the data have not been considered.

Therefore, the main objective of this study is to investigate whether
there is a regional bias of the landslide data in Hong Kong. More
specifically, the northern and southern parts of the Hong Kong Is-
land will be analyzed separately using logistic regression. We should
emphasize that the landslide data of Hong Kong Island has not be
analyzed before using logistic regression. The related study by Chau
et al. (2004a) used a simple statistical weighting approach similar to
that of Ayalew et al. (2004). As shown in Fig. 1, the northern Hong
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Fig. 1 An aerial photograph showing the
east-west trending water divide line for
Hong Kong Island. The dotted line indicates
the water divide for the north- and
south-facing regions. In the lower left aerial
photo of the whole Hong Kong, the arrow
and solid line show the view of direction of
the larger photograph and water divide line
respectively

Kong Island mainly consists of north-facing slopes while the south-
ern part mainly consists of south-facing slopes. The results of these
regional data analyses will be compared to that obtained by using all
landslide data of the whole Hong Kong Island. It is well known that
Victoria Harbor (which is located just north of the Hong Kong Island)
is sheltered from bad weather especially during typhoon season. As
shown in Fig. 1 the urban developed in the northern Hong Kong
Island is much more rapid. Geologically, the southern Hong Kong
Island mainly consists of tuff while the northern Hong Kong Island
consists of both tuff and granite. In addition, the slopes south of the
water divide are more gentle whereas slopes north of the divide are
generally steeper. Therefore, all these differences may lead to regional
bias in the landslide occurrence.

In the next section, a brief summary of the geological condition and
the landslide inventory for Hong Kong Island will first be given; in
the section Logistic Regression Analysis for the landslide data, logistic
regression analysis is introduced and applied to the whole Hong
Kong Island using all, southern portion and northern portion of the
landslide data respectively; finally, the Discussions and conclusion
section concludes the paper.

Hong Kong Island and landslides inventory

Geological and weather condition of Hong Kong Island
The geological settings and the typical climatic situations of the Hong
Kong Island have been discussed by Chau et al. (2004a) and therefore
will not be repeated here. Only a brief summary is given here. Hong
Kong Island is the second largest island in the territory of Hong
Kong, but only comprises 7% of the total 1,098 km2 land area of Hong
Kong. The terrain of Hong Kong Island is hilly with steep slopes
exceeding 30◦, covered by superficial deposits. In most places the
average thickness of the deposits is about 2 m, but in some places up

to 30 m (Fyfe et al. 2000). The highest point is the Victoria Peak at
554 m, and to the east of it there are 439 m Mount Cameron and 507 m
Mount Parker. The island is underlain mainly by volcanic rock and
intrusive granite. Hong Kong’s climate is subtropical, with a winter
temperature of 10◦C to summer temperature of exceeding 31◦C. Foggy
weather is expected in spring, hot and humid weather in summer.
When a typhoon comes close to Hong Kong, rain can become heavy;
and landslides are very common in typhoon season from May to
September. The mean annual rainfall ranges from around 1,300 mm
along the coast to more than 3,000 mm on mountains. About 80%
of the rain falls between May and September, with August being the
wettest month.

Landslide data used in this study
In this section, landslide inventory used for the present susceptibil-
ity analysis is described briefly. They are mainly extracted from the
reports on “Hong Kong rainfall and landslides” which are published
annually by the Geotechnical Engineering Office (GEO) since 1984
and from a report compiling all landslide consequences since 1948
(GEO 1996). The current landslide inventory was supplied by the
GEO from 1982 to 2002, with a total of 7,726 landslides in the period
of 21 years and 1,834 of these from Hong Kong Island (23.7% of the
total data). Consider the fact that only 7% of the land of Hong Kong
is from Hong Kong Island, the rate of landslide occurrence on Hong
Kong Island is considerably higher than the rest of Hong Kong. This is
partially due to the fact that Hong Kong Island is the most populated
area in Hong Kong and many of its roads, buildings, and facilities are
built on steep slopes. The chance of not reporting a sizable landslide
event on Hong Kong Island is slim, whereas many landslides (espe-
cially those on natural slopes in rural areas or country parks) in the
New Territories of Hong Kong had never been reported if they did
not disturb normal human activities.
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Fig. 2 The locations of 1,834 landslide events on Hong Kong Island from 1982 to 2002 are
shown by the solid rhombus points, together with the background terrain relief map of TIN
(Triangulated Irregular Network) format generated by contour map using ArcMap. The red line
is the west-east trending divide line shown in Fig. 1; and the scale bar is in km

To examine regional bias, three landslide susceptibility analyses
have been conducted: (1) a susceptibility map of using all 1,834 data;
(2) a susceptibility map for southern Hong Kong using the landslide
data and geological information of the south of the water divide
shown in Figs. 1 and 2 (a total of 719 landslides); and (3) a susceptibility
map for northern Hong Kong using the landslide data and geological
information north of the water divide shown in Figs. 1 and 2 (a
total of 1,115 landslides). Figure 2 shows the locations of all 1,834
landslide points together with the east-west trending divide line and a
background terrain relief map in TIN (Triangular Irregular Network)
format generated by using ArcGIS.

Elevation distribution of Hong Kong Island and landslides
Some statistics of the landslide data will be briefly discussed. Using the
digital map of Hong Kong (scale of 1:5,000) and the “zonal statistics”
function under “Spatial Analyst” in ArcGIS Version 8.2 (for a grid of
30 m×30 m), we can extract the information of the slope angle, slope
aspect orientation, elevation and geology type of each landslide event.
In particular, ArcGIS Version 8.2 is an updated version of ArcView
3.2 by ESRI that allows for more functional options. In this study, we
mainly use ArcMap with “Spatial Analyst” and “3D-Analyst” options
and use ArcCatalog available in ArcGIS.

In terms of the elevation, the percentages of landslides occurred
within the ranges of elevation of 0–50 m, 50–100 m, 100–150 m,
150–200 m, 200–250 m and >250 m and the natural distributions of
elevation of Hong Kong Island are shown in Table 1. The data shown
in Table 1 is obtained by using the “zonal statistics” function. Table 1
shows that landslides are more likely to occur at an elevation of 0–
100 m. It seems not unreasonable because, as shown in Fig. 1, most of
the population is located on the reclaimed land or on the lower part
of the slopes; therefore, most of the cut slopes are concentrated in the
0–100 m elevation range. In other words, the elevation dependence
implicitly incorporates effect of roads and residential development (or
human activities) at low elevation into the present analysis. As shown
by Larsen and Parks (1997), the relation between human activities and
landslides can also be studied using buffer zones of varying sizes. Note
also that since landslide locations are reported at where landslides
stop, but not where they are initiated. Therefore, the elevation of

Table 1 The distribution of elevation of Hong Kong Island and the distribution of 1,834
landslide events among six different elevation ranges

Elevation ranges (m) Elevation distribution (%) Landslide distribution (%)
0–50 28 31
50–100 17 32
100–150 14 16
150–200 12 7
200–250 9 3
≥250 20 11

Table 2 The distribution of slope angle of Hong Kong Island and the distribution of 1,834
landslide events among eight different slope angle ranges

Elevation ranges (◦) Slope angle distribution (%) Landslide distribution (%)
0–10 28 28
10–15 7 12
15–20 8 10
20–25 12 11
25–30 16 13
30–35 14 11
35–40 8 8
≥40 7 7

landslide occurrence in the inventory is likely of bias toward the
lower ends.

Slope angle distribution of Hong Kong Island and landslides
In terms of the slope angle, the percentages of landslides occurred
within the ranges of 0–10◦, 10–15◦, 15–20◦, 20–25◦, 25–30◦, 30–35◦,
35–40◦ and ≥40◦ are given in Table 2 together with the natural slope
distribution. Table 2 illustrates that slope angle within ranges of 10–
15◦ and 25–30◦ appear to be most conducive to landslide occurrence.
However, we must emphasize that the reported locations of most
of these landslides are normally the locations where the sliding earth
materials stopped, not the initiation points or scars of landslide. Thus,
we may interpret that most landslides stop at slopping ground with
angles of 10–15◦ and 25–30◦, and probably initiate at a larger slope
angle.

Geology distribution of Hong Kong Island and landslides
In terms of the geology, Hong Kong has been subjected various geo-
logical actions and changes in geological history, therefore it is diffi-
cult to classify surface geology accurately. All igneous, volcanic, sedi-
mentary and metaphoric rocks have been found in Hong Kong. There
are probably more than 100 types of surface geology, depending on
how we classify them. For the case of Hong Kong Island, the situation
is little bit simpler. In this study, only five geological category have
been adopted, and they are volcanics (mainly tuff), minor intrusives
(including aplite, trachit, fledsparphyric rhyolite), sedimentary rocks
and metasediments (sandstones, conglomerate, siltstone, mudstone
and chert), granitic rocks (including granite and granodiorite), and
debris deposits (talus, alluvium and colluvium). They are denoted in
this study as Categories I, II, III, IV and V respectively. In terms of
geological category, the percentages of landslides occurred within the
Categories I–V are shown in Table 3 together with the natural geo-
logical distributions. The odds of landslide occurrence in Category
IV (or for granitic rocks) is higher than 1 (odds equals 1 meaning a
50–50 chance of having landslide). Table 3 demonstrates that granitic
formation is more conducive to landslide occurrence on Hong Kong
Island.
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Table 3 The distribution of geological category of Hong Kong Island and the distribution of
1,834 landslide events among five different geological categories

Geological category Lithologic distribution (%) Landslide distribution (%)
I 48 46
II 4 1
III 7 4
IV 27 38
V 14 11

I: volcanics; II: minor intrusives; III: sedimentary rocks and metasediments; IV: granitic rocks; V:
debris deposits

Logistic Regression Analysis for the landslide data
In this section, we use logistic regression to correlate the landslide
data with the geology, slope angle, slope aspect, and elevation using
the standard statistical software (SPSS). A brief introduction of lo-
gistic regression analysis will first be given, following by the logistic
regression analysis for the whole Hong Kong, and finally separate
logistic analyses for northern and southern Hong Kong. The suscep-
tibility maps by different approaches will be compared, and regional
bias of the landslide data will be discussed.

Brief introduction of logistic regression
Various methods have been proposed to generate the landslide sus-
ceptibility maps, including neural network (Lee et al. 2004c), logistic
regression (Rowbotham and Dudycha 1998; Dai and Lee 2002; Lee
and Min 2001; Chau et al. 2004b; Ohlmacher and Davis 2003), wet-
ness index approach (Gritzner et al. 2001), and numerical simulation
(Chau and Lo 2004), and remote sensing (Lee et al. 2004b; Sarkar
and Kanungo 2004). However, the most mature and well-adopted
approach appears to be logistic regression analysis in relating land-
slide probability to local geology and geomorphology. Since our focus
of this paper is not to investigate which mathematical or statistical
method fit the landslide occurrence best, logistic regression would be
used as a tool. We, however, expect that the finding on the regional
bias of landslide data should not be too sensitive on the particular
method used (in this case the logistic regression).

Logistic regression relates the term “odds” or “odds ratio”, which is
defined as the probability of landslide divided by the probability of no
landslide (odds=Pr/(1−Pr), where Pr is the probability of landslide
occurrence having values from 0 to 1). Therefore, if the odds is from
0 to 1 (corresponding to Pr from 0 to 0.5), the chance of landslide
is less than that of non-occurrence (note that Pr=0.5 implies equal
chance of landslide and non-landslide). For higher chance of landslide
occurrence, Pr is from 0.5 to 1 or odds from 1 to ∞. Therefore, the
odds is not a symmetric function with respect to the borderline of
1 because 0 < odds ≤ 1 for higher odds of non-occurrence whereas
1 < odds < ∞ for higher odds of occurrence. One way to achieve
symmetric property is to take the natural logarithm of odds and the
resulting product is called “logit” or Z (i.e. Z=log(odds) or odds
= exp(Z)), with −∞<Z<0 for higher odds of non-occurrence and
0<Z<∞ for higher odds of occurrence. It is straightforward to invert
Pr in terms of odds and then substitute the definition of Z into the
resulting equation to yield

Pr = e Z

1 + e Z
= 1

1 + e−Z
(1)

where Z is normally assumed to depend on the independent variables
affecting landslide occurrence. In logistic regression analysis, the logit

Z is assumed as a linear combination of the independent variablesXi

(i=1, 2,. . ., n) as

Z = B0 + B1 X1 + B2 X2 + · · · + Bn Xn (2)

whereBi are the coefficients reflecting the contribution of indepen-
dent variablesXi to the logit Z. This particular form of dependence is
also called log-linear. In logistic regression, theBi are estimated using
the maximum likelihood methods (in contrast to the least squares
methods in linear regression). That is, the coefficientsBi that make
our observed results most “likely” are selected. Normally, an itera-
tive algorithm is used forBi estimations. In the present analysis, the
standard software SPSS is used to estimateBi .

Note that the probability of landslide occurrence is a nonlinear
function of each independent variable Xi because of the exponential
function involved. The relative importance of different independent
variablesXi can be examined easily. For example, from the following
equation

e Z = e B0 e B1 X1 e B2 X2 · · · e Bn Xn (3)

it is clear that odds increases exponentially with the independent
variableXi . Mathematically, if an independent variableXi increases
one unit, the odds of the occurrence increases by exp(Bi ) times. Thus,
a positive and large value ofBi indicates that a strong dependence of
the odds in terms of the independent variableXi . Logistic regression
is good for analysis of categorical variables, that is, the variables can
be divided into categories. For example, if slope angle is a variable
affecting landslide occurrence, it is assumed dividable into several
categories, such as 0–10◦, 10–15◦, 15–20◦, 20–25◦, 25–30◦, 30–35◦, 35–
40◦ and ≥40◦. Comparing to ordinary least square regression (or
linear regression), logistic regression does not assume linearity of
relationship between the independent variables and the dependent,
does not require normally distributed variables, does not assume
variables having equal statistical variances, and in general has less
stringent requirements. Normally distributed error terms are not
assumed. But as any other statistical methods, there are drawbacks.
All relevant variables in the regression model must be included, but
on the other hand all irrelevant variables must be excluded. Logistic
regression is particularly useful for fitting data with discrete outcome,
like in the present case that landslides either occur or do not occur (1
or 0 is normally assigned to them respectively).

For more details on the theory and concept of logistic regression,
the readers are referred to Pampel (2000), Kleinbaum and Klein
(2002), Hosmer and Lemeshow (2000), and Menard (2002).

Logistic regression for the whole Hong Kong Island
In this study, the four chosen independent variables are geological
condition, slope angle, slope aspect and elevation. As shown in
Table 4, the geological is divided into 5 categories (i.e. I, II, III, IV and
V for volcanics, minor intrusives, sedimentary rocks and metasedi-
ments, granitic and superficial deposits); slope angle into 8 categories
(0–10◦, 10–15◦, 15–20◦, 20–25◦, 25–30◦, 30–35◦, 35–40◦ and ≥40◦); slope
aspect into 9 categories (North, Northwest, Northeast, South, South-
west, Southeast, East, West, Flat); and elevation into 11 categories
(0–50 m, 50–100 m, 100–150 m, 150–200 m, 200–250 m, 250–300 m,
300–350 m, 350–400 m, 400–450 m, 450–500 m, and >450 m). There-
fore, there are a total of 33 categories (i.e. n=33 in Eqs. (1) and (2)). As
mentioned earlier, SPSS is used to get the B coefficients. Note that one
category must be left out in the SPSS analysis. More specifically, we
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Table 4 The variables, categories and coefficients of the logistic regression using all landslide
data, landslide data of northern Hong Kong Island and landslide data of southern Hong Kong
Island

Variable Category B coefficients
All data Northern data Southern data

Elevation 0–50 m 2.521 2.7 2.309
50–100 m 1.642 1.748 1.483
100–150 m 0.749 1.144 −0.034
150–200 m 0.061 −0.369 −0.661
200–250 m −0.732 −0.339 −1.765
250–300 m −0.877 −1.549 −0.128
300–350 m −1.01 −0.819 −1.183
350–400 m 0.09 −0.078 −0.302
400–450 m 0.599 0.064 1.576
450–500 m −1.427 −1.746 −0.719
>500 m −1.616 −1.494 −0.576

Slope aspect Flat −1.011 −1.004 −1.717
North 0.207 −0.027 0.446
Northeast −0.225 −0.327 −0.055
East −0.096 −0.02 −0.288
Southeast −0.121 0.115 0.042
South 0.327 0.283 0.156
Southwest 0.572 0.63 0.717
West 0.217 0.353 0.26
Northwest 0.13 −0.003 0.439

Slope angle 0–10◦ −0.088 −0.294 0.416
10–15◦ 0.198 −0.04 0.91
15–20◦ 0.346 0.128 0.631
20–25◦ −0.047 0.169 −0.234
25–30◦ −0.104 −0.05 −0.382
30–35◦ −0.16 −0.094 −0.431
35–40◦ −0.027 −0.001 −0.205
>40◦ −0.118 0.182 −0.705

Geology I 0.32 0.457 0.237
II −0.778 −0.821 −0.597
III 0.32 0.137 1.181
IV 0.41 0.427 −0.009
V 0.272 −0.2 −0.812

Constant B0 −1.008 −1 −0.615

can either use the binary coding or dummy variable coding (i.e. set
the value of the right category of a variable as 1 and all other zeros with
the last category left out as the reference category for the variable), or
the effect or deviation coding (i.e. set the value of the last category to
−1). For the case of deviation coding, the B coefficient of the reference
or last category can be obtained by taking the negative value of the
sum of all other B coefficients in the same variable; and for the case
of dummy variable coding, the B coefficient of the reference category
is zero. Although the resulting B values are not the same, the final
susceptibility maps generated from these coefficients are the same.
In the present approach, the effect coding is used since the logistic
regression coefficient of the last category can also be displayed.

To generate the geological and geomorphological data for logistic
regression analysis, ArcGIS has been used. In particular, the 1:5,000
digital contour map of 10 m elevation interval is used to generate the
TIN (Triangulated Irregular Network) and DEM (Digital Elevation
Model), which is shown in Fig. 3. On the basis of this TIN file, raster (or
pixel in the digital map) files of elevation, slope aspect and slope angle
can be generated for all locations of Hong Kong Island. In particular,

Fig. 3 The raster plot of the elevation map generated from TIN model by using ArcGIS with
a resolution of 30 m×30 m. The lower elevation are denoted by orange and yellow, whereas
higher grounds by green and blue

we can use “3D-Analyst” to convert the “TIN to Raster”. The raster
maps can be generated for elevation, slope aspect and slope angle, as
shown in Figs. 3–5. The raster map of geology is generated from the
1:20,000 digital geology map of Hong Kong, as shown in Fig. 6. The
resolution of the DEM model and other raster maps is 30×30 m, which
is found to be a good choice by Lee et al. (2004a). The digital version
of the geological map is supplied by GEO. The raster value of slope
angle, geology category, slope aspect, and elevation are extracted for
each landslide point using “zonal statistics” function in ArcGIS. These
geological and geomorphological data are not only generated for the
1,834 landslides but also for another 1,834 non-landslide points (this
is a requirement by SPSS), which are selected randomly throughout
the region (excluding flat lands) but spatial overlapping with the
landslide points must be avoided (see Fig. 7). In reality, the generation
of these non-landslide points can also be done using ArcCatalog and
ArcMap. Once this non-landslide shape file is available, we can use
“zonal statistics” to extract the required information of geology, slope

Fig. 4 The raster plot of slope aspects generated from TIN model by using ArcGIS with a
resolution of 30 m×30 m. The aspect directions facing northeast are lighter in color whereas
those facing northwest are darker and all values are between 0 and 360◦
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Fig. 5 The raster plot of slope angle generated from TIN model by using ArcGIS with a
resolution of 30 m×30 m. Steeper slopes are shown in dark blue whereas more gentle slopes
by light blue, and all values are from 0 to 90◦ . Note that the artificial triangular sections on the
north coastline are results from the TIN generated process from the contour map

Fig. 6 The raster plot of geological category generated from TIN model by using ArcGIS with
a resolution of 30 m×30 m. Categories I, II, III, IV and V are for volcanics, minor intrusives,
sedimentary rocks and metasediments, granitic rocks and debris deposits

angle, slope aspect and elevation, similar to what we have done for the
landslide points. The extracted data from ArcMap can be read and
edited by using Microsoft Excel, before converted to database format
for SPSS analysis.

For SPSS analysis, a data file containing all landslide data and non-
landslide data and the associated values of variables (i.e. put 1 into
the “right” category of each slope aspect, slope angle, elevation and
geology) must be prepared in a worksheet format and all information
in this file will be used simultaneously in the SPSS analysis. Note that
nearly all data in this file can be extracted from the “Zonal Statistics”
function under “Spatial Analyst” in ArcMap.

Once the file is prepared, SPSS can be used to estimate the B
coefficient. The result of the analysis is shown in column 3 of
Table 4. It can be seen that elevation of 0–50 m is the most dom-
inant factor in the landslide occurrence. As mentioned earlier, all B
coefficients larger than 0 implies a probability higher than 0.5 whereas

Fig. 7 A Hong Kong Island map showing non-landslide incident points used in our logistic
regression analysis (a total of 1,834 points). The chosen non-landslide points are pink and blue
for those lying north and south of the divide line respectively. Note that we deliberately do not
choose points from the reclamation areas that the landslide susceptibility is minimal

negative B coefficients suggest a landslide occurrence of less than 50%
chance. Therefore, in the statistical sense granitic formation at an el-
evation between 0 and 50 m with a slope angle of 15–20◦ and slope
aspect facing southwest is more susceptible to landslide occurrence.

Logistic regression for the northern Hong Kong Island
As discussed in the Introduction section, the main objective of this
study is to examine the regional bias of landslide data used in pre-
dicting the landslide susceptibility. Therefore, this section examines
the possibility of the regional bias of the landslide data. The Hong
Kong Island is divided into two parts using a roughly west-east trend-
ing water divide shown in Fig. 1 such that the northern part mainly
consists of north-facing slopes whereas the southern part mainly con-
sists of south-facing slopes. The total number of landslide events in
the northern Hong Kong Island is of 1,115 landslides. Another set of
1,115 non-landslide points are selected and geological and geomor-
phological information of these data points are also extracted by
“zonal statistics” function of ArcMap. The locations of these points
are selected such that these points are distributed uniformly over the
northern Hong Kong Island, which are shown in Fig. 7.

The results of the landslide data analysis of northern Hong Kong
Island are shown in column 4 of Table 4. It was found that the elevation
influence on the landslide occurrence is stronger than that for all
landslide data (results in column 3 of Table 4). Most landslides occur
on slope of steeper than 40◦. The type of geology most conducive to
landslides is volcanic or tuff.

Logistic regression for the southern Hong Kong Island
The slopes in the southern part of the west-east trending water divide
are, in general, more gentle than the slopes of the northern parts, and
the area is less developed. The southern Hong Kong Island is facing
the South China Sea to the south and the Pacific Ocean to the east.
The total number of landslide events in the southern Hong Kong
Island is 719, and again the same number non-landslide points are
selected uniformly over the area (see Fig. 7). The results of the analysis
are given in column 5 of Table 4. As shown in Table 4, elevation of 0–
100 m remains the most dominant factor in the landslide occurrence.
But comparing to the northern Hong Kong Island, landslide is more
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likely to occur at elevation of 400–450 m with a B coefficient of
1.576 comparing to 0.064 for the northern part. A closer look of the
landslide data reveals that many landslides occur in the “developed
peak area” occurred south of the water divide, resulting in a higher
value of B coefficient. In terms of the slope angles, the southern Hong
Kong Island landslides are more likely to occur for more gentle slopes
whilst for the northern Hong Kong Island landslides are also likely
to occur at slope angles larger than 40◦ (see Table 4). As shown in
Fig. 1, the slopes of the northern Hong Kong Island are steeper than
the southern part; therefore, as expected, the probability of landslide
occurrence on steeper slopes is higher. In terms of geology, both tuff
and granite are conducive to landslides in the north whereas tuff
and sedimentary rocks appear to be more conducive to landslide
occurrence in the south.

By comparing the results of logistic regression analyses for both
south and north Hong Kong Island, it appears that there is a strong
regional dependence of the landslide data (see the difference in the
B coefficient given in Table 4). More discussion on this will be given
again in later sections.

Combined hazard map and its reliability
To illustrate the difference between the logistic regression analyses
in the sections Logistic regression for the whole Hong Kong Island,
logistic regression for the northern Hong Kong Island and logistic
regression for the southern Hong Kong Island, the probability of
landslide can be estimated by substituting the B coefficients given in
Table 4 into Eqs. (1) and (2). For the present case, n equals 33 for Xi

(i= 1, . . ., n) (see Table 4) and with i=1, . . ., 11 for elevations, i=12,
. . ., 20 for slope aspects, i=21,. . ., 28 for slope angles, and i=29,. . .,
33 for geology. To illustrate how to find the probability of landslide
occurrence, we consider a particular example. For example, for a
location with elevation of 35 m, slope aspect is facing north, slope
angle of 23◦, and geology of granitic formation, we can set X2, X13,
X24 and X32 equals 1 and all others Xi set to zero in Eq. (2), then the
probability can be estimated from (1).

The actual calculation is done by using the “Raster Calculator”
function under the “Spatial Analyst” of ArcMap. The final map is
normally generated using “Raster calculator” a few times. The raster
calculation is normally done on one raster layer (or one variable) by
one raster layer. We first assign the B values to each of the category
of each variable. After B value assignment to each category, we can
combine all layers by using Eqs. (1) and (2) to yield the susceptibility
using raster calculator. The final logit is then calculated before using
Eq. (1) to find the susceptibility. In addition, since the reclaimed
flat land on the northern edge of the Hong Kong Island is far from
hillside, the landslide hazard in this flat areas have to be excluded. In
the present analyses, the hazard will be set to zero if any location has
an elevation of smaller than 20 m and a slope angle of less than 5◦. In
all hazard maps given in Figs. 8–11, all unrealistic landslide hazards on
flat ground far from hillside has been removed using such approach.

The hazard maps estimated by using the B coefficients from the
northern data and from the southern data are given in Figs. 8 and 9
respectively. Both landslide susceptibility maps can be compared with
the original landslides data shown in Fig. 2. It can be seen that if the
formula for predicting the northern region is extended to estimate
the whole Hong Kong island, the prediction will differ significantly
from the actual landslide data in the extended part. The same is also
true for extending the southern formula to the northern area.

Figure 10 shows the landslide susceptibility map by combining the
northern map with the southern map (i.e. combining the northern

Fig. 8 Landslide susceptibility map of the whole Hong Kong Island generated using the B
coefficients from landslide data in the Northern part of HK Island only (see the fourth column
of Table 4). The original landslide locations are denoted as solid yellow rhombus. The red zone
represents landslide susceptibility of higher than 0.5. All given values are landslide probability
predicted by Eqs. (1) and (2) using B values in column 4 of Table 4

Fig. 9 Landslide susceptibility map of the whole Hong Kong Island generated using the B
coefficients from landslide data in the Southern part of HK Island only (see the fifth column of
Table 4). The original landslide locations are denoted as solid yellow rhombus. The red zone
represents landslide susceptibility of higher than 0.5. Note that the red zones for the “Southern
Hong Kong” are substantially smaller than that predicted in Fig. 8. All given values are landslide
probability predicted by Eqs. (1) and (2) using B values in column 5 of Table 4

part of Fig. 8 and the southern part of Fig. 9). As it can be shown in
Fig. 10 that the landslide points are mainly within the red zone with a
probability of landslide occurrence of larger than 50%. Therefore, if
we set 0.5 as the probability of the borderline between a high and low
hazard zone, the susceptibility map of Fig. 10 appears to be acceptable
and can reflect what had occurred in the past.

A standard analysis in logistic regression normally includes a
so-called “classification plot of 0 and 1” for the observed groups and
the predicted probability. In particular, the probability of landslide
occurrences can be calculated for all raster points of landslide occur-
rence and of non-landslide occurrence. If the predicted probability
of any landslide raster point is larger than 0.5 (a number of 1 is
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Fig. 10 The landslide susceptibility map of the whole Hong Kong Island by combing the
northern susceptibility map from the “north-data-analysis” and the southern susceptibility map
from the “south-data-analysis”. The map is a result of combining the northern part of Fig. 8 and
the southern part of Fig. 9. The original landslide points are given as yellow dots

Fig. 11 A more refined landslide susceptibility map of the whole Hong Kong Island shown in
Fig. 10, using nine equal increments of susceptible levels. The red zones are more susceptible
to landslide occurrence

assigned to this point), we consider the prediction is correct, and
the same for non-landslide raster point with a predicted probability
of less than 0.5 (a number of 0 is assigned to this point). Then, all
data points (both landslide and non-landslide points) can be used
as a check for the coherence of the hazard map. In particular, we can
count the number of “1” in the zone with probability larger than 0.5
and the number of “0” in the zone with probability less than 0.5. It
was found that the correct percentages are 74.4%, 73.7% and 79.3%
for the cases of using all data points (1,834×2=3,668), northern
data points (1,115×2=2,230), southern data points (719×2=1,438)
respectively. The correct percentage of the combined hazard map
is 76.5 which is only slightly higher than that for using all data.
However, if we measure the size of the zone with susceptibility

Table 5 Comparison of predicted areas with susceptibility larger than 0.5 using all-data-
analysis (using all landslide data), south-data-analysis (using landslide data south of the water
divide in Fig. 2) and north-data-analysis (using landslide data north of water divide in Fig. 2)

Region Area with susceptibility ≥0.5 (km2)
Using north data Using south data Using all data

North 13.93 9.76 12.68
South 24.17 16.01 19.90

≥0.5 (or “red zone”) in Figs. 8–10, the difference between different
analyses is much bigger. Table 5 compiles the areas of the “red zones”
of both the north and south regions from different logistic regression
analyses using south, north and all data (given in Figs. 8, 9 and 10
respectively). There is a big difference in terms of the size of the
predicted susceptible zone. For example, the size of the susceptibility
zone (with probability ≥0.5) of south Hong Kong obtained by all-
data-analysis and north-data-analysis were 24% and 51% larger than
that of the south-data-analysis. This strongly indicates that there is a
strong regional bias. Therefore, the standard classification plot does
not appear to be an effective way of investigating the regional bias of
data.

We also have conducted another series of logistic regression analysis
by removing each of the categories of elevation, slope aspect, slope
angle, and geology. This is a standard technique in logistic regression
analysis to examine the statistical significance of each of the selected
independent variables (e.g. Hosmer and Lemeshow 2000; Menard
2002). The “−2 log likelihood ratio” (or the so-called −2LL) for each
of the all, northern and southern data analyses were obtained, and
it was found that −2LL is the smallest if all variables of elevation,
slope aspect, slope angle and geology are included. The −2LL can be
considered as a goodness of fit of the model. Since the likelihood is
between 0 and 1, log likelihood would be from negative infinity to
zero, and in turn the −2LL would be from 0 to infinity. Therefore,
the original analysis of incorporating all variables should be used.

In comparison to other studies, similar logistic regression by Dai
and Lee (2002) for Lantau Island in Hong Kong also found that
elevation is the most dominant factor, among slope aspect, lithology,
land-use type and slope angle. Since the population of Lantau Island
is much less than that of Hong Kong Island, therefore it seems that the
elevation dependence is not caused by the density of human activities
(say the existence of cut slopes behind roads and buildings) alone, but
appears to be an inherent characteristics of landslide of Hong Kong.
However, this observation needs to be further verified. One way to
verify this is to add cut slope angle as a new independent variable
and repeat the analysis to see whether the elevation dependence of
both Lantau Island and Hong Kong would disappear. However, such
analysis is out of the scope of this study.

Another way to investigate the reliability of the hazard analysis
is to consider the ratio of the landslide location points versus the
landslide susceptibility (Lee and Min 2001). According to Lee and
Min (2001), the susceptibility or the landslide probability should first
be divided into intervals such that within each of them the amount of
coverage area is about the same. Such a plot of the susceptibility map
is given in Fig. 11. The results are also summarized in Table 6. The
area with susceptibility =0 is resulted from our exclusion analysis
for reclamation areas (see earlier section). The rest of the areas are
roughly divided into zone of 7 km2 (see columns 2 and 3 of Table 6),
according to the level of susceptibility. The observed landslide events
within each of this zone are extracted by using “Zonal Statistics”
of ArcMap and are reported in columns 4 and 5. Note that b/a>1
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Table 6 Comparison of landslide occurrence and landslide susceptibility map using logistic
regression method for Hong Kong Island

Range of
susceptibility

Area distribution Landslides occurred b/a Landslide
(km2)

Area (km2) Area ratio
(a, %)

Landslide
number

Area ratio
(b, %)

0.00 14.7141 18.570 182 9.924 0.534 12.369
0.001–0.116 7.0317 8.874 23 1.254 0.141 3.271
0.117–0.209 7.1379 9.008 55 2.999 0.333 7.705
0.21–0.297 7.2801 9.188 93 5.071 0.552 12.774
0.298–0.394 7.5195 9.490 102 5.562 0.586 13.565
0.395–0.545 7.2072 9.096 168 9.160 1.007 23.310
0.546–0.684 7.2936 9.205 262 14.286 1.552 35.920
0.685–0.769 6.8886 8.694 338 18.430 2.120 49.067
0.77–0.858 6.9786 8.807 278 15.158 1.721 39.836
0.859–0.989 7.1856 9.069 333 18.157 2.002 46.343

The total area of Hong Kong Island is 79.2369 km2. The total number of landslides is 1,834.
When b/a=1, the susceptibility of landslide is average. The average landslide for Hong Kong
Island is 23.14 landslides/km2. The area ratio, a, represents the distribution of area within each
susceptibility given in column 1. The area ratio, b, represents the distribution of area containing
at least one landslide for each of the susceptibility range in column 1 (counting using cells of
30 m×30 m)

indicates a chance of landslide occurrence higher than average. As
shown in Table 6, the susceptibility and probability of larger than 0.5
roughly corresponds to b/a>1. This further indicates that the present
logistic regression does yield a reliable hazard or susceptibility map
for Hong Kong Island.

Another way to interpret the same data is to consider the landslide
events per square kilometer, comparing to the average number of
landslides per square kilometer (see the last column of Table 6).
Note that the first row of Table 6 is 0 for the susceptibility, which
was set artificially to zero for flat reclamation areas (as remarked
earlier). Therefore, the first row of data is somewhat artificial. If
we compare the second and the last row of the susceptibility (i.e.
consider susceptibility of 0.001–0.116 and 0.859–0.989), the landslide
per square kilometer increases from 3.271 to 46.343, or an increase of
14 times. This value is about the same as 15.8, which is the ratio of
the median of the second and the last row of 15.8 (i.e. 0.924/0.0585).
Therefore, the predicted susceptibility agrees very well with the actual
landslide observation.

To further examine this comparison, Table 7 compiles the median
susceptibility level of each range (column 1 in Table 6) versus the actual
observed landslide density within each range. To make comparison,
the third and fifth columns give the normalized median susceptibility
versus the normalized observed landslide density. The last column of
Table 7 shows that the difference between the predictions (column
3) and observations (column 5) is less than 30% for all susceptibility
levels. Therefore, the present logistic regression model is considered
quite reliable.

Discussions and conclusion
A framework for analyzing landslide hazard analysis using GIS is pro-
posed for Hong Kong Island on the basis of 1,834 landslide records
from 1982 to 2002. Logistic regression analysis was conducted to yield
a susceptibility map for Hong Kong Island. In addition, to exam-
ine the possible regional dependence of the landslide data, the Hong
Kong Island is divided into the southern and the northern regions
by an east-west trending water divide. Although the north region is
smaller than the southern, 1,115 landslide falls onto the northern part

Table 7 Comparison of median landslide susceptibility with the observed landslide density
at various susceptibility levels

Range of
susceptibility

Median susceptibility Observed landslide
density (number/km2)

%
differencea

Actual Normalized Actual Normalized
0.001–0.116 0.0585 1 3.271 1 –
0.117–0.209 0.163 2.78 7.705 2.34 −16
0.21–0.297 0.2535 4.33 12.774 3.91 −10
0.298–0.394 0.346 5.91 13.565 4.15 −30
0.395–0.545 0.47 8.03 23.310 7.13 −11
0.546–0.684 0.615 10.51 35.920 10.98 4
0.685–0.769 0.727 12.43 49.067 15.00 21
0.77–0.858 0.814 13.91 39.836 12.18 −12
0.859–0.989 0.924 15.79 46.343 14.17 −7

aThis is the % difference between columns 3 and 5

and the remaining 719 landslide data falls within the southern region.
That is, the northern Hong Kong has a higher density of landslide
occurrence. Different susceptibility analyses have been conducted by
using the north data, the south data and the whole set of data sep-
arately in generating the susceptibility maps. It was found that the
susceptibility map of the southern Hong Kong Island generated by
using north data differs significantly from that generated by using
south data only, and similarly for the northern Hong Kong Island.
Therefore, a final version of susceptibility map is generated by com-
bining the northern susceptibility map with the southern one; and
this final map appears to reflect closely the spatial distributions of
historical events. The elevation appears to be the most dominant fac-
tor in controlling landslide occurrence. More refined comparisons at
all levels of susceptibility are given in Table 7. The goodness of fit of
the model was also examined by using the relative values of −2LL.
Classification plot and occurrence ratio proposed by Lee and Min
(2001) were used to examine the reliability of the proposed hazard
map as well. The results of these goodness-of-fit analyses suggest that
the present hazard model for Hong Kong Island is reliable and should
at least provide a good first order prediction of landslide occurrence.
But, of course, more sophisticated approach by incorporating land-
slide dynamics should be used if a more accurate prediction is needed
(e.g. Chau and Lo 2004).

In addition, note that the majority of the landslide inventory used
in this study is for cut slope failures. If we include a new variable
“cut slope”, add the cut slope angle as category and repeat the logistic
regression analysis, the landslide susceptibility for low areas without
cut slopes probably would be much lower. The strong correlation of
landslide susceptibility with low elevation may subsequently decrease.
However, the inventory of the 57,000 cut slopes in Hong Kong and
their corresponding cut slope angles are not readily available in GIS
format. This revised analysis should be a meaningful analysis in the
future.

An obvious drawback in our present logistic regression model is
that the landslide susceptibility of flat areas has to be removed manu-
ally whereas landslide susceptibility maps by other methods, such as
Discriminant Analysis (Santacana et al. 2003), Artificial Neural Net-
works (Lu and Rosenbaum 2003), Matrix Method (Fernandez et al.
1999), and Favourability Functions (Remondo et al. 2003), appear not
having this problem.

One practical and theoretical question that was frequently asked
is how much data is needed for developing a reasonable logistic
regression model. In the statistical sense, more landslide data should
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yield more reliable model (if there is a strong correlation). Although
it is difficult to give a definite minimum number of data needed for
such logistic regression analysis, we believe that for the present case of
Hong Kong Island (i.e. an average of 23 landslide/km2) the number of
landslide events should provide a rough guideline for similar analysis
for other parts of the world.

Nevertheless, this study strongly illustrates that the historical land-
slide data may be bias and affected by human activities and geological
settings on a regional basis. Therefore, indiscriminate use of regional-
biased data should be avoided. Only regional landslide records for
similar level of human activities and similar geological setting should
be analyzed simultaneously. More importantly, landslide statistics
should not be borrowed indiscriminately from one region to another
in generating landslide susceptibility maps.
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