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Abstract
The food available in open-air landfills, one of the most common predictable anthropogenic food subsidies (PAFS), can 
have a profound impact on animal biodiversity. Understanding how and to what extent PAFS affect wildlife is crucial for a 
sustainable management of resources. Most large gulls behave as opportunistic foragers and constitute a good avian model 
to analyze the effect of PAFS reduction on animal populations. Using individual data from a yellow-legged gull population 
of the Basque coast (northern Iberia) collected over a 15-year period, we estimated survival and reproductive parameters 
and used them to parameterize an age-structured population model to explore the effects of the local landfill closure. Local 
survival probability declined with time as a consequence of the progressive closure of the local landfill sites. The top-ranked 
models included a quadratic function of time, suggesting an acceleration of mortality during the later years, especially in 
juveniles, while survival in adults was linear. An effect more pronounced in first year birds than in older birds. Population 
models predict a decrease of the population and confirmed a greater sensitivity of the population growth rate to adult survival 
probability. Overall, our results suggest that the reduced carrying capacity of the system resulted after landfill closures have 
caused a population decline which is expected to continue in the near future.
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Introduction

Predictable anthropogenic food subsidies (PAFS, Oro et al. 
2013), like the food available in open-air landfills, can have 
an impact on local biodiversity, from individual to popula-
tion levels, and on the structure and functioning of entire 
ecosystems (Oro et al. 1995; González-Solís et al. 1997; 
Votier et al. 2004; Hobson et al. 2015). Understanding how 
and to what extent PAFS affect wildlife is crucial to know 
and quantify the impact of human activity toward a sustain-
able management of resources. The exploitation of PAFS 
by opportunistic animals improves their breeding output 
through an increase in breeding investment, chicks growth 
rates, hatching success (Bosch et al. 1994; Oro et al. 1995; 
Belant et al. 1998; Duhem et al. 2002; Tortosa et al. 2002; 

Steigerwald et al. 2015), body condition (Auman et al. 2008),  
or survival (Weiser and Powell 2010; Plaza and Lambertucci 
2017). Predictable food sources also contribute to reduce dis-
persal (Arizaga et al. 2014b; Gilbert et al. 2016) or migration 
(Hebblewhite and Merrill 2011; Bonnet-Lebrun et al. 2020).  
In some cases, the general positive effect on population 
growth (Rideout et al. 2012) promotes geographic expansion 
(Duhem et al. 2008). The role of PAFS worldwide has been 
studied extensively (Duhem et al. 2008), but there is much less 
research on population response after PAFS removal (but see 
Payo-Payo et al. 2015; Steigerwald et al. 2015; Delgado et al.  
2021b). In Europe, many opportunistic bird species, including  
several species of gulls, raptors, storks, or herons among sev-
eral other (Plaza and Lambertucci 2017), depend, to different  
degrees, on landfills.

The recent EU directive on sustainable waste manage-
ment establishes the closure of open-air landfill (theo-
retically, they should have closed by 2020; Directives 
1999/31/EU and 2008/98/CE) and it is expected to have 
an impact on the ecology of landfill foragers. Most large 
gulls (genus Larus) behave as opportunistic foragers 
(Duhem et al. 2003; Ceia et al. 2014; Steigerwald et al. 
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2015; Garthe et al. 2016) and they constitute a good avian 
model to analyze the effects of PAFS closure on animal 
populations (Noreen and Sultan 2021). Gulls are long-
lived organisms that prioritize investment on adult survival 
to the one on reproductive output (Gaston 2004; Newton 
2013). The closure of a landfill can lead to several pos-
sible scenarios with different demographic consequences: 
(1) it can impact only on gull reproductive output, which 
will have no or little consequence on population growth 
rate; (2) it can decrease survival, with a weak to strong 
impact on population growth rate, depending on the age-
class affected; (3) it can simultaneously influence repro-
duction and survival. These three scenarios correspond to 
a progressively stronger impact on population dynamic.

In southern Europe the gull more closely linked to landfill 
is the yellow-legged gull (L. michahellis), a medium-large gull 
with an opportunistic diet. Since the 1980s, yellow-legged gull 
numbers increased all over the species distribution area due 
to the availability of food in open-air landfill (Morais et al. 
1998; Bosch et al. 2000; Skorka et al. 2005; Tavecchia et al. 
2007; Duhem et al. 2008; Arizaga et al. 2009) as shown by the 
large waste items in the diet (Duhem et al. 2005; Neves et al. 
2006; Ramos et al. 2009; Moreno et al. 2010; Arizaga et al. 
2013; Egunez et al. 2017; Lopes et al. 2021). In Spain, the 
last census at country level estimated ca. 125,000 adult breed-
ing pairs (Molina 2009); however, the population has recently 
declined all around the country due to a progressive closure of 
open-air landfills (Oliveira et al. 2022). The south-eastern part 
of the Bay of Biscay, in northern Spain, hosts ca. 2300 pairs 
(Arizaga et al. 2022). This population made an extensive use 
of landfills (Arizaga et al. 2013; Egunez et al. 2017; Zorrozua 
et al. 2020a) and in contrast to the Mediterranean populations, 
it is resident showing high philopatry and little exchange even 
among nearby colonies (Arizaga et al. 2010, 2014b; Egunez 
et al. 2017; Delgado et al. 2021a). Since 2008, five landfills 
have been progressively closed within the region with three 
remained open in 2021. Recent evidence shows signs of a pop-
ulation decrease in some colonies up to 46% in a 6-year period 
(Galarza 2015). Similarly, the annual survival probability of 
first-year birds, but not of adults, decreased in colonies located 
less than 10 km away from a landfill (Delgado et al. 2021b). 
In contrast, the population at regional level and the number 
of breeding pairs in other colonies seem to be stable or just 
(Arizaga et al. 2014a).

Here we used individual ringed-based data collected dur-
ing a 15-year period to estimate survival and detailed infor-
mation on breeding output to estimate which parameter and 
with which intensity is affected by landfill closure (for details 
see Appendix 1, Table 5). We subsequently build a popula-
tion model to explore different scenarios considering effects 
of different magnitudes on reproduction and survival (con-
sidering different survival estimates for different age classes).

Methods

Study area and data collection

Parameters were estimated using data obtained at three yellow-
legged gull colonies situated along the coast of Gipuzkoa 
region (Bay of Biscay, Basque Country, Spain): Getaria 
(43°18′N 02°12′W), Santa Clara (43°19′N 01°59′W), and 
Ulia (43°20′N 01°57′W). Colony sizes were approximately 
165, 100, and 660 breeding pairs, respectively (last census 
2017) and they represent about 92% of the yellow-legged 
gull population within the region (Arizaga et al. 2009). The 
maximum inter-colony distance was of 20 km.

Landfill management is detailed in Appendix 1, Table 5. 
According to previous knowledge (Arizaga et  al. 2013, 
2014b, 2018; Delgado et al. 2021b; Egunez et al. 2017), 
the species has been exploiting up to 6 landfill sites within 
the region where this study was carried out. Overall, the 
scenario has passed from years when these six landfills were 
open to years, especially during the last part of the temporal 
series, when practically all the landfills were closed.

The annual local survival probability of gulls was esti-
mated through capture-mark-recapture models (Lebreton 
et al. 1992 see below) using observations of gulls ringed 
as chicks (~ 20 days old) at the three colonies. Overall, 
3645 chicks were ringed from 2005 to 2019. Chicks were 
ringed with a metallic ring (Aranzadi scheme) and a PVC 
ring with an alphanumeric code to be read from the dis-
tance (Fernández et al. 2017) (Table 1). Ethics approval 
was not required. We compiled 3342 resightings of 1855 
(50.9%) individuals made by birdwatchers from April 
to June between 2005 and 2020 (Supporting Informa-
tion 1). The majority of these observations were made at 
the breeding colonies and feeding or resting sites, e.g., 
landfills, harbors, rivers, intertidal flats, roofs, of the 
Gipuzkoa region.

Breeding output was difficult to estimate at each colony 
due to precocial habit of the species and the accidental 
topography of the sites. As a consequence, we used the 
data collected at Ulia colony during the period 2018–2020 
when clutch size and hatching success (proportion of nests 
in which at least one egg hatched) were estimated at given 
zones of the colony in which all nests were monitored dur-
ing the breeding season (Delgado et al. 2021c).

Data analyses

We estimated age- and colony-dependent (1) apparent 
annual survival probability (φ), which was the prob-
ability that an individual survived from t to t + 1, and (2) 
resighting probability (p), which was the probability that 
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an individual that survived from t to t + 1 was seen in t + 1, 
using program MARK (White and Burnham 1999).

We began the analysis by assessing the goodness of fit 
of a model in which all parameters were time and colony 
dependent using the software U-CARE (Choquet et al. 

2009; Appendix 2, Table 6). The global goodness of fit 
(GOF) on this model was not significant (χ2

149 = 155.40, 
P = 0.340), nor were the directional tests specifically 
designed to detect the presence of transients (Z = 0.800, 
P = 0.211) and trap dependence (Z = 1.574, P = 0.115; see 
Choquet et al. 2009 for details). We included a two-age 
structure (first-year birds and older birds) in this general 
model, so that our starting model was considering that 
both φ and p varied among years and colonies and among 
first-year and older birds. Alternative nested models 
assumed different combinations of these effects.

Overall, we contrasted 14 models (Table  2) and 
ranked them using the Akaike’s information criterion 
corrected for the effective sample size (AICc (Burnham 
and Anderson 1998)). The model with the lowest AICc 
values was considered the best compromise between 
model deviance and complexity. Models differing by 
less than 2 AICc units should be considered equivalent 
(Burnham and Anderson 1998).

Population projections

To investigate the long-term demographic effects (Peery 
and Henry 2010) of landfill closure, we explored differ-
ent scenarios by using a 5 × 5 post-breeding deterministic 
population model (Caswell 2001). The model assumes a 
population divided into 5 age classes and first reproduc-
tion at age 4 and includes the respective survival and fertil-
ity parameters (Eq. 1):

Table 1  Number of ringed chicks of yellow-legged gull in the three 
study breeding colonies and the total number of individual birds seen 
after fledging (resight) each year during the months of April to June. 
Individuals seen in a year were ringed in the year before (i.e., resight-
ings of first-year birds) or previously (older birds)

Year Getaria Santa Clara Ulia Total ringed Total resight

2005 0 23 17 40 -
2006 30 69 147 246 1
2007 10 85 202 297 126
2008 38 55 208 301 79
2009 20 50 263 333 102
2010 59 42 221 322 225
2011 32 37 200 269 175
2012 61 86 178 325 397
2013 50 54 68 172 214
2014 50 59 151 260 335
2015 50 35 141 226 167
2016 54 40 163 257 212
2017 52 27 81 160 152
2018 49 52 170 271 427
2019 78 45 43 166 389
2020 - - - - 345
Totals 633 759 2253 3645 3346

Table 2  Ranking of models used to estimate annual local survival (φ) and detection probability (p) as a function of the age, time, and colony

AICc small sample size-corrected Akaike values, ΔAICc AICc difference in relation to the top-ranked model; np, number of parameters, 1Y first-
year birds,  2Y  older birds—birds in their second year of life or older,  year  year effect as a factor,  time  linear effect of year—trend,  time.
quad quadratic linear effect of year, × interaction between factors/covariates, + additive effect

Models AICc ΔAICc AICc weight np Deviance

φ1Y(time.quad), φ2Y(time) p(year + colony) 12380.73 0.00 0.58 22 2682.59
φ1Y(time.quad) × φ2Y(time.quad) p(year + colony) 12382.72 2.00 0.22 23 2682.57
φ1Y(time.quad) + φ2Y(time.quad) p(year + colony) 12384.27 3.54 0.10 21 2688.15
φ1Y(year), φ2Y(year) p(year + colony) 12385.18 4.45 0.06 32 2666.85
φ1Y(year) × φ2Y(year) p1Y(year + colony), p2Y(year + colony) 12387.75 7.02 0.02 46 2641.01
φ1Y(time) × φ2Y(time) p(year + colony) 12388.83 8.10 0.01 21 2692.71
φ1Y(year) × φ2Y(year) p(year + colony) 12389.03 8.30 0.01 43 2648.40
φ1Y(year), φ2Y p(year + colony) 12399.36 18.63 0.00 33 2679.00
φ1Y(year) × φ2Y(year) p1Y(year × colony) × p2Y(year × colony) 12,401.64 20.92 0.00 112 2519.11
φ1Y(year) × φ2Y(year) p1Y(year) × p2Y(year) 12,411.61 30.88 0.00 56 2644.51
φ1Y, φ2Y(year) p(year + colony) 12,443.60 62.87 0.00 30 2729.31
φ1Y(year × colony) × φ2Y(year × colony) p1Y(year) × p2Y(year) 12,449.92 69.19 0.00 112 2567.38
φ1Y, φ2Y p(year + colony) 12,451.52 70.79 0.00 19 2759.43
φ1Y(year × colony) × φ2Y(year × colony) p1Y(year × colony) × p2Y(year × colony) 12,454.40 73.67 0.00 163 2464.68
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In Eq. (1) SJUi, SIMi, and SADi are, respectively, annual sur-
vival of first-year (1Y), immature (2Y and/or 3Y), and older 
birds (adults; 4Y/ + 4Y). The parameter F is the average num-
ber of fledged female chicks per breeding female. Assuming 
1:1 sex-ratio at fledgling, this parameter is calculated as the 
average breeding success probability multiplied by the average 
clutch size and divided by 0.5 (Hiraldo et al. 1996).

The matrix of Eq.  (1) is also called transition matrix 
because it allows to project the population from an initial state 
through future time steps. The maximum real eigenvalue of 
the matrix in Eq. (1) is the asymptotic population growth rate, 
λi (Caswell 2001). The relative importance of each parameter 
of Eq. (1) in influencing λ can be calculated through sensitiv-
ity and elasticity analyses (Caswell 2001). These quantities 
measure the change in λ corresponding to an absolute and a 
relative change of the parameter, respectively.

The present and future of gull population

We first calculated λ related to a constant matrix, in which 
all parameters were taken by the model assuming a con-
stant survival probabilities (Table 2). This would deliver an 
“average” population growth rate that although unrealistic 
will allow comparisons with other system. We included 
uncertainty in this model by considering survival estimates 
derived from a normal distribution truncated at 0 and 1. The 
mean and standard error of the distribution were set as the 
survival estimates and its standard error as estimated by the 
model. Similarly, breeding success followed a normal distri-
bution with mean and standard error as those estimated from 
the data and truncated at 0.226 and 1.460 as indicated in 
Delgado et al. (2021a, b, c). By simulating 1000 population 
matrices, each with a random value of survival and breeding 
parameters, we obtained a distribution of λ. Statistical analy-
ses were done using the packages “popbio” (Stubben and 
Milligan 2007) and “truncnorm” (Geweke 1991) in RStudio 
1.2.5 software (RStudio Team 2019).

Subsequently, we calculated λ under different scenarios 
where one or more parameters in Eq. (1) (SJU, SIM, SAD, and 
F) were decreasing as suggested by the retained model (for 
details see Appendix 3, Table 7). To measure the expected 
changes in population growth rate, we used Eq. (1) with 
values of 0.38 and 0.83 for first-year and adult birds, respec-
tively (these were the mean values of survival for the tem-
poral series considered in this work), and force parameters 
to decrease from−5 to−50%.
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Results

The interaction terms between the effects of colony, age, and 
time were dropped at an early stage of the analysis (Table 2). 
Model selection theory indicated that resighting probability 
differed among colonies, while annual local survival did 
not. Both parameters changed over time (Table 2, Fig. 1). 
In particular, survival of first-year gulls ranged from 0.54 
in 2006 to 0.24 in 2020. In older birds, these values ranged 
from 0.86 to 0.78 (Fig. 1). The first three ranked models 
included a quadratic function of time on survival, suggesting 
an acceleration of mortality during the last years for first-
year birds but not for the older ones, with these last showing 
a linear relationship. Indeed, including a quadratic term for 
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Fig. 1  Apparent annual survival estimation (± 95% confidence inter-
val) of first-year gulls (FY) and older gulls (AD) of the yellow-leg-
ged gull in the Gipuzkoa colonies during the period of 2006 to 2020, 
obtained from the forth model shown in Table  2. Additionally, we 
add the linear trends obtained from the top-ranked model in Table 2, 
where a quadratic effect of year on survival is considered for first-
year birds, but a linear one for older birds
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adult birds did not produce a relevant change in model devi-
ance (Table 2; Fig. 1).

The annual population growth rate from the matrix popu-
lation model showed positive values up to 2015 (with the 
exception of 2012) and negative values from 2016 to 2019 
(Fig. 2). The stochastic approach provided a mean popula-
tion growth rate, λ, of 1.02 (95% CI: 0.97–1.06). Sensitiv-
ity and elasticity values showed that the parameter with the 
greater influence on population growth rate was survival of 
adult birds (Table 3).

Models showed that a change in breeding output, sur-
vival of subadult birds, or both parameters at the same time 
(scenarios 1–5 and 7 in Fig. 3) showed a weak impact on 

lambda (max.−15%). However, even small changes in adult 
survival rates had a very high impact on lambda, resulting 
in a decrease of > 50% (Fig. 3).

Discussion

In this research it is analyzed for the first time for the Bay of 
Biscay not only the temporal trend of survival of a yellow-
legged gull population throughout a relative long time series 
(15 years) but also its impact on the population growth rate as 
provided by demographic models. The first chief finding of 
the study was that apparent survival rate tended to decrease 
along the study period, though differentially between age 
classes. Overall, this decrease in survival is compatible with 
a reduction of predictable anthropogenic food subsidies 
(PAFS), which would probably be to our knowledge the main 
demographic driver that more drastically has changed through 
the last years within the region. Though probably less likely 
(according to experience), other possible causes of a lowering 
survival cannot be rejected and then deserve some discussion. 
Reductions in fish discards or natural sources of food could 
have similar effects on survival if these feeding sources are 
relevant for the population. The estimation of fish consump-
tion by our population can be relevant (> 40% of the diet for 
some colonies), but it seems that these fish are taken not from 
discards offshore, but chiefly from fishery waste which is pro-
duced in harbors (Zorrozua et al., in prep.). Fishery activity 
in the harbors did not change substantially during the period 
in which this study was carried out (Zorrozua et al. 2020c). 
Other factors which could also affect survival like, e.g., a pro-
gressive change in the climate, remain obscure to us since 
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Fig. 2  Deterministic population growth rate (lambda) of a yellow-
legged gull population where apparent annual survival rates varied 
annually as shown in Fig. 1. The dashed line shows the point where 
the population growth rate is 0 (lambda = 1); values above that point 
indicate a positive growth rate, while values below that point indicate 
a negative population growth rate

Table 3  Scenarios considered 
for the effect of hypothetical 
reductions of feeding sources on 
the population growth rate of a 
yellow-legged gull population. 
Each scenario assumes changes 
in one or more parameter 
estimates, affecting the breeding 
investment or/and after-fledging 
survival. Changes for the 
parameters ranged from−5 
to−50% in relation to the actual 
values (model 0)

Affected parameters: 

Population models -

Environmental changes affect to:
Clutch size

Pre-fledging 

survival

1Y 

survival

2Y-3Y 

survival

≥4Y

survival

0. Current scenario (no change)

1. Breeding investment A

2. Breeding investment B

3. Survival A

4. Survival B

5. Survival A+B

6. Survival C

7. Breeding investment

8. Breeding investment; Survival C

9. Survival

10. Breeding investment B + Survival

11. Breeding investment + Survival
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this type of studies are still in their infancy (Zorrozua et al. 
2020b), but, if existing, they probably should have a weaker 
effect as compared to a sudden closure of a landfill site.

Annual survival was decreasing much more markedly, 
following a quadratic function, in first-year birds. This sug-
gests that young gulls are more affected than adults by a 
reduction of anthropogenic food subsidies. Older gulls 
would then be able to buffer, at least partially, the dietary 
change, possibly thanks to a better knowledge of the envi-
ronment and of alternative food supplies (Van Donk et al. 
2020). Indeed, direct observations in other areas suggest that 
gulls are increasingly visiting urban areas (Méndez et al. 
2020), though the use of the urban habitat still remains rela-
tively marginal in the Basque coast (Zorrozua et al. 2020b). 
Survival of first-year gulls was lower than older birds, an 
expected result given that this value includes pre-fledging 
mortality referred to the period between ringing and full 
fledgling, but also the first weeks after fledging, when mor-
tality still remains high (Delgado and Arizaga 2017).

Models showed a clear decrease in survival since 2015. 
Although capture-mark-recapture models do not distin-
guish between mortality and permanent emigration, the 

low survival during the last years of the study did likely 
corresponded to a real increase in mortality. As compared 
to other zones from the Mediterranean and even along the 
coast of northern Iberia, gulls inhabiting the Basque coasts 
are highly philopatric (Arizaga et al. 2017, 2018; Zorrozua 
et al. 2020b) and their emigration might be considered to be 
virtually equal or close to 0. Following this, we should also 
mention that re-sightings from outside our study region are 
rare and did not increase recently (S. Delgado, unpubl. data).

This is the first study that provides population projections of 
the yellow-legged gull within the Bay of Biscay. Deterministic 
models indicate that the population is nowadays decreasing, 
a phenomenon which would be compatible with a reduction 
in the availability of predictable anthropogenic food subsidies 
(PAFS), landfills in particular, within the region. Recent evi-
dence from studies on gulls’ diet confirms the reduction of 
food of anthropogenic origin (Arizaga et al. 2018; Zorrozua 
et al. 2020a). The census of the colonies run in 2017 and 2021 
showed a stable population in this period, with ca. 1100 adult 
breeding pairs (Arizaga et al. 2022). Since 2000, however, 
the population has shown a clear decrease of ca. 6% (Arizaga 
et al. 2022). The stochastic population approach provided an 
annual growth rate of 1.02 (i.e., stability). Note, however, that 
this lambda estimation was obtained with the mean survival 
values for the entire temporal series (Fig. 1)—a conservative 
approach—and that survival tended to decrease during the later 
years within the series, especially for birds in their first year. 
Projections calculated by using time-dependent estimates sug-
gested a clear decrease, which would be a theoretical estimation 
closer to the observed 6% decrease.

In the near future new closures of landfills are expected 
to occur. The most plausible scenario is a further decline 
in the breeding investment, the breeding output, and the 
survival probability. Recent studies carried out in the Ulia 
colony reveal a decrease in clutch size during the last 

Table 4  Perturbation analysis with the sensitivity and elasticity for 
different age classes obtained for our gull population. Sensitivity and 
elasticity in some parameters have two values due to have reference 
to new breeders’ individuals and breeders. Survival notation as in 
Table 3

Parameters Estimates Sensitivity Elasticity

Clutch size 2.78
Breeding success 0.65
Survival A 0.42 0.31 0.12
Survival B 0.83 0.12 0.10
Survival C 0.83 0.52 0.42

Fig. 3  Maximum absolute 
lambda values for each model 
developed when one or more 
variables decrease up to 50%. 
Zero values show the current 
situation and values decrease in 
relation it
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3 years (Delgado et al. 2021c). The population model shows 
a small elasticity to these parameters but a greater one to 
adult survival, something expected in long-lived species 
(Gaston 2004). This parameter is also decreasing in our 
population. Moreover, the observed decline could be more 
pronounced in denser colonies due to density-dependent 
processes (Newton 2013; Galarza 2015). Therefore, due to 
the decrease in survival and breeding parameters, we will 
expect a population decline through the next years. In this 
context landfill closure will probably return yellow-legged 
gull populations to demographic values (in terms of breeding 
output, survival, or population growth rate) closer to what 
we may expect for a “natural” scenario with no or little input 
of anthropogenic food subsidies. “No managing,” therefore, 
would probably the best way to manage this species from 
a conservation standpoint. This probably entails avoiding 
any intervention (at least in natural colonies), either in the 

direction of trying to reduce the breeding output or survival, 
but also in the lack of sense of trying to recover the very high 
values that were habitual when landfills were open.

In conclusion, we obtained evidence supporting a decrease 
in survival in a resident yellow-legged gull population from the 
Bay of Biscay (northern Iberia) during a 15-year temporal series 
(2005–2020). Although this decrease was much more marked in 
first-year birds than in older gulls, and in spite of the fact that the 
population was more sensible to a survival decrease in adults, 
model projections still show a negative population growth rate if 
we consider the survival values of the later years within the series. 
Such projections are compatible with the observed population 
change during the period 2000–2021. Likely, landfill closures 
are the main factor explaining this decline.

Appendix 1

Appendix 2

Table 5   Management (open, 
O/closed, C) of those landfill 
sites situated within the home 
range area used by the studied 
population through the study 
period. We also indicate the 
month in which the landfill was 
closed or open (if re-open). 
Note that some landfills were 
re-opened after being closed 
for a while. Artigas, Zaluaga 
remained always open

Year S. Marcos Jata Urteta Sasieta Lapatz Igorre

2006 O O O O O O
2007 O O O O O O
2008 C (Oct) O O O O O
2009 C O O O O O
2010 C O O O O O
2011 C O O O O O
2012 C O O O O O
2013 C C (Dec) O O O C (Dec)
2014 C C C (Dec) O O C
2015 C C C C (Jan) O C
2016 C O (Feb) C C C (Dec) C
2017 C O C C C C
2018 C O C C C C
2019 C O C C C C
2020 C O C C C C

Table 6  Demographic parameters referenced in several bibliographic 
sources, relative to the yellow-legged gull or other white-headed 
Larus gulls, used to roughly assess the observed biological range 

within which these parameters can vary as compared to the ones seen 
in our survey colonies in Gipuzkoa

Variable This work Other studies
(range)

References

Clutch size 2.78 2.14–2.90 Bosch and Sol (1998); Baaloudj et al. (2014); Hammouda et al. (2016)
Pre-fledging survival 0.65 0.51–0.79 Bosch and Sol (1998); Baaloudj et al. (2014)
1Y survival 0.38 0.28–0.83 Chabrzyk and Coulson (1976); Juez et al. (2015); Bosman et al. (2016)
2Y–3Y survival 0.82 0.63–0.80 Chabrzyk and Coulson (1976); Reid (1988); Bosman et al. (2016); Kralj et al. (2018)
 ≥ 4Y survival 0.82 0.59–0.94 Chabrzyk and Coulson (1976); Coulson and Butterfield (1985); Camphuysen and 

Gronert (2012); Rock and Vaughan (2013); Bosman et al. (2016); Kralj et al. 
(2018)
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