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Abstract
After the last glacial, the Carpathian Basin was repopulated from either eastward or northward colonisation routes for various 
species; one of these was the emblematic member of the European megafauna, the red deer, Cervus elaphus. We analysed 
303 red deer individuals from the middle of the region, in seven Hungarian game reserves, at ten microsatellite loci (C01, 
C229, T26, T108, T123, T156, T172, T193, T501, T507), to investigate the genetic diversity of these subpopulations. We 
discovered high levels of genetic diversity of red deer subpopulations; allelic richness values ranging 4.99–7.01, observed 
heterozygosity 0.729–0.800, polymorphic information content 0.722–0.806, and Shannon’s information index 1.668–2.064. 
Multi-locus analyses indicated population admixtures of various degrees that corresponded to geographical location, and 
complex genetic structures were shown by clustering. Populations in the south-western and the north-eastern parts of the 
region formed two highly separated groups, and the red deer from populations in between them were highly admixed (in 
western Pannonia/Transdanubia, where the Danube flows into the Carpathian Basin). This pattern corresponds to the dis-
tribution of mitochondrial as well as Y-chromosome lineages. Assignment tests showed that a large fraction of individuals 
(29.4%) are found outside of their population of origin, indicating that the dispersal of red deer is rather common, which 
could be expected considering the life course of the species.
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Introduction

The genetic structure of large mammal species is affected by 
natural and anthropogenic factors. Anthropogenic impacts like 
selective hunting, translocations, and habitat destruction/frag-
mentation can blur natural patterns of genetic diversity and 
relationships (Frantz et al. 2006; Haanes et al. 2010; Dellicour 
et al. 2011; Carden et al. 2012; Stanton et al. 2016; Zachos 
et al. 2016; Galarza et al. 2017; Queirós et al. 2020). Such 
impacts, particularly in game species, can cause the disin-
tegration of populations into several subpopulations with a 
more or less pronounced genetic exchange (Hartl et al. 2003; 
Willems et al. 2016; Iacolina et al. 2019; Mihalik et al. 2020). 
Knowledge of the genetic diversity of populations and the 
genetic exchange among neighbouring populations has major 
importance in identifying and evaluating potential problems, 
e.g. inbreeding, genetic depletion, and introgression from for-
eign populations; moreover, it can also provide guidance in 
determining geographical restrictions in the implementation 
of wildlife management or conservation programmes.
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The red deer (Cervus elaphus L. 1758) is one of the most 
widespread and valuable European game species (Ludt et al. 
2004; Milner et al. 2006). Consequently, its populations 
have been extensively managed, introduced, restocked, and 
selectively hunted for centuries or even millennia (Martínez 
et al. 2002; Haanes et al. 2010; Carden et al. 2012; Rivrud 
et al. 2013; Queirós et al. 2014; Hoffmann et al. 2016; Stan-
ton et al. 2016; Frantz et al. 2017; Galarza et al. 2017). Fur-
thermore, during the last decades, the keeping of deer in 
enclosures has spread all over the world, and the species is 
farmed for venison and antler products (Milner et al. 2006; 
Wada et al. 2010; Zachos and Hartl 2011; Bana et al. 2018).

Studies on the genetic structure of European mammals, 
including red deer, based on mitochondrial DNA (mtDNA) 
sequences (Ludt et al. 2004; Skog et al. 2009; Niedziałkowska 
et al. 2011; Meiri et al. 2013; Frank et al. 2017; Rey-Iglesia et al. 
2017; Queirós et al. 2019) as well as on microsatellites (Zachos 
et al. 2016; Frantz et al. 2017; Queirós et al. 2019) have shown 
the large-scale genetic pattern shaped by the Late Pleistocene 
and Holocene glacial-interglacial cycles. Local or regional 
red deer populations have also been extensively studied from 
a population genetic point of view, often taking into account 
anthropogenic influences (Kuehn et al. 2003; Zachos et al. 
2003; Frantz et al. 2006; Hajji et al. 2008; Haanes et al. 2010;  
Dellicour et al. 2011; Radko et al. 2014; Krojerová-Prokešová 
et al. 2015; Borowski et al. 2016; Carranza et al. 2016; Hoffmann 
et al. 2016; Willems et al. 2016; Galarza et al. 2017).

The Carpathian Basin can be considered as a “hotspot” 
region since it includes crossroads of colonisation routes, 
where lineages of various species from different refugia are 
present (Hewitt 2004; Sommer and Zachos 2009). Our pre-
vious studies with STRs have shown the existence of two 
distinct groups of red deer within Hungary (Szabolcsi et al.  

2014) and that red deer migrated into the Carpathian Basin 
from two directions, the west and the south (Frank et al. 2017). 
The presence of two clades for mitochondrial lineages and 
Y-chromosomes was also demonstrated (Frank et al. 2017, 
2020), and concordant results were also presented by studies on 
mitochondrial cytochrome-b sequences (Markov et al. 2015).

We hereby present a microsatellite data set of red deer 
populations covering the centre of the Carpathian Basin 
(Fig. 1). The main goal of our work was to determine the 
genetic diversity and genetic structure of populations across 
this particular geographic region. Furthermore, our study 
aimed (1) to use microsatellite data to calculate genetic 
diversity and effective population size in Hungarian red 
deer; (2) to uncover the nuclear genetic structure of deer 
populations that provides further insight into the distribution 
of genetic variability in this particular geographic region; 
and (3) to search for signatures caused by the post-glacial 
re-colonisation.

Materials and methods

Sampling

Muscle tissue was obtained from free-ranging adult red deer 
shot over two consecutive hunting seasons (2014–2016) 
across Hungary, localised in the centre of the Carpathian 
Basin (Fig. 1). In total, individual muscle samples of 303 
red deer were collected in the course of legally organised 
hunting events. Animals were not killed for the purposes 
of this study; thus, no specific ethical approval was needed. 
All applicable international, national, and/or institutional 
guidelines for the care and use of animals were followed. 

Fig. 1  Geographical location 
of the red deer sampling sites 
in Hungary. SWG, Gemenc 
(n = 79); SW2, Baranya (n = 58); 
SW1, Somogy (n = 56); W1, 
Zala (n = 27); W2, Csorna 
(n = 9); NE1, Zemplén (n = 39); 
NE2, Szabolcs (n = 35). For 
more details, see Materials and 
methods
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The samples originated from seven sampling sites (hunting 
reserves) in four regions of the country: Gemenc National 
Forest (SWG, n = 79), South-Western Hungary (Vajszló, 
Baranya county, SW2, n = 58; Lábod, Somogy county, SW1, 
n = 56), Western Hungary (Keszthely, Zala county, W1, 
n = 27; Csorna, Győr-Moson-Sopron county, W2, n = 9), and 
North-Eastern Hungary (Zemplén Mountains, NE1, n = 39; 
Gúth, Szabolcs-Szatmár-Bereg county, NE2, n = 35). The 
two farthest regions SWG and NE Hungary are separated 
by historical barriers to gene flow (unbroken flooded lands, 
sandy hill range, and steppe between the two large rivers, 
Danube and Tisza, and later, industrialisation and the main 
rail- and highways). Tissue samples were preserved in 96% 
ethanol and stored at − 20 °C. Total genomic DNA was 
extracted using the commercial Genomic DNA Mini Kit 
(Geneaid Biotech Ltd., New Taipei City, Taiwan) according 
to the manufacturer’s protocol, and stored at − 20 °C until 
processing.

Microsatellite genotyping

Samples were genotyped by the DeerPlex system at ten 
microsatellite (STR) loci (C01, C229, T26, T108, T123, 
T156, T172, T193, T501, T507) in two multiplex polymer-
ase chain reactions (PCR) using the QIAGEN Multiplex 
PCR Kit (Qiagen GmbH., Hilden, Germany). Detailed infor-
mation about the PCR compositions, primer concentrations, 
and the allelic nomenclature of the STRs can be found in 
Szabolcsi et al. (2014), with further supplements in Frank 
et al. (2020). Of the STRs, T507 is X-chromosomal; CO1 
and T26 are distantly linked on deer chromosome 14. All 
DeerPlex STRs were identified in the deer genome sequence 
CerEla1.0 (Bana et al. 2018).

Amplification reactions were performed using a LifeECO 
Thermal Cycler (Hangzhou Bioer Technology Co. Ltd., 
Hangzhou, China); cycling conditions were as described in 
Szabolcsi et al. (2014), except for the initial denaturation, 
which was adjusted to 15 min for the multiplex PCR kit. 
PCR products were separated using an ABI 3100 Genetic 
Analyser with LIZ500 Size Standard (Applied Biosystems, 
Foster City, CA, USA), and allele sizes were scored using 
PeakScanner version 1.0 (Applied Biosystems). Reactions 
were repeated on samples with incomplete genetic profiles 
until obtaining a complete ten-locus STR profile.

Multi‑locus analysis

Microchecker version 2.2.3 (Van Oosterhout et al. 2004) 
was employed to search for null alleles, scoring errors, and 
large allele dropout. To avoid re-sampling of individuals, the 
identity analysis of the CERVUS version 3.0.6 (Kalinowski 
et al. 2007) was carried out. The number of alleles per locus 
(NA), the expected (HE) and observed heterozygosity (HO), 

deviations from Hardy–Weinberg equilibrium after Bonfer-
roni correction (HWE), and measures of genetic diversity as 
well as F-statistics (Wright 1951) for each locus and aver-
aged across the 10 loci were calculated with the CERVUS 
software (Kalinowski et al. 2007) and GenAlEx version 
6.501 (Peakall and Smouse 2012).

Effective population sizes (Ne) were calculated using 
a bias-corrected version of the linkage disequilibrium 
method by Waples and Do (2008) as implemented in the 
 NEEstimator version 2.1 software (Do et al. 2014). In gen-
eral, this approach is reliable if effective population sizes 
are not much larger than 200, and the data set is based on 
ten or more loci and population sample sizes of 25 or more. 
These conditions are not met for all populations; therefore, 
results should be viewed with due caution. Effective popula-
tion size denotes the number of breeding individuals in an 
idealised population with the same gene frequency drift or 
inbreeding as that of the population observed (Wright 1951). 
More generally, the effective population size may be defined 
as the number of individuals in an idealised population that 
have population genetic parameters (i.e. values for  HE,  HO, 
PIC, PI, I) identical to those calculated for the actual popula-
tion investigated. Effective population sizes were calculated 
for pre-defined populations, not for the clusters retrieved by 
genetic clustering.

Assessing genetic structure

Several different approaches were used to assess popula-
tion differentiation (e.g. STRU CTU RE, PCoA, DAPC), as 
suggested previously (Pearse and Crandall 2004). Firstly, 
the Bayesian clustering method and Markov chain Monte 
Carlo (MCMC) simulation implemented in STRU CTU RE 
version 2.3.4 (Pritchard et al. 2000) were used to infer the 
most probable number of genetic clusters without a priori 
definition of populations. The analyses were run using an 
admixture model and correlated allele frequencies with 
a burn-in period of 250, 000 replicates and a sampling 
period of 750, 000 replicates for the number of clusters 
(K) from one to six with ten independent runs for each 
K. To determine the number of genetic clusters, we used 
the method of Evanno et al. (2005) as implemented by the 
programme Structure Harvester version 0.6.94 (Earl and 
VonHoldt 2012).

Principal coordinate analysis (PCoA) was performed 
on individual multi-locus genotypes by the programme 
GenAlEx (Peakall and Smouse 2012), to graphically repre-
sent the genetic distance matrix between the red deer tested.

Another approach used was a discriminant analysis of 
principal components (DAPC) implemented in the pack-
age adegenet version 2.1.1 (Jombart 2008) that identi-
fies clusters of individuals without using any population 
genetic model (Jombart et al. 2010). We used the “find.
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clusters()” function for the identification of the optimal 
number of clusters (K) based on the Bayesian information 
criterion (BIC). DAPC was employed to assign individu-
als into populations, retaining all the principal compo-
nents, as suggested in the manual. These analyses were 
run with R version 3.4.4 (R Core Team 2018).

Additionally, the probability of an animal belonging 
to a population was calculated using the partial Bayesian 
approach of Rannala and Mountain (1997) implemented 
in GeneClass version 2.0.h (Piry et al. 2004), with 10, 
000 simulated multi-locus genotypes and a threshold for 
individual exclusion of 0.01, as an exclusion threshold of 
this magnitude is normally used in ecological studies to 
identify genetic immigrants (Frantz et al. 2017).

Results

Microsatellite diversity

All analysed loci were highly polymorphic, with the 
number of alleles per locus ranging from 7 (C229) to 27 
(T156), with an average of 17.1. The overall observed 
and expected heterozygosities stood at 0.767 and 0.834, 
respectively (Table 1). After Bonferroni correction for 
multiple tests, only two instances of a locus deviating from 
Hardy–Weinberg equilibrium (HWE) were observed in 
one of the pre-defined populations with sample numbers 
larger than ten (T26 in SW1 and T172 in NE1). No locus 
significantly deviated from HWE in more than one popu-
lation, and no locus systematically deviated from HWE. 
All loci were therefore included in subsequent multi-locus 
analyses.

Multi‑locus analyses

Observed heterozygosity values were high across popula-
tions, ranging from 0.729 (NE1) to 0.800 (W1). Polymorphic 
information content (PIC) ranged between 0.424 (C229) and 
0.912 (T193) per locus with a mean value of 0.819. Diversity 
values were also high in six of seven populations (Table 2). 
The exception, the values (AR = 4.99; PIC = 0.722; I = 1.668) 
in the W2 population was expected, due to the low number 
of individuals. Although the overall FST of 0.048 indicates 
fairly little genetic differentiation, all but two of the pair-
wise comparisons were significant after Bonferroni correc-
tion (Table 3), suggesting some level of substructuring in 
Hungarian red deer populations.

The Ne values calculated with the linkage disequilibrium 
method are given in Table 4. The infinite values for the W2 
population may be biased by the small number of samples.

Assessing genetic structure

Genetic structure was detected by STRU CTU RE, PCoA, and 
DAPC analyses. The Bayesian clustering analysis detected a 
high plateau for the average likelihood scores at around four 
genetic clusters (K = 4, Fig. 2a), whereas the second-order 
rate of change in log-likelihood scores showed the highest 
peak at K = 4 (Fig. 2b). The genotypes were mixed, varied 
along a wide scale, with Gemenc (SWG) and NE Hungary 
at the two opposite ends (i.e. with the least mixed genotypes, 
Fig. 2c).

The PCoA shed light on the differences between the 
genetic structures of the samples as shown in Fig. 3. The 
two extreme genetic structures corresponded to the two most 
separated populations, SWG and the combined NE popu-
lations, whereas the combined W populations were in the 

Table 1  Genetic polymorphism 
of the loci analysed

n number of samples, NA number of alleles, HE expected heterozygosity, HO observed heterozygosity, PIC 
polymorphic information content, PI probability of identity, FIS fixation index

Locus n NA HE HO PIC PI FIS

C01 303 22 0.861 0.781 0.847 0.033 0.057
C229 303 7 0.452 0.407 0.424 0.329 0.090
T26 303 21 0.899 0.848 0.889 0.019 0.090
T108 303 12 0.834 0.798 0.811 0.346 0.051
T123 303 13 0.855 0.858 0.837 0.038 0.017
T156 303 27 0.900 0.775 0.890 0.019 0.105
T172 303 17 0.894 0.689 0.883 0.021 0.221
T193 303 18 0.920 0.911 0.912 0.013 0.004
T501 303 19 0.868 0.758 0.853 0.031 0.131
T507 303 15 0.853 0.811 0.837 0.037 0.052
Overall 303 17.1 0.834 0.767 0.809 2.195E-15 0.035
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centre, overlapped toward both the southward and the east-
ward gene pools, an indication for the mixing zone of the 
two post-glacial immigration.

The DAPC also revealed the presence of genetic sub-
units. Comparable BIC values were observed for K = 3 
through K = 5, with the lowest BIC obtained for a model 
postulating four clusters (K = 4, Fig. 3a). Additionally, the 
assignment of individuals to clusters did not correspond 
precisely to the geographic origin of samples, an indica-
tion for migrations of deer in zones between neighbouring 
hunting resorts, or by translocations (in next section). In 

the DAPC analyses, like in the previous STRU CTU RE one, 
samples from SWG and NE Hungary formed the two most 
distinct clusters (Fig. 3b).

Altogether 70.6% (214/303) of the samples were correctly 
assigned to their original population using the partial Bayes-
ian approach implemented in GeneClass. An additional 
11.6% (35/303) of the individuals were assigned to popula-
tions adjacent to their geographical origin. This could indi-
cate that the dispersal of individuals among neighbouring 
populations is rather common, especially since the number 
of incorrectly assigned individuals was particularly high in 
Baranya (SW2) and Somogy (SW1), the two regions that 
are closest to each other. Seven animals of the 303 samples 
could not be assigned to any of the sampled populations at 
the 0.01 threshold level (Table 5).

Discussion

According to the present study, the red deer in the Carpathian 
Basin appeared to be among the most genetically diverse pop-
ulations in Europe based on nuclear microsatellite markers. 
This corresponds to the high genetic diversity of mtDNA hap-
lotypes found previously using cytochrome-b (Markov et al. 
2015) and control region sequences (Niedziałkowska et al. 
2011; Frank et al. 2017). The high diversity is not surprising, 
given that the Carpathian Basin is regarded as a contact zone 

Table 2  Genetic diversity 
measures of the red deer 
populations analysed

n number of samples analysed, NA mean number of alleles, AR allelic richness, HE expected heterozygosity, 
HO observed heterozygosity, PIC polymorphic information content, PI probability of identity, I Shannon’s 
information index, FIS inbreeding coefficient

Region n NA AR HE HO PIC PI I FIS

SWG 79 10.8 5.38 0.790 0.743 0.767 6.055E-13 1.857 0.056
SW2 58 12.2 6.42 0.800 0.767 0.776 8.105E-14 1.987 0.026
SW1 56 12.1 6.74 0.826 0.796 0.800 2.225E-14 2.031 0.035
W1 27 11.0 6.64 0.837 0.800 0.801 2.283E-14 2.028 0.032
W2 9 7.0 4.99 0.792 0.778 0.722 6.973E-12 1.668 -0.050
NE1 39 11.3 7.01 0.836 0.759 0.806 1.155E-14 2.064 0.083
NE2 35 10.6 5.88 0.783 0.729 0.754 3.878E-13 1.896 0.045

Table 3  Matrix of pairwise 
FST (above diagonal) and the 
approximate geographical 
distances in km (below 
diagonal) between Hungarian 
red deer populations

Significant values after Bonferroni correction (P < 0.00238) indicated with an asterisk

SWG SW2 SW1 W1 W2 NE1 NE2

SWG 0.016* 0.018* 0.033* 0.041* 0.030* 0.038*
SW2 66 0.011* 0.028* 0.039* 0.027* 0.034*
SW1 103 51 0.024* 0.025 0.016* 0.029*
W1 131 113 67 0.047* 0.024* 0.037*
W2 189 199 157 96 0.032 0.042*
NE1 215 302 309 283 243 0.020*
NE2 249 347 371 367 353 113

Table 4  Effective population sizes as calculated with  NEEstimator 
based on the linkage disequilibrium approach

For each population, Ne values are given for the threshold of 0.05 for 
the lowest allele frequency used. The values in parentheses are the 
95% confidence intervals based on jackknifing on loci
n sample size, inf. infinite

Population n Effective population size (Ne)

SWG 79 529.7 (170.7–inf.)
SW2 58 168.7 (83.7–1271.7)
SW1 56 180.9 (96.9–770.4)
W1 27 41.6 (29.3–66.7)
W2 9 inf. (inf.–inf.)
NE1 39 106.5 (60.6–321.7)
NE2 35 101.2 (49.4–844.5)
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between different red deer lineages (Frank et al. 2017), and 
populations living in this type of contact or admixture zones 
can obtain higher genetic diversity than populations living 
farther away from such zones (Krojerová-Prokešová et al. 
2015; Borowski et al. 2016). Our analyses of 303 individual 
multi-locus genotypes of Hungarian red deer have uncovered 
a rather high genetic diversity across Hungary. The lowest 
diversity was found in the Csorna (W2) population in Western 
Hungary, probably due to the low number of samples ana-
lysed. Heterozygosity and genetic diversity values of Hungar-
ian deer were high compared with values previously reported 
for other European populations (Supplementary Table S1) 
from western (Dellicour et al. 2011), central, and northern 
(Kuehn et al. 2003; Kuehn et al. 2004; Krojerová-Prokešová 
et al. 2015; Radko et al. 2014; Hoffmann et al. 2016; Willems 
et al. 2016), as well as Mediterranean regions of Europe (Hajji 
et al. 2008; Karaiskou et al. 2014; Queirós et al. 2014, 2019; 
Carranza et al. 2016). However, this should be taken with due 
caution, because diversity estimates might be influenced by 
differences in sample size, marker number, and sets of mark-
ers used, reducing the comparability between studies (Queirós 
et al. 2015; Reiner et al. 2019).

The overall nuclear genetic structure of red deer in Hun-
gary was more complex than that found in mitochondrial phy-
logenetic studies (Niedziałkowska et al. 2011; Markov et al. 
2015; Frank et al. 2017). Although all clustering methods 
indicated some structuring, the established clusters greatly 
overlapped and could not be separated clearly, and they cor-
responded only approximately to the geographic origin of 
the samples. Various natural and anthropogenic factors may 
contribute to the lack of a clear population structure. The natu-
ral dispersal of individuals would be sufficient for sustaining 
the gene flow between populations, thus blurring the genetic 
substructure (Kuehn et al. 2004; Haanes et al. 2010; Fickel 
et al. 2012; Carranza et al. 2016; Steinbach et al. 2018). A 
notable part of the individuals analysed, 11.6% (35/303), were 
assigned to populations adjacent to their geographical origin. 
This could indicate that the dispersal of individuals among 
neighbouring populations can be a common phenomenon 
or that finely structured populations are hard to distinguish 
using genetic markers. In natural populations, red deer usually 
has a male-biased dispersal with females being philopatric 
(Clutton-Brock and Lonergan 1994; Pérez-Espona et al. 2008; 
Loe et al. 2009; Jarnemo 2011; Fickel et al. 2012; Kropil et al. 

Fig. 2  Bayesian clustering of red deer. a The mean log-likelihood 
values for each number of clusters. b The probability of the models 
according to the number of clusters. c The assignment of the samples 
at K = 2 through K = 5. The genetic groups that were identified at each 

K value are indicated by distinct colours; each vertical bar within the 
plots represents an individual red deer grouped according to sampling 
populations

55   Page 6 of 10



European Journal of Wildlife Research (2022) 68:55

1 3

2015), although female deer may also exhibit some migration 
behaviour (Clutton-Brock and Lonergan 1994; Kuehn et al. 
2003, 2004; Pérez-Espona et al. 2008; Borowski et al. 2016). 
Gene flow by dispersal is likely to have occurred from the re-
colonisation of the Carpathian Basin to the present, and due to 
the relatively small geographic distances between populations, 
some gene flow among them likely remained to date.

The blurred structuring could also be explained by human-
induced translocations, as such activities are thought to have 
concerned important game species for centuries or even mil-
lennia (Scandura et al. 2011; Zachos and Hartl 2011; Stein-
bach et al. 2018; Queirós et al. 2020). It is believed that the 
present gene pool of many European red deer populations is 
affected by human-induced translocations (Frantz et al. 2006; 
Carden et al. 2012; Krojerová-Prokešová et al. 2015; Stanton 
et al. 2016; Galarza et al. 2017; Iacolina et al. 2019; Queirós 

et al. 2020). However, the results of the assignment test, 
namely, the low number of misassigned deer, indicate that the 
transportation of deer from greater distances was not common 
in this region. The possibility of human-induced transloca-
tions between nearby populations could not be ruled out, as 
the effect of such translocations on the genetic structure is 
similar to the effects of natural dispersal (Kuehn et al. 2003; 
Frantz et al. 2006, 2017; Zachos et al. 2016).

Our genetic clustering results indicated a highly con-
sequent separation of south-western (SWG) and northern/
north-eastern (NE1 and NE2) populations, whereas popula-
tions between these regions showed highly mixed genotypes 
(i.e. SW1, SW2, W1, see Figs. 1, 2c, and 3). This pattern 
corresponds to the previous description of the presence and 
distribution of the European red deer mitochondrial line-
ages (Frank et al. 2017) as well as Y-chromosome lineages 

Fig. 3  PCoA of the 10 DeerPlex (DP) microsatellites (STRs). The dotted line defined polygon corresponds to the population of W1 + W2 (Zala 
and Csorna combined)

Table 5  Results of assignment 
tests of Hungarian red deer in 
GeneClass

Region Assigned population Excluded from 
all populations

SWG SW2 SW1 W1 W2 NE1 NE2

SWG (n = 79) 58 12 3 3 1 1 1
SW2 (n = 58) 1 43 14
SW1 (n = 56) 3 13 36 2 1 1
W1 (n = 27) 1 4 19 3
W2 (n = 9) 1 7 1
NE1 (n = 39) 4 30 1 4
NE2 (n = 35) 1 5 1 28
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of red deer (Frank et al. 2020). Thus, our data strengthen 
the presumption that the Carpathian Basin represents an 
admixture zone between southern and western European 
red deer lineages. Comparing the autosomal markers with 
previous mitochondrial studies (Markov et al. 2015; Frank 
et al. 2017), the position of the admixture zone between the 
lineages corresponds to the land where the River Danube 
flows into the Carpathian Basin in West-Pannonia (currently 
named Western Transdanubia). Unfortunately, this admix-
ture zone could not be localised more precisely due to the 
low number of samples obtained from the region.

The number of individuals excluded from all sampled 
populations was seven, which corresponds to a frequency 
of around two per cent. This value is lower than that previ-
ously inferred in Western European red deer populations 
(Frantz et al. 2017), and these animals may have immigrated 
naturally from neighbouring, not sampled populations. The  
moderate dispersal of individuals between populations could 
be expected due to the territory-adherent behaviour of red deer  
(Clutton-Brock and Lonergan 1994; Kuehn et al. 2003; Pérez- 
Espona et al. 2008; Loe et al. 2009; Jarnemo 2011; Kropil et al. 2015).

Overall, estimated effective population sizes were in the 
range of those previously calculated for European red deer 
based on genetic data (Martínez et al. 2002; Kuehn et al. 2003; 
Zachos et al. 2016). The smallest value was calculated for 
the W1 population (NE = 41.6 for the frequency threshold of 

0.05) and the largest for Gemenc, SWG (NE = 529.7 for the 
frequency threshold of 0.05) (Fig. 4). The infinite values for 
the W2 population are probably due to the low sample size. 
While the linkage disequilibrium approach is viewed as a reli-
able method, there are many unknowns in any calculation 
of effective population size (Luikart et al. 2010). The values 
therefore might best be viewed in a comparative context rather 
than as absolute values for each of the populations separately.

A more detailed genetic study will be necessary to get a bet-
ter insight into the effect of geographic distance and landscape 
features on the population genetic structure of red deer in the 
Carpathian Basin. The analysis of a larger number of popula-
tions would refine our knowledge about the genetic structuring 
of the species in Central Europe. Furthermore, an analysis of 
ancient DNA of red deer samples of the region could provide a 
deeper investigation of past events and result in a more precise 
view of recent and historical patterns of demographic changes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10344- 022- 01602-w.
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