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Abstract
Drastic seasonal changes in higher latitudes and altitudes impact the phenology of plant growth forms differently and thus 
diet of ungulates feeding on them. We examined how fecal nitrogen (N), an indicator of diet quality, varied with season 
against the background variation in forage biomass and N in habitats of two sympatric ungulates in subtropical Himalaya. 
We conducted this study in Kyongnosla Alpine Sanctuary, Sikkim, where the Himalayan goral Naemorhedus goral occurred 
from 3000 to 3600 m and Himalayan musk deer Moschus chrysogaster from 3300 to 4200 m. We measured biomass and N 
content of forbs and graminoids and browse in their habitats and proportions of monocots and dicots and N content in their 
fecal pellets. Seasonal variation in biomass, primarily determined by forbs, was similar in goral and musk deer habitats. 
Goral had a graminoid-dominated diet switching to dicots in autumn and winter. Musk deer had a dicot-dominated diet in 
all seasons. Fecal N in both the ungulates was higher than forage N in all seasons except spring when the latter was greater. 
Forage and fecal N declined sharply from spring as seasons progressed. Fecal N in goral was considerably lower than in 
musk deer in all seasons, probably below maintenance levels in autumn and winter. As evident from peaks and duration of 
high diet quality, goral is likely a capital breeder and musk deer an income breeder. Results suggest that linkages between 
diet and reproductive seasonality in ungulates will have important implications in face of climate change.
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Introduction

Ungulates living in higher latitudes and altitudes face drastic 
seasonal changes in the quality and biomass of forage, with 
peak quality in spring and peak biomass in summer (Post 
2003; English et al. 2012; Stoner et al. 2016). They need 
to accumulate enough reserves during the growing season 
in order to carry through costly gestation starting from late 

autumn or early winter, when both forage biomass and qual-
ity are the lowest (Barboza and Parker 2008; McArt et al. 
2009; Parker et al. 2009; Thompson and Barboza 2017). 
Some ungulates track the “green wave” due to altitudinal 
and latitudinal differences in the onset of plant growth fol-
lowing winter through migration, thus effectively prolonging 
the short growing season (Bischof et al. 2012; Searle et al. 
2015; Merkle et al. 2016; Middleton et al. 2018). Most ungu-
lates in the boreal and arctic ecosystems switch their diets 
from growing season in spring and summer to lean season in 
winter. Wood bison Bison bison switch from a mixed diet to 
lichens (Larter and Gates 1991); woodland caribou Rangi-
fer tarandus from graminoids to lichens (Thompson et al. 
2015); mountain goat Oreamnos americanus from sedges 
and forbs to conifers, shrubs, and lichens (Fox and Smith 
1988); and mule deer Odocoileus hemionus from forbs to 
shrubs and wapiti Cervus canadensis roosevelti from shrubs 
to tree foliage (Hosten et al. 2007). Such shifts between 
growth forms, therefore, seem crucial for these ungulates 
to optimize a combination of forage biomass and quality.
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Such dietary switches are followed by a drastic dip in 
dietary nitrogen (N) in winter due to low N content and 
digestibility of the forage and high snow cover, which fur-
ther restricts access to forage (Klein 1990; Barboza et al. 
2018). N is the most limiting nutrient for terrestrial vegeta-
tion (Vitousek and Howarth 1991; Elser et al. 2007) as well 
as the wild ungulates consuming it (Robbins 1993; White 
1993). Five to 9% of crude protein (CP) content (N × 6.25) 
is needed to maintain minimum protein balance in wild adult 
ruminants (Robbins 1993). Ungulates reported to face such 
near or below maintenance levels of protein during win-
ter include red deer Cervus elaphus (Maloiy et al. 1970), 
white-tailed deer Odocoileus virginianus (Asleson et al. 
1996), and wapiti (McCullough 1969) in north-temperate 
regions and bharal Pseudois nayaur in subtropical moun-
tains (Suryawanshi et al. 2010). Moreover, an increase in 
biomass in later phenological stages results in increased 
structural tissues indicated by carbon (C) content in plants. 
The CN ratio, therefore, gives a combined estimate of the 
overall plant quality. An increase in CN ratio resulting from 
the dilution of leaf N with increased amounts of structural 
tissues (Walsh et al. 1997), therefore, indicates a reduction 
in plant nutritional quality (Leingartner et al. 2014). Fecal 
N has a relatively consistent relationship with dietary N 
except on occasions when consumption of woody plant spe-
cies containing secondary metabolites might inflate fecal N 
concentrations (Robbins 1993; Palo & Robbins 1991; Hola 
et al. 2016).

In higher latitudes and altitudes, plant growth forms are 
one of the major determinants of vegetative phenology and 
thus of the forage biomass and quality available to the ungu-
lates. This is primarily due to their differential responses to  
seasonal changes in environmental conditions (Iversen et al. 
2009). For instance, shrubs and other evergreens, with slow 
nutrient uptake as well as release, have slow and steady 
phenological changes. In contrast, grasses and forbs, which 
have relatively fast nutrient uptake in early spring, show fast 
phenological changes. Thus, plant growth form is a good 
predictor of seasonal changes in nutritive value and palat-
ability of forage plants to ungulates (Iversen et al. 2014) 
depending upon their feeding habits (Post and Stenseth 
1999). Such differences among plant growth forms in phe-
nology and nutritive value can affect seasonal changes in 
diet quality of sympatric ungulates differently, depending 
upon their primary feeding adaptations. For example, in the 
same habitat, a grazer can be expected to face more drastic 
seasonal changes in forage quality and thus in diet quality, 
compared to a browser. This can also influence the schedul-
ing of reproduction by grazers and browsers (Owen-Smith 
and Ogutu 2013) and the degree of reproductive synchrony 
(Srivastava et al. 2021). However, the relationships between 
seasonal variations in the nutritive value of different plant 

growth forms and diet quality of sympatric ungulates have 
been explored very little.

We examined how diet composition and quality of two 
sympatric ungulates with different feeding habits varied 
with season, against the background variation in biomass 
and quality of different growth forms (graminoids, forbs, 
and browse) in their habitats. The two species (the Hima-
layan goral, Naemorhedus goral, and the Himalayan musk 
deer, Moschus chrysogaster) are sympatric in several areas 
in Himalaya, although the former is a relatively low altitude 
species and the latter, a higher altitude species (Srivastava 
and Kumar 2018). We specifically asked how do the biomass 
and quality (measured as N, C, and CN ratio) of different 
growth forms varied with season in the altitudinal ranges of 
the two species. We also asked how do the seasonal switches 
between growth forms affect diet quality of the two ungulate 
species having different feeding habits. We expected both 
forage biomass and quality to decline drastically from spring 
to winter with different magnitudes for different growth 
forms. Moreover, goral having a graminoid-dominated diet 
(Mishra and Johnsingh 1996; Ilyas and Khan 2003), and 
musk deer being predominantly a concentrate feeder or 
browser (Green 1987; Syed and Ilyas 2015), we expected 
greater seasonal changes in diet quality in goral.

Materials and methods

Study area

We conducted this study in Kyongnosla Alpine Sanctuary 
(31  km2) and the adjoining forests in the state of Sikkim 
(27°N 88°E) (Fig. 1a) in an altitudinal range from 3000 to 
4200 m. We found musk deer mostly above 3300 m, goral 
below 3600 m, while serow Capricornis sumatraensis thar, 
the largest and rarest among the three species, probably 
migrated to lower altitudes in winter (Srivastava and Kumar 
2018). During this study, from April 2013 to March 2014, 
the maximum temperature was 18.50 ± 0.70 °C in July below 
3600 m and minimum temperature was − 8.27 ± 0.52 °C in 
January above 3600 m. Areas < 3600 m had snowfall from 
January to April, with 80% snow cover in January, while 
areas > 3600 m remained snow covered from November 
till May, with the snow cover between 50 and 100%. We 
grouped the months into four seasons: spring (April–June), 
summer (July–September), autumn (October–December), 
and winter (January–March).

Areas < 3300 m had a tree cover of Betula utilis and Acer 
spp., while Abies densa and Sorbus microphylla formed the 
tree cover between 3300 and 3900 m along with several spe-
cies of Rhododendron. The alpine zone (> 3900 m) had a 
much higher shrub cover with Rhododendron nivale, Rhodo-
dendron anthopogon, and Rhododendron aerogenosa.
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Methods

We marked eight trails each of 600-m length at altitude 
intervals of 150 m from 3000 to 4200 m (Fig. 1b). These 
trails served as the basic sampling units for assessing forage 
biomass and quality as well as diet composition and quality.

Assessing forage biomass and C, N, and CN 
ratio

We marked permanent plots of 10  m × 10  m at every 
100-m interval on alternate sides of the trails, result-
ing in 52 plots (Fig. 1c). We sampled ground vegetation 
(graminoids and forbs) from a randomly selected subplot 

of 1 m × 1 m within each of these permanent plots every 
fortnight between April and December 2013. From each 
subplot, we clipped aboveground plant biomass from one 
randomly selected 50 cm × 50 cm quadrat. We could not 
sample the ground vegetation in winter (January to March) 
as it was completely buried under deep snow especially 
in the higher altitude areas. However, at the end of our 
sampling in autumn (October–December), the ground 
vegetation had almost senesced to litter. Therefore, we 
assumed that the forage biomass and quality values in win-
ter remained approximately the same as that in autumn, 
though the ground vegetation would have been unavailable 
to the ungulates due to snow cover.

We sampled tree browse biomass up to a height of 1.6 m 
from 10 m × 10 m permanent plots and shrub biomass from 

Fig. 1  Study area and sampling setup. a Location of Kyongnosla 
Alpine Sanctuary (KAS) in Sikkim. b Altitude zones and location 
of sampling trails in KAS. c Schematic of a sampling trail (600 m) 
with permanent plots (10  m × 10  m, P1 to P7), random subplots 

(1 m × 1 m) for fortnightly vegetation sampling, and subsub plots for 
collection of plant samples (0.5 m × 0.5 m) for aboveground biomass 
and CN ratio estimation
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5 m × 5 m plots within the same, once in every season. We 
sorted all the harvested samples into species and stored 
them in separate labeled paper envelopes. We weighed 
these samples after drying in a hot air oven at 60 °C for 
48 h. The samples were ground in a Willey mill at 0.20-
mm mesh size to measure total N and C using a CN ana-
lyzer (Leco Instruments, St Joseph, MI, USA).

Assessing diet composition and fecal C, N, 
and CN ratio

We used fecal samples to assess diet composition and 
diet quality with fecal C, N, and CN ratio as indicators 
of quality. Once every fortnight we collected fresh pellet 
samples (10–12 pellets from a pellet group) of the study 
species along each trail. We oven-dried these samples at 
60 °C for 48 h and stored for further laboratory analysis.

For assessing diet composition, we used microhisto-
logical analysis following Morrison (2008). We examined 
12 samples/season for musk deer (total 48 samples) and 
13 samples/season for goral except in summer (12) (total 
51 samples). We prepared three slides of plant fragments 
from each fecal sample, which we viewed under an Olym-
pus MVX10 Stereo microscope at 250 × magnification. 
We used diagnostic epidermal features from the reference 
slides made from common plants for identification of the 
fragments in the pellet slides into those of dicots (forb and 
browse) and monocots (grass and sedge). Identification 
of fragments up to species was found not feasible. In the 
pellet slides, we selected 10 non-overlapping fragments 
on a randomly selected transect line on each of the three 
slides (Sparks and Malechek 1968), resulting in 30 frag-
ments for each pellet sample. For measuring diet quality, 
we ground these fecal samples in a Willey mill at 0.20-
mm mesh size and measured total N and C using a CN 
analyzer (Leco Instruments, St Joseph, MI, USA).

Data analysis

We averaged biomass, C, N, and CN ratio for different 
growth forms across all plots lay within each fortnight sam-
pling session, which was then averaged across all sessions 
within each season as described above. The averaging was 
restricted to the altitudinal range in which the species was 
found—3000–3600 m for goral and 3300–4200 m for musk 
deer. Percentage of fragments of different growth forms and 
the C, N, and CN ratio values for fecal pellets were also 
averaged across all pellet groups for each season. We used 
one-way and two-way ANOVA for comparisons among sea-
sons and growth forms, followed by Tukey’s test for pair-
wise comparisons only if the differences were significant at 
p < 0.05. All the analyses were done with statistical software 
R 3.0.1 (R Development Core Team 2013).

Results

Our results showed that the C content in forage growth forms 
as well as diet of both the ungulates did not vary much with 
seasons (Fig. 3). Therefore, the seasonal variation in CN 
ratio was mostly a function of N content and we used the 
same to describe the variations in forage and diet quality of 
the ungulates in the following results.

Forage biomass and N content

We sampled biomass in each of the 52 plots a total of 16 
times for ground vegetation and 3 times for browse in a 
year. We obtained 259 species in three growth forms, forbs 
being the most species-rich (194) followed by graminoids 
(37) and browse (28). The seasonal variations in biomass 
of different growth forms were similar in the habitats of 
goral and musk deer (Fig. 2a, b). Forbs formed > 70% 
of the biomass in summer, with a drastic increase from 
spring to summer and a decline in autumn. However, 
the seasonal changes in forbs biomass were sharper in 

Fig. 2  Seasonal variation in bio-
mass (mean ± SE) of different 
growth forms in the habitats of 
a goral and b musk deer
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the habitat of musk deer, with a greater biomass in sum-
mer than that in the goral habitat. Biomass of graminoids 
also increased from spring to summer but did not show a 
decrease through autumn. Browse biomass did not show 
much variation among seasons in both habitats.

A drastic reduction in the N content of all the growth 
forms was evident from spring to autumn in both goral and  
musk deer habitats (Fig. 3a, b). In goral’s habitat, the N 
fell by 38.6% in forbs, 42.8% in graminoids, and 36.5% in 
browse, with a similar decline between spring and sum-
mer, and summer and autumn. In the habitat of musk deer 

in the higher altitude, the fall in N content was 50.7% in 
forbs, 48.2% in graminoids, and 35.3% in browse.

Diet composition and fecal N

For estimating diet composition, we examined 1440 and 
1530 plant fragments from 48 musk deer and 51 goral 
pellets, respectively. We used 82 musk deer and 78 goral 
pellets for estimating fecal C, N, and CN ratio. Monocots 
dominated the diet of goral in spring, summer, and autumn, 
with dicots also forming an almost equal part of the diet 
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in winter (Fig. 4a). Musk deer, on the other hand, had a 
dicot-dominated diet with forbs and browse contributing 
to > 70% of its diet in all seasons (Fig. 4b). Only in sum-
mer, monocots also formed a large percentage of its diet. 
A two-way ANOVA showed that fecal N was significantly 
different between the two ungulate species (goral having 
lower fecal N than musk deer; F = 87.42, p < 0.001) and 
among seasons (F = 37.91, p < 0.001; fecal N in spring and 
summer being significantly different from that of autumn 
and winter, Tukey’s test, p < 0.002), with the interaction 
between species and seasons not being significant (two-way 
ANOVA, F = 1.40, p = 0.246) (Fig. 3a, b).

Comparison of forage and diet N

In spring, fecal N in goral was lower than the N content 
of all growth forms except browse in its habitat (one-way 
ANOVA, F = 16.06, p < 0.001 followed by Tukey’s test, 
p = 0.005), and in summer, it was higher than N content 
of graminoids and browse (one-way ANOVA, F = 26.41, 
p < 0.001 followed by Tukey’s test, p < 0.002). However, in 
autumn, fecal N was significantly higher than the N con-
tent of all the growth forms (one-way ANOVA, F = 56.72, 
p < 0.001; Tukey’s test, p < 0.002 for all growth forms) and 
in winter higher from all except forbs (one-way ANOVA, 
F = 50.86, p < 0.001; Tukey’s test, p < 0.002) (Fig. 3c). Dur-
ing spring, the fecal N in musk deer was significantly higher 
only than the N content of browse in its habitat (one-way 
ANOVA, F = 23.43, p < 0.001; Tukey’s test, p < 0.001). In 
all other seasons, the N content in its feces was higher than 
that of all the growth forms in its habitat (one way ANOVA, 
summer-F = 176.7, p < 0.001; autumn—F = 61.06, p < 0.001; 
winter—F = 108.9, p < 0.001; Tukey’s test, p < 0.001, for 
pairwise differences between fecal N and N content of each 
growth form in all seasons) (Fig. 3b).

Discussion

The seasonal variations in biomass and quality were 
clearly different among the growth forms in the habitats 
of the goral and musk deer. Only forbs showed a sharp 
increase in biomass from spring to summer, forming as 
much as 70% of the biomass of all growth forms, and an 
equally dramatic decrease from summer to autumn. Grami-
noids increased in biomass from spring to summer but did 
not show a decline in autumn. Browse biomass did not 
show any seasonal variation. This phenological pattern in 
biomass from browse being the slowest in phenological 
changes, followed by graminoids and forbs being the fast-
est, is similar to that in high altitude alpine ranges where 
growth form was the best predictor of phenology (Iversen 
et al. 2009). In contrast to biomass peaking in summer, 
nutritive value as indicated by N content, declined sharply 
from spring to autumn in all growth forms. It is very likely 
that this decline would have continued into winter in all 
growth forms in lower as well as in higher altitude where 
the ground vegetation (forbs, graminoids, and ferns) had 
completely dried up in autumn followed by heavy snow 
cover, due to which we did not have forage samples in 
winter. Forbs had the highest N in all three seasons fol-
lowed by graminoids and browse. Among these three 
growth forms, seasonal decline was the highest in grami-
noids and least in browse. Among the dicots, forbs had a 
much higher N than browse, which included woody shrubs 
and low-hanging branches of trees. In general, dicots have 
higher N than monocots owing to the latter’s higher fiber 
and cellulose content (Holechek 1984). Moreover, as they 
attain maturity much earlier in the growing season, their 
nutritive value declines faster than other growth forms 
(Iversen et al. 2014). The decline in forage N was sharper 
in all growth forms in musk deer habitat, as expected from 
higher altitudes (Kudo 1991).

Fig. 4  Seasonal variations in 
the percentage of fragments 
(mean ± SE) of graminoids 
(monocots) and dicots (forb and 
browse) in the pellets of a goral 
and b musk deer
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Seasonal variation in the composition of goral diet indi-
cates that it is a mixed feeder, as Van Soest (1982) had 
classified. Although graminoids formed a high proportion 
of goral’s diet in all seasons, the proportions of dicots in 
autumn and winter were substantial (up to 49.67%). This 
was despite no reduction in grass biomass from summer 
to autumn and a drastic reduction in the biomass of forbs. 
However, grass N decreased from about 17.5% to nearly 
10%, probably close to maintenance levels of 9% (Robbins 
1993). Graminoids show much faster phenological changes 
than dicots (Iversen et al. 2009), which in this case included 
a decline in N and perhaps an increase in lignification also 
indicated by C (though not much here), which decreases 
their digestibility (Hofmann 1989). Thus, at the altitudes that 
we studied, goral remains a grazer only in spring and sum-
mer when N as well as digestibility in graminoids is high. 
Such dietary shifts from one growth form to another are 
characteristic of mixed feeders in response to changes in for-
age biomass or quality or due to competition with livestock 
(Mishra et al. 2004; Morgia and Bassano 2009; Suryawanshi 
et al. 2010). Hofmann (1989) attributed the diet switches 
by mixed feeders to lignification in forage which they can-
not digest. The Himalayan goral is a non-migrant within 
most of its distributional range (Mishra and Johnsingh 1996; 
Srivastava and Kumar 2018), and such a flexible diet involv-
ing switches between growth forms clearly highlights the 
significance of varied seasonal abundance and quality of 
different growth forms present in its habitats, thus enabling 
its survival through the harsh winter by feeding on browse 
while enabling the exploitation of abundant high-quality 
grass in spring and summer.

Diet of musk deer was composed mostly of dicots which 
could have included both forbs and browse in all seasons. 
Forbs had the highest biomass as well as quality in all sea-
sons. Therefore, the dicot-dominated diet of musk deer indi-
cates its preference for high-quality forage as reported previ-
ously (Green 1987). Moreover, the inclusion of graminoids 
in its diet during summer when its quality was comparable 
to forbs further shows its preference for high-quality forage. 
We did not find evidence for a major switch from dicot to 
monocot in response to seasonal fluctuations in forage bio-
mass and quality. However, there might have been a switch 
from forbs to browse during winter as reported previously 
from other areas (Bhattacharya et al. 2012) due to heavy 
snow cover during autumn and winter.

Both the ungulates in our study had fecal N higher than 
the forage N in almost all seasons except that in spring, thus 
showing selectivity for high-quality forage. In spite of a 50% 
decline in the N content of forbs from spring to autumn, the 
decline in fecal N of musk deer was only 29%. In goral, the 
diet quality peaked in summer and coincided with the peak 
in biomass and an intermediate quality of forage in its habi-
tat. The decline in fecal N was far less than that in forage N.

One factor which can potentially obfuscate the intra- 
and inter-specific comparison of diet quality based on 
fecal N is the interference of tannin in protein digestion 
and excretion (see Leslie et al. 2008 for a review). High 
levels of tannin, which are more common in browse than 
in forbs and graminoids (Oehler et al. 2003), can elevate 
fecal N levels by reducing protein availability by as much 
as 46% in the moose Alces alces (McArt et al. 2009). 
In case of goral, this could have happened in autumn 
and winter when their diet contained more dicots, prob-
ably browse. This could only mean that the diet qual-
ity in goral during these two seasons was even lower 
than that indicated by fecal N. In case of musk deer, it 
is most likely that its diet consisted of more browse in 
autumn and winter when biomass of forbs had drasti-
cally declined and access to them was very limited due to 
high snow cover. It is unlikely that higher consumption of 
browse would have elevated fecal N since browsers typi-
cally avoid plants with very high tannin content (Cooper 
and Owen-Smith 1985), besides having adaptations to 
minimize the effect of ingested tannins. In fact, experi-
mental studies with formulations similar to natural diets 
(Hodgman et al. 1996), and of free ranging ungulates 
(Oehler et al. 2003), have not found evidence that tannin 
has influence on fecal N. Therefore, the seasonal vari-
ation in fecal N in musk deer is unlikely to have been 
influenced by variation in tannin content in its forage. 
There is thus a direct correlation between forage N and 
fecal N in both the species, as reported in other ungu-
lates (e.g., Leslie and Starkey1985; Kamler and Homolka 
2005; Ueno et al. 2007), and between fecal N and diet 
quality. The differences between goral and musk deer in 
fecal N also reflect differences in their diet quality, the 
former having a comparatively poorer diet than the latter.

The primary criteria for selection of forage by ungulates 
may be high protein and low fiber content (Mysterud et al. 
2001). A simple indicator of high preference for a forage 
type could be its abundance. For instance, selection of 
plant groups in red deer in alpine habitats was associated 
with high crude protein and low fiber and was negatively 
correlated with abundance (Zweifel-Schielly et al. 2012). 
However, this does not seem to be the case in the habitats 
of goral and musk deer, since we did not find any dif-
ference between the N content of forbs that formed 75% 
of the biomass and those that formed 25% (unpublished 
data). It is likely that N content in forage depends on the 
plant parts or their phenological stage (Klein 1990). A 
higher fecal N than the available forage N does not mean 
that N is the only criterion for selection of forage, and that 
the forage with the highest N is always selected. Nonethe-
less, our study clearly shows that forage selection in both 
the ungulates leads to a higher N in the diet compared to 
available background N.
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Conclusion

The seasonal variations in diet quality have important 
implications for the scheduling of different reproductive 
stages consisting of estrous, gestation, parturition, and 
weaning in ungulates (Parker et al. 2009). Quality of diet 
in goral, primarily a grazer, peaked in spring and sum-
mer prior to sharply declining in autumn and winter, per-
haps below the maintenance level as reported in reindeer 
(Barboza and Parker 2008). Therefore, it has to schedule 
the nutrient demanding late gestation and lactation during 
spring and summer and also build up enough body reserves 
to survive the next winter and carry on early gestation. 
Diet quality during spring–summer and the duration of the 
growing season are major determinants of female body 
mass, fecundity, and juvenile survival in many mountain 
ungulates (Cote and Festa-Bianchet 2001; Corlatti et al. 
2018; Douhard et al. 2018; Lovari et al. 2020). Therefore, 
goral is likely to be a capital breeder (Jönsson 1997), show-
ing high reproductive synchrony. In contrast, diet quality 
in musk deer remained relatively high even in autumn and 
winter, despite being in a higher altitude, due to its diet 
consisting primarily of dicot. Therefore, musk deer is likely 
to be an income breeder, with low synchrony in estrous 
cycles and parturition. Our data on estrous cycles, gesta-
tion, and parturition, based on fecal hormonal metabolites, 
support this conclusion (Srivastava et al. 2021). The link-
age between diet and the above two breeding strategies has 
important implications when both resource availability and 
seasonality change, for example, due to climate change. 
For example, the reproductive performance of caribou 
(Rangifer tarandus), an income breeder, was more imme-
diately affected by a trophic mismatch due to changes in 
plant phenology compared to muskoxen (Ovibos moscha-
tus), a capital breeder, which was more affected by changes 
in plant phenology in the previous years (Kerby and Post 
2013). Therefore, a better understanding of the linkages 
between diet and reproductive seasonality of ungulates in 
the Himalayan Mountains, the richest assemblage in the 
world with 20 species, is necessary to predict the distri-
bution and abundance of their populations in the face of 
climate change (e.g., Lovari et al. 2020).
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