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Abstract Extinction of a species represents the loss of a
resource evolved through eons of mutations and natural selec-
tion. Reproductive technologies, including artificial insemina-
tion, embryo transfer, in vitro fertilization, gamete/embryo
micromanipulation, semen sexing, and genome resource
banking (GRB) have all been developed with the aim of
solving existing problems and preserving genetic material
for conservation purposes. Although protocols from domestic
or non-threatened related species have been extrapolated to
nondomestic and endangered species, usually these reproduc-
tive technologies are species-specific and inefficient in many
nondomestic species because of insufficient knowledge on
their basic reproduction biology and the need for species-
specific customization. Since spermatozoa are usually more
accessible and come in large numbers compared to oocytes
and embryos, they are considered the primary cell type pre-
served in most emerging GRBs. For this purpose, semen from
endangered species is currently cryopreserved to avail long-
term storage. Due to the intractability of most exotic species,
semen collection without chemical restraint is limited to only a
handful of species and individuals. Viable epididymal sper-
matozoa can be obtained from dead or castrated animals, but
this resource is limited. Electroejaculation, artificial vagina,

abdominal massage, and/or transrectal, ultrasound-guided,
massage of the accessory sex glands of living animals are
viable alternative methods of semen collection. The ultimate
goal is to adapt and optimize collection and cryopreservation
protocols for each species, making it feasible, among other
things, to collect gametes in the wild and introduce them into
captive or isolated populations to increase genetic diversity.
Recent advances in these fields have allowed the establish-
ment of GRBs for many threatened species.
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Introduction

Conservation status

Current extinction rate is estimated to be up to 1,000 times
higher than the natural, or background, extinction rate, which
means that, in the next few decades, up to 30 % of species,
including many mammals, birds, reptiles, fish, and amphib-
ians, may go extinct (Rockström et al. 2009; Pimm et al.
1995). Extensive habitat fragmentation or destruction, hunting
and poaching, over exploitation, deforestation, introduction of
invasive species, pollution of air, water and soil, climate
change—including global warming, ocean acidification, and
interference with the nitrogen cycle—have all contributed to
diminished wild populations in a huge number of species,
turning them into small and highly fragmented populations,
resulting in a growing number of species being classified as
“Endangered” (Reid and Miller 1989; Saragusty 2006). In
addition to in situ conservation efforts, captive breeding and
assisted reproductive technologies represent good tools in
support of the struggle to protect species from going extinct.
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Captive breeding plays an important role in conservation of
species that may not survive in the wild, and as a breeding
stock for reintroduction of individuals to repopulate dwindling
or extinct populations. Captive populations are established for
many reasons, including conservation, exhibition of interest-
ing species, and research. Establishing self-sustaining captive
populations as a means to protect species from the risk of
extinction is an important contribution of zoos to conserva-
tion. A major goal of captive breeding programs is to preserve
as much genetic diversity as possible in order to guarantee
healthy survival of each species. However, to maintain suffi-
cient numbers of animals to preserve satisfactory genetic
variability of a species to ensure long-term genetic health is
beyond the ability of zoos for most species. Notter and Foose
(1985) calculated that nearly 50,000 individuals would be
required to maintain 99 % of a species’ genetic diversity for
1,000 generations. Even if one goes by much more loose
estimates aimed at maintaining only about 90 % genetic
diversity for a couple of 100 years, still several hundred
animals are required in many vertebrate species (Traill et al.
2007). Due to space limitations in zoos and animal parks, it is
impossible to maintain such large living populations. Long-
term germplasm (gametes and embryos) dynamic storage can
be considered as a possible way to preserve this ideal genetic
diversity while minimizing holding space requirements and
increasing the number of species that can be maintained
through captive breeding (Wildt 1992; Wildt et al. 1997; Holt
et al. 2003; Holt and Lloyd 2009).

Another advantage of captive breeding programs and
germplasm storage by cryopreservation is the possibility to
use genetically important individuals, via their spermatozoa,
oocytes, or embryos, even when separated by long distances
(Holt and Lloyd 2009; Hildebrandt et al. 2012) or after their
death, thus reducing the risks associatedwith inbreeding (Lacy
1987; Lacy 1997; Roldan et al. 2006; Holt and Lloyd 2009).
However, the success or failure of captive breeding programs
and germplasm conservation depends on the further use of
cryopreserved gametes and embryos for artificial insemination
(AI), in vitro fertilization (IVF), and embryo transfer (ET).

Methods of assisted reproduction widely used in humans
and domestic and laboratory animals are being applied to
nondomestic species (Silber et al. 2013). Techniques can be
transferred fromwell-known species to related but less studied
species and may lead to improvements in their conservation.
However, even if it is possible to develop protocols based on
such model species, due to the uniqueness of each species,
reproductive protocols must be adapted to the target species.
Species vary in the anatomy of their genital system, morphol-
ogy of their gametes, presence or absence of various male
accessory glands, ovulation mechanisms, active hormones,
duration of the reproductive cycle and gestation, and many
other aspects of reproductive biology.We therefore should not
be surprised to find differences between species in the reaction

of their gametes, embryos and tissues to the cryopreservation
process. The use of model species (usually more accessible) is
common and useful, but, in the end, experimentation should
be conducted in the target species. While this is relatively
simple in domestic and laboratory animals, opportunities to
obtain gametes and other relevant cells and tissues from
endangered species are rare and far apart in terms of time
and space, making progress extremely slow or, at times,
practically impossible (Saragusty 2006).

There are some issues or peculiarities associated with sam-
pling in wildlife. To start with, as described above, every new
species is an enigma as far as key details of its anatomy or
physiology are concerned. Due to the fact that the number of
available individuals for sampling is usually very small, sam-
pling opportunities are very limited and normally far away
from the laboratory. It is also important to note that many wild
species are seasonal, making sampling unpredictable in terms
of quality and quantity. An additional concern when working
with wild species, and due to the intractability of many of
them, is that sampling often requires the use of general anes-
thesia, a risky procedure when it comes to wild animals that
are very good at concealing health issues. Anesthesia proto-
cols require species-specific customization, and the use of
anesthesia makes repeated and frequent sampling impossible.

There is no doubt that semen cryopreservation, coupled
with artificial insemination, has become the main tool for
threatened species in ex situ assisted reproduction and re-
search programs due to its advantages as long-term conserva-
tion tool and for facilitating transport of frozen semen samples
rather than the stress-susceptible animal. Hundreds of studies
describing sperm cryopreservation in threatened species have
been published to date (e.g., Fickel et al. 2007; Saragusty and
Arav 2012). Spermatozoa represent the primary cell types
among germplasm preserved in genome resource banks
(GRBs) due to its accessibility compared to oocytes or em-
bryos, and, in all vertebrate species other than mammals, it
being the only germplasm that can presently be cryopreserved
(Saragusty 2006). Sperm cryopreservation has been widely
developed in mammalian, fish, and avian species. In other
vertebrate species (amphibians and reptiles), there is a grow-
ing interest; and development of these techniques for conser-
vation management is in progress (Kouba and Vance 2009;
Robles et al. 2009).

Interest in zoological gardens

Zoological gardens play an important role in species conser-
vation by educating the general public, breeding endangered
animals, and maintaining frozen repositories of cells and
tissues from a wide variety of species. The goal of most
endangered species captive breeding programs is to establish
captive populations that are large enough to be demographi-
cally stable and genetically healthy. In order to accomplish
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this goal, the most important objectives to have in mind are:
(a) ensure successful reproduction, (b) protect the population
against diseases, and (c) preserve the gene pool to help
avoiding problems associated with inbreeding. Some captive
breeding programs may also be interested in eventual reintro-
duction of animals back to the wild, although not all agree that
captive breeding and reintroduction are the right ways to
tackle populations decline and local extinction (Hunter et al.
2013). One of the main problems associated with captive
breeding is diminishing genetic diversity in the remaining
mating stocks. Germplasm cryopreservation means that, at
least to some degree, diversity is stocked away and can be
reintroduced into the population at a later date by thawing
gametes from animals that are not sufficiently represented in
the population and are not directly related to their livingmates.
Since zoos normally have space limitations and cannot main-
tain large-enough populations needed to keep them genetical-
ly healthy and sufficiently diverse, the use of GRBs and
reproductive technologies are important supportive tools.

Another important issue relevant to captive breeding of
wildlife is the fact that reproductive biology is well character-
ized for only a very small number of species, almost all of
them are domestic or laboratory species and species of eco-
nomic or scientific importance. This is considered a big issue
in the application of reproductive techniques such as sperm
cryopreservation, synchronization of ovulation, or artificial
insemination (Loskutoff 1998; Wildt 1990; Wildt et al.
2001). The use of model species, such as domestic animal or
more accessible wild species, coupled with increased under-
standing of sperm cryobiology, can help in the process of
developing protocols to assist in the preservation of semen
from endangered wild species (Wildt et al. 1995, 2001). Work
with samples collected from the target species, however, will
eventually have to be done to ensure suitability of the devel-
oped protocol.

The creation of GRB programs, such as the Frozen Ark
Consortium (www.frozenark.org) (Clarke 2009) and the Am-
phibian Ark (www.amphibianark.org), or species-specific re-
positories of frozen semen such as those for the European
bison (Bison bonasus) (Sipko et al. 1997), tiger (Panthera
tigris) (Wildt et al. 1993, 1995), or the mhorr gazelle (Gazella
dama mhorr) (Holt et al. 1996), all strive to keep genetic
material and viable gametes from threatened species and,
while doing so, demonstrate the importance of GRBs.

Due to the huge amount of work and money needed to
support the creation of GRBs for all species, together with the
practical benefit of using the preserved material in its natural
environment, it is clearly more appropriate that each country
will focus on species and breeds of local interest (Holt and
Pickard 1999). To that extent, article 6 of the Convention on
Biological Diversity (CBD) calls on all signatory nations to
prepare National Biodiversity Strategy and Action Plan
(NBSAP) and to establish, regulate, and manage collection

of biological resources from natural habitats for ex situ con-
servation purposes (Convention on Biological Diversity
1992). A clear example of such efforts of research groups on
local species is the activity concerned with marsupial conser-
vation in Australia under the organization of the Animal Gene
Storage and Resource Centre of Australia (AGSRCA), one of
the members of the Frozen Ark Consortium (Holt and Pickard
1999; Clarke 2009).

The Leibniz Institute for Zoo andWildlife Research (IZW),
located in Berlin, Germany, another member of the Frozen
Ark Consortium, has a cryobank that stores oocytes, embryos,
and epididymal and ejaculated spermatozoa, as well as somat-
ic cells of large variety of mammalian species. For example,
the bank stores semen samples fromAsian (Elephas maximus)
and African (Loxodonta africana) elephants, Indian (Rhinoc-
eros unicornis), white (southern: Ceratotherium simum
simum; northern: C. simum cottoni) and black (Diceros
bicornis) rhinoceroses, various deer species, giant panda
(Ailuropoda melanoleuca), brown bear (Ursus arctos), a large
collection of wild felids, lagomorphs, primates, and many
others (Fickel et al. 2007). The cryobank of the Spanish
National Institute for Agricultural Research (INIA) maintains
samples of sperm from several threatened avian species and
somatic cells from bucardo (Capra pyrenaica pyrenaica), the
now extinct Pyrenean ibex species. These samples may be
used in the future when trying to resurrect this species through
interspecies somatic cell nuclear transfer (Folch et al. 2009).
High survival rates of germplasm are obtained in some but not
all species (Blottner 1998; Asher et al. 2000; Leibo and
Songsasen 2002; Swanson and Brown 2004). Further research
towards improving current protocols as well as research aimed
at establishing AI, IVF, or intracytoplasmic sperm injection
(ICSI) using cryopreserved gametes is needed. In non-
mammalian vertebrate species, conservation of primordial
germ cells (PGCs) opens new possibilities, especially since
thus far only male gametes can be cryopreserved, and since in
birds and many reptilian, amphibian, and fish species the
female is the heterogametic sex.

Interest in wildlife farming

There are obvious economical and conservational reasons for
developing germplasm banks (Holt and Pickard 1999). One of
which is the fact that manywild species have expanding utility
prospects (Fletcher 2001). Their use as farmed species has
increased notably in recent years for production of gamemeat,
fur, and leather, as well as for hunting purposes. In the context
of domestication of some of these species, semen cryopreser-
vation, AI, and other assisted reproductive techniques have
been successfully applied (Fennessy et al. 1990; Fukui et al.
1991; Morrow et al. 1994; Ponce et al. 1998; Asher et al.
1999, 2000; Malo et al. 2005; Zomborszky et al. 1999; von
Baer et al. 2002; Lattanzi et al. 2002; Berg and Asher 2003;
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Williams et al. 2004; Tibary et al. 2007; Amstislavsky et al.
2012). Development of assisted reproductive techniques
adapted to these species is needed in order to increase produc-
tivity, facilitating selection of desirable traits such as meat
quality and quantity, and for antler/horn size and beauty (for
hunting). It is also useful as a mode to preserve, through
germplasm banking, interesting subspecies and breeds, or
selected varieties. The task of creating specific protocols for
such wild ruminants, camelids, or carnivores still require
further efforts, as although many techniques used in domestic
livestock can be applied to some of these species (Asher et al.
2000; Garde et al. 2003; Martinez-Pastor et al. 2005a;
Santiago-Moreno et al. 2009a, 2010a, 2013), species-
specific adjustments must still be carried out to optimize
cryosurvival. Indeed, evenwithin the same genus, for example
among cervid species, different species were shown to require
different protocols for sperm cryopreservation (Cheng et al.
2004).

Genetic material recovery and processing methods

Species-specific sperm characteristics

There are many species-specific sperm characteristics in wild-
life. For example, ejaculate volume and its concentration vary
greatly between species. Large-volume ejaculates exceeding
100 mL of concentrated sperm can be collected from ele-
phants, boar, or donkey (Saragusty et al. 2006, 2009) com-
pared to small volume of up to just a few microliters in the
naked mole rat (Heterocephalus glaber) or in species of the
Fukomys genus (Bathyergidae, Rodentia) (Saragusty et al.,
unpublished data). Concentration can also vary greatly be-
tween several billions of spermatozoa per milliliter collected,
for example, from the pygmy hippopotamus (Choeropsis
liberiensis) (Saragusty et al. 2010a) or occasionally in the
Asian black bear (Ursus thibetanus) (Chen et al. 2007) to
the normally low concentration found in samples collected,
for example, from some felids (Morato et al. 2001; Chen et al.
2007; Gañán et al. 2009).

Depending on the species, spermatozoa differ in size and
shape, possibly as an adaptation to sperm competition or
environmental factors. Marsupials may be a good example
for species-specific sperm characteristics. As mentioned by
Moore and Taggart (1995), spermatozoa in all American
marsupials, with the exception of one species (Dromiciops
australis) (Temple-Smith 1987), form pairs during epididymal
maturation (Biggers and Creed 1962; Temple-Smith and Bed-
ford 1980). Once the spermatozoa reach the distal epididymis,
they rotate, aligning their heads to form pairs (Moore and
Taggart 1995). This pairing turns the two spermatozoa into
biflagellate unit, probably with enhanced swimming abilities

(Phillips 1972). It was thus suggested that the mechanism has
evolved to increase the number of successful spermatozoa
reaching the fertilization site along the marsupial female re-
productive tract (Moore and Taggart 1995).

Sexual strategies in animals (polygyny, monogamy) also
influence sperm characteristics. In mammalian and avian po-
lygynous species, sperm competition dictates high-quality
sperm ejaculates, with high motility and low rate of sperm
abnormalities. In contrast, sperm from monogamous species
usually show high rate of sperm abnormalities (Birkhead
2000).

Collection techniques

There are many semen collection techniques. The most ap-
propriate one should be chosen depending on the physiology
and anatomy of the target species as well as on the circum-
stances and the specific individual involved (Santiago-
Moreno et al. 2010b). In the subsections below, we describe
the more common techniques used in mammals, with the last
subsection dedicated to the other vertebrate taxa.

Artificial vagina

Semen collection with an artificial vagina is the most popular
technique used in domestic animals, mainly in cattle
(Bhattacharyya et al. 2009) and horses (Love 1992), but also
in rams (Marco-Jiménez et al. 2008), goats (Roca et al. 1992),
and rabbits (Amann and Foote 2004). Artificial vagina offers
the advantage of frequent sampling without the stress of
chemical or physical restraint. However, the conditioning
required to train a male for service excludes its utility in most
wild animals. Still, semen collection using artificial vagina has
been performed in some wild species such as wild ruminants
maintained in captivity like red deer (Cervus elaphus) (Deen
et al. 2003; Gizejewski 2004; Giuliano et al. 2008), european
moose (Alces alces), fallow deer (Dama dama) or reindeer
(Rangifer tarandus tarandus) (Asher et al. 2000), Iberian ibex
(Capra pyrenaica) and European mouflon (Ovis orientalis
musimon) (Berlinguer et al. 2005; Santiago-Moreno et al.
2010a), and other species like Asian elephant (Kitiyanant
et al. 2000), nondomestic cats [Indian desert cat (Felis
silvestris ornata), jungle cat (Felis chaus), fishing cat (Felis
viverrinus), and black-footed cat (Felis nigripes)] (Pope et al.
1993), Grevy’s zebra (Equus grevyi) (Crump and Crump
1994), and non-human primates [chimpanzee (Pan
troglodytes), orangutan (Pongo pygmaeus), and marmoset
monkey (Callithrix jacchus)] (Morrell and Hodges 1998).

Postcoital semen collection

Another option that does not require restraint, at least not of
the male, is collection of postcoital spermatozoa. Although
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only part of the ejaculate can be collected this way, it has the
advantage of being a natural ejaculate. The semen can be
collected directly from the female reproductive tract, as was
performed in the Sumatran rhinoceros (Dicerorhinus
sumantrensis) (O’Brien and Roth 2000), South American
camelids (Lama glama, Vicugna pacos) (Adams et al. 2009),
non-human primates (marmoset, chimpanzee) (Morrell and
Hodges 1998), and Asian elephant (Landowski and Gill
1964). It can also be collected with the aid of vaginal condom,
as was performed previously in llama (Bainbridge and
Jabbour 1998; Bravo et al. 2000).

Electroejaculation

Electroejaculation under surgical anesthesia has become the
standard collection technique in the vast majority of wild
mammalian species because many of them are intractable.
The technique was used successfully in a very wide range of
species. Still, the electroejaculation technique presents some
issues that should be kept in mind. By their nature, wild
animals are very good at concealing any internal health issue
theymay have till they cannot hide it any longer. Anesthesia is
therefore a big gamble when it comes to wild animals and as
such a risky procedure zoo veterinarians strive to avoid when-
ever possible. Furthermore, anesthesia may have lingering
effects on wild animals just as in any other animal, so frequent
collections, even in healthy animals, are not recommended.
One should also remember that anesthesia can affect the
quality of the ejaculate (Giulini et al. 2004; Durrant 2009;
Santiago-Moreno et al. 2010b) and the collection procedure
(Campion et al. 2012).

Several factors are very important to have in mind when
designing an anesthesia protocol for electroejaculation. All
aspects of the electroejaculation process (e.g., voltage or num-
ber of stimulations required for erection and ejaculation) may
be affected by the species involved and the specific animal’s
plane of anesthesia (Gould et al. 1978; Durrant 1990). Some
tranquilizers and anesthetics are contraindicated for
electroejaculation (Meltzer et al. 1988; Tecirlioglu et al.
2002; Santiago-Moreno et al. 2010b), and even the doses of
anesthetics may be an issue, as similar doses do not always
have the same effect because of the physiology of the species
or the stress level of the specific animal. The influence of
anesthesia on electroejaculation must be investigated so as to
be adapted for the species involved and adjusted as needed
during the procedure in order to facilitate good immobiliza-
tion, and provide optimal outcome for the animal and the
procedure (Santiago-Moreno et al. 2010b, 2011).

The response to the electroejaculation stimulus can vary
not only between species or between males from the same
species, but even between collections from the same male.
Therefore, modifications to the protocol during the process,
based on the male’s responses, may be needed, even if one

strives to follow the same stimulation protocol in all
electroejaculation procedures (Wildt et al. 1983). It is impor-
tant to develop a specific collection protocol for the target
species, but it is no less important to have an adequate probe,
sometimes specially designed, for each species collected
(Schmitt and Hildebrandt 2000; Roth et al. 2005).

Electroejaculation has been performed in a large number of
wild species including: rhinoceroses (Hermes et al. 2005),
nondomestic ungulates (Watson 1976; Asher et al. 1990,
2000; Cassinello et al. 1998; Holt 2001; Santiago-Moreno
et al. 2009a), Asian black bears (Okano et al. 2006), various
mole rat species (Hildebrandt et al., unpublished data), ele-
phants (Howard et al. 1984, 1986), wild feline species [South
African cheetah (Acinonyx jubatus jubatus), clouded leopard
(Neofelis nebulosa), snow leopard (Panthera uncia), leopard
(Panthera pardus), and puma (Puma concolor)] (Wildt et al.
1983, 1986, 1988; Roth et al. 1994; Howard et al. 1997), and
non-human primates [chimpanzee, marmoset monkey, and
rhesus monkeys (Macaca mulatta)] (Morrell and Hodges
1998).

Transrectal massage

An interesting alternative for noninvasive semen collec-
tion is the use of rectal manual stimulation of the acces-
sory sex glands. It has been previously performed in
humans (Fahmy et al. 1999), elephants (Schmitt and
Hildebrandt 1998, 2000), and rhinoceros (Schaffer et al.
1998). This technique can be performed more often as,
unlike electroejaculation, it does not require anesthesia. It
can also be used to reduce the number and intensity of
stimulations required during electroejaculation. In nondo-
mestic ungulates, transrectal ultrasound-guided massage
of the accessory sex glands (TUMASG), with or without
a small number of electrical stimulations was reported
(Santiago-Moreno et al. 2013). Ejaculates can also be
obtained by voluntary semen collection through stimula-
tion to the perineal area, as was done for example in the
bottlenose dolphin (Tursiops truncatus) (Robeck and
O’Brien 2004).

Miscellaneous alternative techniques

Some additional alternative techniques may include sperm
collection through urethral catheterization after anesthetic lev-
el medetomidine administration as previously described in the
domestic cat (Zambelli et al. 2008), stimulation of the penis
done in some primates (McDonnell 2001; Schneiders et al.
2004; Melville et al. 2008), or pharmacologically induced
ejaculation by oral imipramine and intravenous xylazine re-
ported to have moderate success in stallions (McDonnell
2001).
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Semen retrieval postmortem or following castration

Epididymal sperm collection is an important source of sper-
matozoa. Its main advantage in endangered species is that it
allows maintenance of genetic variability that otherwise
would be lost (Garde et al. 2006; Saragusty 2006). The cauda
epididymis stores spermatozoa that are already mature and
capable of fertilizing oocytes (Foote 2000). Epididymal sperm
is normally collected from excised testicles either following
the death of the animal or after castration. The time between
the death of the animal or the castration procedure and sperm
recovery is a very important factor with respect to the quality
of the sperm recovered (Martinez-Pastor et al. 2005b, c;
Santiago-Moreno et al. 2006). Maintaining the excised cauda
epididymides, the whole testicles, or even the entire animal
chilled can prolong survival of the spermatozoa. When
testicles are removed from the body or when cauda epididy-
mides are removed from the testicles, it is best to maintain
them in saline or other physiologic solution to prevent drying
and excessive damage to the tissue and the spermatozoa
within it. Depending on the size and shape of the testis, the
working conditions, and the experience of the operator, one
may choose between several sperm extraction techniques.
These include squeezing the cauda epididymis (Krzywinski
1981), making cuts (Krzywinski 1981; Saragusty et al. 2006;
Santiago-Moreno et al. 2007), cutting and squeezing (Quinn
and White 1967), extrusion by air pressure (Kikuchi et al.
1998), and retrograde flushing from the vas deferens (Santia-
go-Moreno et al. 2009b), which can be performed using a
specific media (Santiago-Moreno et al. 2010b). Postmortem
and postcastration semen collection has been performed in a
large number of species including rhinos (Saragusty et al.
unpublished data), common hippopotamus (Hippopotamus
amphibius) (Saragusty et al. 2010b), Tasmanian devil
(Sarcophilus harrisii) (Keeley et al. 2011), pygmy hippopot-
amus (Choeropsis liberiensis) (Saragusty et al. 2010a), non-
domestic felids [tiger, lion (Panthera leo), puma, cheetah,
leopard, jaguar (Panthera onca)] (Jewgenow et al. 1997),
non-human primates [marmoset monkey, lowland gorilla (Go-
rilla gorilla gorilla)] (Morrell and Hodges 1998), and nondo-
mestic ungulates [Burchell’s zebra (Equus burchelli),
bontebok (Damaliscus pygargus pygargus), blesbok
(Damaliscus pygargus phillipsi), tsessebe (Damaliscus
lunatus), impala (Aepyceros melampus), sable antelope
(Hyppotragus niger), nyala (Tragelaphus angasii), and moun-
tain reedbuck (Redunca fulvorufula)] (Holt 2001).

Epididymal spermatozoa, however, are not exposed to the
seminal fluids and the many important components therein.
This may hamper or partially challenge their fertilizing ability.
Thus, in some species, it was found that adding seminal fluids
before insemination increases fertilization success rate (Pan
et al. 2001; Adams et al. 2005; Okazaki et al. 2012). One
should also keep in mind that in most mammals, epididymal

sperm are immotile and may require time and proper media to
induce motility.

Collection methods in other vertebrate taxa

The first method applied in avian semen collection was the
massage technique in roosters (Burrows and Quinn 1937).
This technique requires restraining the bird by holding its legs.
Repeated massage with rapid movements along the backbone
towards the tail, abdomen, and behind the wings is required.
The male responds with an erection of its copulatory append-
age. The handler gently squeezes along the sides of the cloa-
cae, collecting the semen from the ducti deferentis into a
container. This technique is commonly used in wild avian
species, but should be performed with care due to the stress
that the capturing, handling, restraining, and massaging pro-
cedures cause (Gee 1995). Manual abdominal massage col-
lection has been described in several species, and collecting
semen this way from small passerines is relatively easy
(Birkhead et al. 2005). The abdominal massage technique
may need to be adapted depending on the reproductive anat-
omy of the species collected. Thus, adaptations in massage
collection have been made for waterfowl, ratites, guans, and
tinamous. All these species have a penis-like copulatory ap-
pendage (Cooper 1977). For birds producing limited ejaculate
volume, the operator must evert the phallus early in the
collection process, and a suction device is often used to avoid
losing semen on the phallic surface (Gee and Sexton 1990).
Semen from larger-sized individuals (i.e. cranes, storks, ea-
gles) is recovered with the bird in a standing position (Gee and
Temple 1978).

In wild avian species, the use of phantom-imprinted birds is
also a popular semen collection technique. This method was
first employed by falconers using sexually imprinted birds
(Boyd and Schwartz 1983). Birds are trained to copulate on
special devices so that no animal handling is needed through-
out the process. The advantages of this technique are reduc-
tion of stress and risk of trauma, and reduction of ejaculate
contamination with feces or urine. However, seminal volume
varies significantly among individuals and collections, and
some birds perform copulatory behavior but fail to ejaculate
or produce only few or no spermatozoa. The use of an artificial
vagina in the Muscovy duck (Cairina moschata) (Gvaryahu
et al. 1984), or a “dummy” female in the Houbara bustard
(Chlamydotis undulata) (Saint Jalme et al. 1994) improved
the collection results in these species. Another possible meth-
od of semen collection in birds is electroejaculation. This
method, though relatively uncommon in birds, has been re-
ported in ducks and geese (Samour et al. 1985), in pigeons
(Betzen 1985), and in a variety of psittacines (Harrison and
Wasmund 1983).

Collection of fish semen, also known as milt, has been
performed for many decades using the same basic technique
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known as stripping. To perform this technique, the fish is
either anesthetized or killed. It is then held so that its head is
positioned higher than its tail with its abdomen facing ven-
trally. Application of gentle pressure and massage along the
abdomen from the ventral fin caudally will then result in
release of the semen. Females are spawned by the same
method. Caution however should be taken to avoid contami-
nation of the sample by water, blood, urine or feces. Because
of the risk of contamination, alternative techniques were also
developed. Using suction devices, it was reported that larger
sample volumes with no contamination could be obtained
(Graybill 1968). Such suction techniques, however, did not
become popular and are in only limited use. If the animal is
killed, its testicles can also be removed by carefully opening
the abdomen. The testes may then be cleaned from blood
vessels, rinsed, and then sliced open so that the milt can be
squeezed out.

For many years amphibian semen collection required
killing the animal and removing its testicles for further
processing. The excised testes are macerated in physio-
logical buffer to release the sperm. The tissue debris is
then removed to obtain the sperm. This method, however,
is not ideal when it comes to endangered species. Alter-
native techniques that can spare the animal’s life were
therefore called for. In one such technique, used in sala-
manders for example, joining a male and a female during
the courtship season will often result in the male releasing
a number of spermatophores that can be collected from
the water (Figiel 2013). Each spermatophore contains a
large number of spermatozoa. Alternatively, the animal
can be given hCG to induce spermiation and then the
sperm can be collected using abdominal massage
(Mansour et al. 2011). Another hormonally induced
spermiation method used in amphibians is the administra-
tion of Luteinizing Hormone-Releasing Hormone analog
(LHRHa) intraperitoneally. Sperm can then be collected
from the urine in relatively large quantities (Shishova
et al. 2011).

In reptiles, like in fish, semen is most often collected by
abdominal massage. The region of the cloacae is cleaned and
rinsed to avoid contamination. Repeated gentle massage of the
caudal third of the abdomen (cranial to the cloacae) in a caudal
direction can lead to the release of semen that can then be
collected with a syringe (without needle, of course) from the
papilla inside the cloacae. To facilitate easier collection, sub-
cutaneous injection of local anesthetics (e.g., 1 % lidocaine)
can help in relaxing the cloacal region (Zacariotti et al. 2007).
The abdominal massage technique has been applied to snakes,
lizards, and other small reptiles. When reptiles are small,
instead of a syringe to collect the minute quantity of sperm,
a capillary can be used (Molinia et al. 2010). In larger reptiles
such as alligators, crocodiles, and turtles, electroejaculation
can also be used.

Sperm cryopreservation methods

Sperm cryopreservation is the process of cooling spermatozoa
to very low sub-zero temperatures (normally to liquid nitrogen
boiling temperature of −196 °C) for prolonged storage. To
achieve that while maintaining acceptable viability of the
preserved spermatozoa, dilution in cryoprotective agents is
normally required. Species-specific customization of freezing
extenders is aimed at providing protection for spermatozoa
against damages caused by the chilling, freezing, and thawing
processes. The most adequate extender must therefore be used
for each species (Curry 2000; Watson 2000; Yoshida 2000;
Leibo and Songsasen 2002; Thurston et al. 2002a). Mode and
degree of cryoinjuries strongly depend on sperm physiology
and the species involved, as differences are noted even be-
tween closely related species or individuals of the same spe-
cies (Thurston et al. 2002a, b). For example, Asian elephant
spermatozoa are more chilling sensitive than spermatozoa of
the African elephant (Swain andMiller 2000). Egg yolk (or its
substitutes) concentration, the amount of glycerol or other
cryoprotective agents (CPAs), and the presence of sugars,
buffers, antibiotics, and, at times, some other additives, in
the cryodiluent, are all very important factors to keep in mind
in the process of devising freezing extender, remembering the
variability between species (Loskutoff et al. 1996; Leibo and
Bradley 1999; Holt 2000; Salamon and Maxwell 2000; Wat-
son and Holt 2001; Cheng et al. 2004; Fernández-Santos et al.
2006, 2007). In addition, the types of buffering additives used
and the interactions of these with other ingredients in the
extender may affect the rate of sperm viability after thawing.
These interactions, too, can be species-dependent. Cryopro-
tectants may be membrane permeable (e.g., glycerol, ethylene
glycol, or DMSO) or impermeable (e.g. sucrose, trehalose,
raffinose, PVP). These CPAs change the properties of the
cellular membrane and intracellular aqueous phase, decrease
osmotic stress, cause moderate dehydration while protecting
from excessive dehydration and cellular membrane collapse,
and prevent intracellular ice formation (Gao et al. 1993, 1995;
Saragusty et al. 2005; Johnston et al. 2006). These cryopro-
tectants also increase the viscosity of the solution and thus the
glass transition temperature. Macromolecules such as lipopro-
teins, proteins, and phospholipids present in the extender can
stabilize the plasma membrane and often increase its fluidity
while decreasing its thermotropic phase transition tempera-
ture, thus protecting the cells during chilling, freezing, and to
the associated osmotic changes (Zeron et al. 2002; Saragusty
et al. 2005). Glycerol is considered the most effective cryo-
protectant for spermatozoa of the vast majority of mammalian
species. Sensitivity to this cryoprotectant, however, varies
greatly between species. For example, marsupial species re-
quire very high concentration of glycerol (>14 %) (Johnston
et al. 1993, 2006; Czarny et al. 2009; Keeley et al. 2012),
whereas other species, such as boar or mice are highly
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sensitive to glycerol (Koshimoto et al. 2000; Sztein et al.
2001; Gutiérrez-Pérez et al. 2009). In avian species, although
glycerol is usually regarded as a suitable cryoprotectant for
spermatozoa, it has its biological limitations, e.g., it has a
contraceptive effect in certain species (Hammerstedt and Gra-
ham 1992). Dimethylacetamide (DMA) seem not to have such
contraceptive effects, and good quality and fertility rates were
achieved with turkey and sandhill crane (Grus canadensis)
frozen-thawed sperm using this cryoprotectant (Blanco et al.
2012). In other taxa (fish, amphibians, reptiles) methanol,
DMSO, ethylene glycol, or dimethylformamide in concentra-
tions ranging between −2 and 25 % were all reported, in
addition to glycerol (Millar and Watson 2001; Tiersch 2006;
Shishova et al. 2011; Zacariotti et al. 2011; Johnston et al.
2014).

Three main processes are used for sperm cryopreservation:
very slow freezing, slow freezing, and vitrification. The very
slow freezing technique consists of progressive sperm cooling
over a period of >4 h. Freezing by this technique is performed
by slowly decreasing the temperature of the sperm sample first
in the refrigerator to 5 °C, and then by placing the sample in a
cryobox and chilling it down from 5 to −80 °C over 2 to 4 h.
After that, the sample is plunged into liquid nitrogen for
storage (Thachil and Jewett 1981). The optimal cooling rate
must be adapted from species to species.

The slow freezing technique is arguably the most widely
used one. This technique is based on the notion that sperma-
tozoa, like any other cell type, react in an inverted U-shaped
mode to cooling rate (Mazur 1977; Arav and Saragusty 2013).
Outside the optimal range, at which high survival is achieved,
a progressive decline in survival rate is noted with progressive
increase or decrease in cooling rate. As a result of the slow
cooling rates used, intracellular water has sufficient time to
exit the cells, thus allowing osmotic equilibration and prevent
the risk of intracellular ice formation. In the slow freezing
technique, as in the very slow freezing technique, the sample,
suspended in freezing extender, is first cooled slowly to about
5 °C and then frozen over a duration of up to several minutes
to the desired temperature (ranging between about −30 and
under −100 °C, depending on the protocol) before it is
plunged into liquid nitrogen for storage. Two main slow
freezing methods currently lead the field. One is the liquid
nitrogen vapor phase equiaxed freezing and the other is the
directional freezing. Inside nitrogen vapors there is a thermal
gradient as a function of the distance from the liquid nitrogen
surface and the volume of the liquid below. For liquid nitrogen
vapor freezing, samples are either placed horizontally at a
predefined distance above the liquid nitrogen surface to
achieve the desired cooling rate or they are placed inside
programmable controlled-rate freezing device. The distance
to the surface of the liquid nitrogen and the duration of
exposure depend on the species. Controlled-rate freezers use
a plate to hold the samples, a plate that is cooled by liquid

nitrogen. Once programmed, the machine follows the pro-
gram to obtain the required cooling ramp, using liquid nitro-
gen as the cooling agent. When the freezing process is com-
pleted, the samples are removed and stored in liquid nitrogen.
The directional freezing technique (Arav et al. 2000) relies on
controlled progression of the sample down a predefined tem-
perature gradient. This permits accurate control over heat
dissipation and ice crystal propagation, morphology, and ve-
locity throughout the freezing process. Directional freezing
has been used for cryopreservation of spermatozoa from a
very wide range of species (see Arav and Saragusty 2013 for a
recent review). This technique is useful for freezing samples
in volumes ranging from the standard 0.25 mL plastic straws
to glass tubes of 12 mL. Directional freezing has also been
used to vitrify oocytes and embryos (Arav 1989; Rubinsky
et al. 1991, 1992), and to freeze tissue slices and even whole
organs (Arav et al. 2007; Gavish et al. 2008; Arav and Natan
2012; Maffei et al. 2014).

Alternative methods were also reported. These include, for
example, freezing inside a dry shipper, in methanol that was
chilled with dry ice, or freezing by placing the sample in a
−80 °C freezer (Beesley et al. 1998; Sargent andMohun 2005;
Viveiros et al. 2012; Figiel 2013).

Vitrification is solidification of the sample without forma-
tion of crystals. At the end of the very slow or slow freezing
techniques mentioned above, when the viscosity of the intra-
cellular milieu and the extracellular unfrozen fraction is suffi-
ciently high, vitrification will occur. In the absence of vitrifi-
cation, the frozen cells will not survive, as ice crystals will
disrupt the cellular membranes resulting in death of the cells.
To achieve vitrification, a balance between sample viscosity,
volume, and the cooling rate should be achieved. To achieve
fast vitrification, one should increase the cooling rate and/or
the viscosity of the sample and/or decrease the vitrified vol-
ume. As achievable high cooling rates are limited, one has to
decrease the vitrified volume and increase the solution’s vis-
cosity. Both of these are problematic when it comes to vitri-
fying spermatozoa. When vitrifying oocytes or embryos, very
high concentrations (normally in the range of 30 to 40 %) of
vitrificants (e.g., sucrose, trehalose, DMSO, ethylene glycol)
are used. This is possible without killing the cells because
oocytes and embryos are large so they can be picked out of the
solution in preparation for vitrification and upon warming and
transferred through a series of solutions for gradual dehydra-
tion or back to physiological osmolarities, respectively. Be-
cause of the size and number of spermatozoa, it is impossible
to do the same fast enough with these cells. Volume-wise,
oocytes and embryos are vitrified in very small volumes in the
range of 1 μL or less. The number of spermatozoa that can be
vitrified in such a volume is very small and so, to compile an
insemination dose, one will have to vitrify a huge number of
samples. Still, in some cases, vitrification of small number of
spermatozoa in very small volume can be beneficial and
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experiments in this direction were conducted (Isachenko et al.
2003; Chang et al. 2008;Merino et al. 2011; Endo et al. 2012).

Conclusions

Development of assisted reproductive technologies in domes-
tic animals is difficult enough to carry out. Performing this in
wildlife, especially in endangered species, has the additional
limitation of accessibility to the animals, availability of ani-
mals for collection, their distance from the laboratory, and
sampling frequency. These factors increase the difficulty of
developing new technologies in wildlife. These difficulties
thus explain why procedures such as cryopreservation of
gametes and embryos, embryo production, and embryo trans-
fer are far from optimum in many nondomestic species. The
use of model species to learn basic processes and develop
protocols for gamete cryopreservation or embryo transfer is a
valuable tool when it comes to developing and improving
these techniques for use in endangered species. However, it
is necessary to eventually customize these in vitro and in vivo
protocols to each target species (Leibo and Songsasen 2002).
There is no doubt that “buying time” by storing germplasm,
and thus genetic diversity, under liquid nitrogen is beneficial
to the process of gaining and refining the knowledge with
respect to embryology and reproductive biology of any non-
domestic species studied. It is also very important to step-up
efforts concerning animal welfare in association with anesthe-
sia, sedation, animal management techniques, and sample
collection and transfer protocols. In conclusion, we have
within our reach useful tools to help preserve genetic diversity
while working on ways to stop or, at least, slow down the
alarming decline in global biodiversity, for which we have an
ethical responsibility. Further teamwork research, involving
scientists and zoological institutions, may help focus on ad-
vancing the knowledge on endangered wildlife species. There
is no doubt that more efforts are needed, but optimistically,
recent years have seen an increase in research programs on
threatened and endangered species conservation, a trend we
hope will continue and expand.
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