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Abstract
Drought seriously affects the agro-physiological and biochemical functioning of plants by influencing the interactions be-
tween plants and symbiotic microorganisms. Therefore, the objective of the present study was to implement a management
approach to improve tomato growth, and drought tolerance using arbuscular mycorrhizal fungi (AMF) (pure strain (M)
and consortium (M0)), and/or plant growth-promoting-rhizobacteria (Actinomycetes (A) and consortium with two bacteria
Z2 and Z4 (B), and/or Olive-Mill-Wastewater-compost (OMWW-compost (C)). The potential for changes in physiologi-
cal (stomatal conductance, chlorophyll fluorescence, photosynthetic pigments) and biochemical (sugar, protein, hydrogen
peroxide (H2O2), malondialdehyde (MDA), phenols, and antioxidant enzymes) functioning in response to water stress was
analyzed. Therefore, under 35% field capacity (FC), the application of AMF (M or M0)/PGPR (A and B) amended with
compost stimulated biomass and improved stomatal conductance, chlorophyll and carotenoid contents and photosynthetic
efficiency to a greater extent than in uninoculated and/or unamended plants. The compost application with double inoc-
ulation including M0A (CM0A) significantly improved sugar concentrations in leaves and roots by 34% and 30% as well
as enhanced antioxidant activities notably catalase (CAT), polyphenoloxidase (PPO) peroxidase (POX) and superoxide
dismutase activities of about 92%, 177%, 84% and 79%, respectively. The dual inoculation together with compost (CM0A)
and (CM0B) resulted in a significant reduction of H2O2 contents by 14% and 13% and MDA by 93% and 92%, respectively.
The application of locally produced compost with dual combinations of bacteria can overcome the challenges of water
stress by improving the physiological, biochemical and tolerance of tomato.
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Introduction

Water scarcity limits crops growth and productivity, lead-
ing to the most economic losses in agriculture (Meddich
et al. 2018; Musolino et al. 2018). Currently, the scarcity of
water resources represents the most critical threat to world
food security (He et al. 2019; Kijne et al. 2003) and the fu-
ture food demand for the population will aggravate by the
drought effects (Mishra et al. 2021; Somerville and Briscoe
2001). More than 50% of the arable land will be affected by
drought by 2050, resulting in damage to the growth and de-
velopment of crops (Jaggard et al. 2010; Kasim et al. 2013).
Drought influences water uptake and soil nutrient transport
and availability while affecting plant morphology, physiol-
ogy, and biochemistry particularly water content, leaf water
potential, stomatal conductance, quantum yield and photo-
synthetic pigments, and phosphorus (P) and nitrogen (N)
uptake (Baslam et al. 2014; Silva et al. 2017; Kour et al.
2020). Beside, it affects the defense system through the
accumulation of reactive oxygen species (ROS) (Benaffari
et al. 2022; Boutasknit et al. 2021b). In addition, expo-
sure of plants to severe drought alters their photosynthetic
mechanism, this may alter photosynthetic relationships, cell
membrane, symbiotic interactions between plant and asso-
ciated soil-borne microorganisms (Anli et al. 2020; Toubali
et al. 2022; Yooyongwech et al. 2016). Abd El-Mageed
et al. (2018) showed that the degradation of chlorophyll
pigments and cell plasma membrane through ROS accu-
mulation leads to decreased photosynthetic activity. In this
regard, there is an urgent need to develop sustainable man-
agement strategies that allow plants to resist water stress
conditions for further improvement of agricultural produc-
tion.

The application of biostimulants such as beneficial sym-
biotic microorganisms and organic fertilizers has emerged
as an innovative solution to promote increased yield and tol-
erance of crops under water stress conditions (Ben-Laouane
et al. 2019). Proper management of plant water and min-
eral nutrition, growth and tolerance to water stress be-
comes a key element to increase crop yield (Baslam and
Goicoechea 2012). In addition to regulating water uptake
and nutrient acquisition, inoculation of plant growth pro-
moting rhizobacteria (PGPR) and arbuscular mycorrhizal
fungi (AMF) is presently an effective means to ensure sta-
ble, safe and sustainable crop production. Indeed, inocu-
lation with rhizosphere microorganisms has beneficial ef-
fects related to solubilization of nutrients such as phospho-
rus (P), potassium (K) and iron (Fe), biodegradation of soil
organic matter, production of phytohormones, improvement
of soil structure through the formation of aggregates, and
enhancement of plant resilience to water stress conditions
(Chen et al. 2020). In addition, the use of beneficial soil
microorganisms in combination with stable and mature or-

ganic amendments is an essential component to enhance
plant resistance under stressful circumstances (Anli et al.
2021; Boutasknit et al. 2020, 2021c). The application of
organic amendments is an environment friendly sources of
plant nutrients (Ahmad et al. 2021; Boutasknit et al. 2021a).
Likewise, the use of organic matter, especially compost, in-
creases the water holding capacity of the soil in case of
water deficit (Hirich et al. 2014; Paradelo et al. 2019). The
incorporation of compost improves soil fertility and retains
moisture at appropriate levels up to 30% (Bassouny and Ab-
bas 2019). Furthermore, inoculation of AMF and/or PGPR
in combination with compost could mitigate the adverse ef-
fects of water stress through enhancement of photosynthetic
efficiency, production of antioxidant enzymes, and activa-
tion of induced resistance mechanism by bypassing plant
defense (Anli et al. 2020; Duo et al. 2018).

Tomato (Solanum lycopersicum) one of the most im-
portant greenhouse vegetables in the Mediterranean area
(Paucek et al. 2020). In Morocco, this crop (Lycopersi-
con esculentum Mill.) is currently one of the most impor-
tant vegetable crops for export worldwide as well as one
of the most consumed foods after potato (Fondio et al.
2013). Tomatoes are known for their wide range of min-
erals, vitamins, sugars and antioxidant compounds (Zare
et al. 2011). With this in mind, tomatoes are becoming an
increasingly important part of the human diet, hence the
need to increase the production of this crop internationally
(Berni et al. 2019). Tomatoes consume large amounts of
water to grow. This need for water was increased during
the growth phases and more particularly during the fruiting
phase. Thus, in arid and semi-arid areas, of which Morocco
is part, the limitation of water resources leads to an early
ripening of tomatoes with reduced yields combined with
poor quality.

Until date, the effect of combined application on tomato
plant growth was rarely studied. Of our knowledge, data
on the effect of combined application of OMWW compost,
AMF and PGPR on tomato tolerance to drought stress and
the underlying mechanisms are not available. In this con-
text, and based on these findings, our study focused on the
effect of the application of AMF and PGPR symbiotic in-
ocula, in combination with compost on root colonization,
photosynthetic and enzymatic activity of tomato plants sub-
mitted to water stress.

Therefore, the objective of the present study was to eval-
uate the effect of severe water stress on tomato with the
application of microorganisms and a biological amendment
at the physiological, biochemical, and cellular levels by
characterizing the components of oxidative stress. Thus, the
aim of this study was to improve the mechanisms of biofer-
tilizers mediated plant protection responses and metabolic
processes under tough water conditions in the context of
sustainable global agricultural food production.
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Fig. 1 Optical density at 600nm
of bacteria consortia (Z2 and Z4)
after 24h, 48h, 72h, 96h and
120h of culture on Polyethylene
glycol 6000at different concen-
trations (a) and solubilization
index of phosphate on NBRIY
with monocalcium phosphate,
tricalcium phosphate and rock
phosphate (b)

Material andMethods

BiologicalMaterials

Two AMF species were used: a pure strain, exogenous
Rhizoglomus irregulare, DAOM 197198 (M) provided by
the Plant Biology Research Institute, University of Quebec,
Montreal, Canada, and a consortium (M0) isolated from the
Tafilalet palm grove, Morocco that composed of 15 species:
Acaulospora delicata, Acaulospora leavis, Acaulospora
sp., Claroideoglomus claroideum, Glomus aggregatum,
G. clarum, G. claroides, G. deserticola, G. heterosporum,
G. macrocarpum, G. microcarpum, G. versiforme, Glomus
sp, Rhizophagus intraradices, and Pacispora boliviana.
Maize (Zea mays L.) was used as a host plant to propagate
the two AMF inocula, for three months under controlled
greenhouse. AMF inoculation consisted of adding 25g of
soil consisting of mycorrhizal root fragments, spores and
vesicles and hyphae. The number of AMF spores detected
in this consortium was 47 spores/100g of the soil sample.
The bacterial inoculants used were a bacterial consortium
named B composed of two bacterial strains (Z2 and Z4)
and a pure bacterial strain Actinomycete (A)., isolated
from date palm rhizospheric soil collected in Tafilalet palm
grove, Morocco (31° 470 20.800 N 04° 140 59.300 W). Z2
was identified as Bacillus sp., while Z4 is reported to
be Bacillus subtilis following molecular characterization of
the 16S rDNA gene (sequencing and DNA-DNA hybridiza-

tion (threshold 70%) and Delta melting T° below 5°C).
Analyses were done in the laboratory to test phosphate
solubilization, indeed, a NBRIY CS Nautiyal (1999) was
prepared and the phosphate solubilization index was calcu-
lated using the Eq. (1) for the towstrains after 10 days of
culture at 28°C (Fig. 1), Three sources of phosphate were
used, namely: tricalcium phosphate (Ca3HPO4), mono-
calcium phosphate (CaHPO4) and rock phosphate with
5g/L for each source. The resistance to polyethylene gly-
col PEG 6000 was also measured by following the optical
density at 600nm. The strains were grown in Tryptic Soy
Broth (TSB) liquid culture with different concentrations of
PEG (0, 10, 20, 30, 40 and 60%) at 28°C (Fig. 1), then
a salinity resistance test was used to detect the strains that
resisted different concentration of NaCl (0.5M, 1M and
2M) (Table 1).

Solubilization index =

Colony diameter + Halo zone diameter

Colony diameter

(1)

The OMWW-compost (C) used in this experiment is
based on olive mill wastewater sludge mixed with green
waste (50%, 50%) with the following characteristics, pH:
7.3; decomposition rate: 73.6%± 0.5; polyphenols abate-
ment rate: 78%; lipids abatement rate: 73.7%; moisture con-
tent: 55.1%; electrical conductivity: 8.2 mS cm–1; available
phosphorus: 0.05mg g–1 and C/N ratio: 15.6.
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Table 1 Bacterial consortia (Z2 and Z4) resistance of salinity at 0.5M,
1M and 2M of NaCl at 28°C

Z2 Z4

0.5M + –

1M + –

2M – –

Tomato seeds, Solanum lycopersicum. Campbell 33 cul-
tivar, of homogeneous size were selected and disinfected
with sodium hypochlorite (bleach 5% v/v) for 5min. They
were rinsed three times with distilled water and germina-
tion was carried out at 28°C. The seeds were performed in
plastic petri dishes containing sterile filter paper discs. The
dishes were incubated for 3 days at 28°C in the dark. The
germinated seeds were then transplanted into plastic trays
containing previously sterilized peat. After 3 days, germi-
nated seeds were transferred in plastic trays filled with com-
mercial potting soil in the greenhouse. Then, the tomato
plants were transplanted into perforated plastic pots (one
for each pot).

Tomato plants inoculations were performed after one
week of transplanting by adding 5mL of the bacterial sus-
pension (5mL for B and 5mL for A) near the roots. After
one week, a second inoculation was performed to increase
the level of bacteria in the soil and to ensure infection of
the roots formed after the first inoculation. The inoculum
were prepared by growing the strains in tryptic soy broth
(TSB) liquid culture at 28°C.

The experimental trial consisted of two irrigation
regimes, 75% of field capacity (FC) and 35% FC, test-
ing two strains of bacteria: Actinomycete A and bacteria
strains consortium: Z2 and Z4 (B), two strains of AMF (Ex-
ogenous R. irregulare (M)), indigenous consortium (M0),
and one compost type C among on tomato (Table 2).

The Greenhouse Equipment and Experiment Design

The experiment was carried out in the semi-controlled
greenhouse with natural light (photon flux density between
500 and 750μmol m–2 s–1), an average temperature of 23°C
(day/night air temperatures of 28/18± 4°C), and an aver-
age relative humidity of 70% at the Faculty of Science,
Marrakech-Morocco. The experimental design adopted was
completely randomized design that contains 36 treatments
with 5 biological replicates (Table 1). The total number of
pots used in the experiment was 180 pots. Each pot was
filled by 5Kg of agricultural soil. Preliminarily sterilized
for 4h at 180°C with the following characteristics: pH:
8.1; electrical conductivity: 0.2 mS.cm–1; organic matter:
1%; total organic carbon: 0.6%; available phosphorus:
7.3mg Kg–1; total nitrogen: 0.9mg g–1; calcium: 2.2g Kg–1

and potassium: 0.6mg g–1. The pots were wetted for 3 days

Table 2 Different treatments and their nomenclature applied in this
experiment

75%
FC

Plants irrigated at 75% of field capacity

35%
FC

Plants irrigated at 35% of field capacity

T Control

C Plants amended with Compost C, no-inoculated with
AMF (Exogenous R. irregulare (M) or indigenous con-
sortium (M0)) no-inoculated with Actinomycete bacteria A
and no-inoculated with PGPR (bacteria strains consor-
tium B)

A Plants non-amended with Compost, no-inoculated with
AMF, no-inoculated with PGPR (bacteria strains consor-
tium B) and inoculated with Actinomycete bacteria A

B Plants non-amended with Compost, no-inoculated with
AMF, no-inoculated with Actinomycete bacteria A and
inoculated with PGPR

M Plants non-amended with Compost, inoculated with
AMF (M), no-inoculated with PGPR and no-inoculated
with Actinomycete bacteria A

M0 Plants non-amended with Compost, inoculated with
AMF (M0), no-inoculated with PGPR and no-inoculated
with Actinomycete bacteria A

CA Plants amended with Compost C, no-inoculated with AMF
and inoculated with Actinomycete bacteria A

CB Plants amended with Compost C, no-inoculated with AMF,
no-inoculated with Actinomycete bacteria A and inoculated
with PGPR

CM Plants amended with Compost C, inoculated with
AMF (M), no-inoculated with Actinomycete bacteria A
and no-inoculated with PGPR

CM0 Plants amended with Compost C, inoculated with
AMF (M0) no-inoculated with Actinomycete bacteria A
and no-inoculated with PGPR

MA Plants non-amended with Compost, inoculated with
AMF (M), no-inoculated with PGPR and inoculated with
Actinomycete bacteria A

MB Plants non-amended with Compost, inoculated with
AMF (M), no-inoculated with Actinomycete bacteria A
and inoculated with PGPR

M0A Plants non-amended with Compost, inoculated with
AMF (M0), no-inoculated with PGPR and inoculated with
Actinomycete bacteria A

M0B Plants non-amended with Compost, inoculated with
AMF (M0), no-inoculated with Actinomycete bacteria A
and inoculated with PGPR

CMA Plants amended with Compost C, inoculated with
AMF (M) no-inoculated with PGPR and inoculated with
Actinomycete bacteria A

CMB Plants amended with Compost C, inoculated with
AMF (M), no-inoculated with Actinomycete bacteria A
and inoculated with PGPR

CM0A Plants amended with Compost C, inoculated with
AMF (M0) no-inoculated with PGPR and inoculated with
Actinomycete bacteria A

CM0B Plants amended with Compost C, inoculated with
AMF (M0), no-inoculated with Actinomycete bacteria A
and inoculated with PGPR
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in order to keep uniform soil water content distribution
before transplantation.

Biological and Physiological Plants Trend

Several parameters such as growth and physiological, bio-
chemical parameters were measured after the harvest.

Growth Parameters and AMF Colonization

At harvest, the plants were rinsed generously with tap water.
The growth parameters such as shoot height, root length,
total fresh and dry weight of the shoot and root parts, as well
as the number of leaves, number of flowers were measured.

The washed, cleaned roots were placed in 10% KOH for
30min at 90°C, and then washed in tap water, acidified in
2% HCl for 10min and stained with Trypan blue at 90°C
for 20min according to Higo et al. (2015). Roots were cut
into 1cm pieces, mounted on slides in glycerol and ana-
lyzed to assess the following mycorrhizal parameters: my-
corrhization frequency (F%), colonization intensity (I%) in
individual mycorrhized roots according to equation (Eq. 1)
given below (Trouvelot et al. 1986). At least 5 samples for
each treatment, each composed of 12 pieces of roots, were
studied using an optical microscope.

AMF infection frequency.F /.%/ =

.infected root segments=totalroot segments/x100
(1)

AMF infection intensity.I /.%/

=
.95n5 + 70n4 + 30n3 + 5n2 + n1/

total root segments

(1)

Where n5, n4, n3, n2, n1 number of fragments noted 5,
4, 3, 2 and 1, respectively, Class 5: more than 90%, Class 4:
between 50% and 90%, Class 3: between 10% and 50%,
Class 2: less than 10%, Class 1: trace and Class 0: no
mycorrhization.

Stomatal Conductance, Chlorophyll Fluorescence
and Leaf Water Potential

Stomatal conductance was measured using a portable
porometer (Leaf Porometer, Decagon Device, INC), this
was done on the 5th leaf of the 5 plants of each treatment.
The values of this parameter are expressed in mmol H2O
m–2 s–1.

The ratio of variable to maximum fluorescence (Fv/Fm)
was measured using a fluorometer (OPTI-SCIENCE,
OS30p) with tweezers to dark-adapt the leaves. After
30min of dark adaptation, measurements were made on the
3rd leaf for each tomato plant per treatment.

Chlorophyll Content and Pigment Quantification

Arnon (1949) method has allowed determining the chloro-
phyll content leaves. This involves grinding 100mg of fresh
material (FM) in the presence of acetone 80%. After filtra-
tion, the optical density was read at 663 and 645nm. Con-
centrations in chlorophyll were obtained from following
formulas (Eq. 2 and 3 and 4):

Chlorophylla.mg=gF W / =

Œ12.7x.A663/ − 2.69x.A645/�xV

1000xF W

(2)

Chlorophyllb.mg=gdeFW / =

Œ22.9x.A645/ − 4.68x.A663/�xV

1000xF W

(3)

Caroténoïdes.mg=gdeFW / =

ŒA480 + 0.114x.A663/ − 0.638x.A645/�xV

1000xF W

(4)

Where, A= absorbance; V= final volume of the extract
and FW= fresh weight.

Total Soluble Sugar Content

The total soluble sugar (TSS) content was measured ac-
cording to the method developed by Dubois et al. (1956).
The fresh material (0.1g) homogenized with 4mLof ethanol
(80%) and then centrifuged at 5000 rpm. The supernatant
was mixed with 0.25mL of phenol (5%) and 1.25mL of
concentrated sulfuric acid (36N). After refortification, the
TSS content was determined by measuring the absorbance
at 485nm using a spectrophotometer (UV-3).

Protein Content and Antioxidant Enzymes Activity

The harvested and frozen leaves were ground to a fine pow-
der in liquid nitrogen with a pestle and mortar. The fine leaf
powder (0.1g) was homogenized with 4mL of 1M phos-
phate buffer (pH 7) containing 5% of polyvinylpolypyrroli-
done. The homogenate was centrifuged at 18,000× g for
15min at 4°C and the supernatant was used to determine
the total soluble protein and antioxidant enzymes activity.
Total soluble protein was measured following the method
described by (Bonjoch and Tamayo 2001). The absorbance
was measured at 595nm.

Catalase activity (CAT) was determined according to
Aebi (1984), in which a decrease in hydrogen perox-
ide (H2O2) level was monitored spectrophotometrically at
240nm. The reaction mixture contained 50mM K2HPO4,
(pH= 7.0), 10mM (H2O2), and 0.1mL of enzyme extract.
Results were expressed as units of H2O2/min/mg protein.
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The method followed to determine peroxidase (POX)
activity was that described by Tejera García et al. (2004).
0.1mL of previously prepared enzyme extract was added
100mM K2HPO4/KH2PO4 buffer (pH 6.5), 40mM guaiacol,
10mM H2O2. The absorbance was recorded at 436nm and
the results were expressed as Unit/mg protein.

Polyphenoloxidase (PPO) activity was estimated accord-
ing to the method described by (Hori et al. 1997), which
involves monitoring the oxidation of catechol at 410nm.
The reaction mixture contained 100mM K2HPO4/KH2PO4

buffer (pH 6), 50mM catechol, and enzyme extract. PPO
activity was expressed as U/mg protein.

Superoxide dismutase (SOD) activity was assessed by
the method described by (Beyer and Fridovich 1987). By
monitoring the reduction of nitroblue tetrazolium (NBT)
on formazan blue by spectrophotometry at 560nm after
30min under blue light. The reaction mixture contained
50mM phosphate buffer (pH 7.8), 63mM NBT, 13mM
methionine, and 60μM of riboflavin solution were added to
100μL of extract. The test tubes were exposed to light for
15min before reading the optical density. SOD activity was
expressed as U/mg protein.

Lipid Peroxidation Assessment and H2O2 Content

Lipid peroxidation was assessed by measuring the malon-
dialdehyde (MDA) content of leaf samples according to
the method described by Wu et al. (2016). The frozen leaf

Fig. 2 Mycorrhizal infection
frequency (a) and infection
intensity (b) of tomato roots,
means that do not share a letter
are significantly different at
P≤ 0.01 (Tukey’s HSD)

powder (100mg) was mixed with 10% trichloroacetic acid
(TCA) and 1mL of cold acetone. The homogenate was
centrifuged at 8000× g at 4°C for 15min and the super-
natant was added to 0.1% H3PO4 and 0.6% thiobarbituric
acid. After incubation at 100°C for 30min, the mixture was
cooled with an ice bath to stop the reaction. The absorbance
was read at 532nm. Nonspecific turbidity was corrected by
subtracting A600 from A532, and the MDA content was
calculated as follows in Eq. 5:

ŒMDA� = 6.45.A532 − A600/ − 0.56A450 (5)

The determination of H2O2 content was done according
to the method of Velikova et al. (2000). 100mg of plant
material was ground in 3mL of 0.1% TCA, the mixture
was centrifuged at 12,000× g for 10min, 0.5mL of the
supernatant (the enzyme extract) was added to 0.5mL of
potassium phosphate buffer (10mM, pH= 7.0) and 1mL of
potassium iodine (1M) after incubation for 3min at room
temperature and 1h in the dark, the absorbance was read at
390nm.

Total Phenol Content

Total phenol content (TPC) was measured by grinding 1g
of fresh material in 8mL of 80% methanol, the mixture was
centrifuged at 1000 rpm for 5min, 50µl of the supernatant
(phenolic extract) was diluted to 2mL with distilled water,
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Table 3 Effect of biostimulants application on growth parameters of tomato plants under water stress. Means that do not share a letter are
significantly different at p≤ 0.01 (Tukey’s HSD)

Water regime Treatments Shoots height (cm) Roots height (cm) Leafs number Total dry weight (g)

75% FC T 95.80± 4.08 B–J 21.20± 1.92 B 12.80± 2.16 C–F 0.2807± 0.04 A–D

C 97.40± 11.92 B–J 24.80± 9.52 B 13.60± 2.96 C–F 0.2731± 0.07 A–D

A 132.00± 9.77 A 21.00± 2.34 B 9.00± 0.70 F 0.2595± 0.07 A–D

B 79.60± 8.56 G–J 20.20± 3.11 B 15.00± 2.64 C–F 0.4402± 0.15 A

M 98.20± 12.98 A–J 22.80± 1.87 B 11.60± 1.14 C–F 0.3381± 0.07 A–D

M0 96.60± 17.14 B–J 22.80± 4.02 B 13.40± 1.52 C–F 0.2283± 0.04 C–D

CA 112.80± 15.78A–G 16.60± 2.88 B 17.40± 2.61 C D 0.4166± 0.20 A-C

CB 117.80± 18.76 A–E 22.00± 2.73 B 17.60± 3.28 B–D 0.3250± 0.08 A–D

CM 126.20± 16.30 A B 22.80± 2.58 B 25.00± 5.15 A 0.2916± 0.05 A–D

CM0 111.80± 9.47 A–H 20.00± 3.80 B 16.40± 2.30 C–E 0.4283± 0.06 A–B

MA 119.60± 8.38 A–D 17.40± 2.88 B 15.00± 3.67 C–F 0.3155± 0.09 A–D

MB 109.60± 5.72 A–I 15.80± 2.58 B 14.20± 2.04 C–F 0.3135± 0.02 A–D

M0A 95.60± 16.78 B–J 19.40± 1.52 B 11.40± 1.82 C–F 0.2971± 0.06 A–D

M0B 101.20± 11.43 A–J 18.80± 5.59 B 13.60± 3.03 C–F 0.3516± 0.06 A–D

CMA 115.20± 12.43 A–F 20.00± 2.34 B 16.60± 4.30 C–E 0.2847± 0.04 A–D

CMB 112.80± 9.55 A–G 19.00± 7.31 B 17.00± 2.96 C–E 0.3077± 0.04 A–D

CM0A 119.20± 17.09 A–D 17.80± 0.83 B 17.00± 3.16 C–E 0.3773± 0.06 A–D

CM0B 122.20± 17.64 A–C 49.00± 5.14 A 24.80± 5.34 A B 0.2627± 0.06 A–D

35% FC T 80.40± 5.68 G–J 17.80± 3.63 B 12.40± 1.82 C–F 0.3648± 0.08 A–D

C 93.40± 16.60 B–J 24.80± 3.11 B 12.60± 4.72 C–F 0.3059± 0.07 A–D

A 82.60± 6.26 F–J 17.60± 2.68 B 11.80± 3.70 C–F 0.2601± 0.03 A–D

B 74.40± 4.03 J 19.00± 3.39 B 10.60± 1.95 D–F 0.2614± 0.05 A–D

M 77.40± 14.94 H–J 25.20± 5.93 B 11.20± 1.92 C–F 0.2956± 0.04 A–D

M0 95.00± 18.64 B–J 22.80± 3.11 B 10.00± 4.82 E F 0.3170± 0.08 A–D

CA 97.20± 11.36 B–J 25.00± 6.04 B 12.80± 2.28 C–F 0.3352± 0.07 A–D

CB 101.40± 12.30 A–J 26.60± 4.03 B 16.40± 5.8 C–E 0.3253± 0.08 A–D

CM 69.20± 6.68 J 20.00± 3.00 B 8.60± 2.61 F 0.3216± 0.11 A–D

CM0 101.40± 7.50 A–J 24.00± 4.06 B 14.00± 1.58 C–F 0.2646± 0.01A–D

MA 75.40± 6.83 I J 30.00± 2.54 A B 13.00± 2.07 C F 0.2794± 0.10 A–D

MB 78.80± 6.30 G–J 15.80± 5.02 B 13.40± 4.16 C–F 0.2079± 0.03 D

M0A 78.00± 1.22 H–J 23.00± 6.20 B 11.40± 4.43 C–F 0.2391± 0.04 B–D

M0B 80.40± 6.38 G–J 19.00± 3.39 B 8.80± 3.42 F 0.2539± 0.08 A–D

CMA 83.40± 14.41 E–J 29.80± 2.04 A B 14.40± 2.07 C–F 0.2070± 0.03 D

CMB 87.80± 11.76 C–J 22.40± 3.39 B 11.40± 1.95 C–F 0.2219± 0.05 C–D

CM0A 88.40± 10.47 C–J 24.00± 4.27 B 13.20± 1.92 C–F 0.3038± 0.08 A–D

CM0B 87.20± 3.70 D–J 49.00± 1.52 A 18.00± 2.38 A–C 0.2797± 0.10 A–D

then 250µL of 1/3 Folin-Ciocalteu reagent was added 3min
later, then 500µL of a saturated sodium carbonate solution
was added. After incubation at room temperature for one
hour the optical density was read at 725nm.

Data Analyses

Data were submitted to a two-way analysis of variance
(ANOVA) by taking into account the effects of the biofer-
tilizers, water regimes and their interactions using minitab
16 software. Significant differences between treatments
were assessed by 1% level (P≤ 0.01) followed by Tukey’s

honest significant difference test. Normality of residuals
was tested using the Andersan-darling test.

Results

Growth andMycorrhization Parameters

The water stress (35% FC) has caused a significant reduc-
tion of growth parameters of the tomato plant (Table 3).
Moreover, the application of bi- and tripartite combinations
of bio-stimulants/biofertilizers (AMF (M and M0) and/or
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Fig. 3 Chlorophyll fluores-
cence (a), stomatal conduc-
tance (b) of tomato leafs stressed
or not. Means that do not share
a letter are significantly different
at P≤ 0.01 (Tukey’s HSD)

compost and/or bacteria) showed significant positive effects
on the promotion of tomato shoot height (SH) and root
length (RL) compared to the uninoculated and unamended
plants under 75% and 35% FC. Application of M0, B and
A in combination with compost improved SH compared
to their separate application under drought stress condi-
tions. In contrast, the application of M in combination with
compost reduced SH compared to their separate application
particularly under water stress conditions. Under 35% FC,
the combined application of M and A improved RL by 68%
compared to the control plants. Under 35% FC, the addi-
tion of compost to the M0B and MB combination improved
RL by 175% and 67% respectively, compared to the control
plants. In contrast, the application of A, B, M and M0 alone
and in combination with compost inhibited RL compared
to the controls under well watered conditions (75% FC). In
addition, the combination of compost with B (CB) and with
the double combination M0B (CM0B) increases the number
of leaves by 32% and 45% respectively compared to the
control plants under water stress conditions.

Tomato plants inoculated with AMF and compost
showed greater root infection compared to the inocu-
lated and unamended plants. Also, the application of water
stress inferred significantly AMF infection and colonization
parameters (Fig. 2). Application of M and M0 in combina-
tion with CB (CMB and CM0B) and with CA (CMA and
CM0A) enhanced root colonization of tomato plants com-
pared to their separate application. Application of M or M0
in combination with CB (CMB and CM0B) and with CA
(CMA and CM0A) increased the root frequency of tomato
plants by 62%, 66%, 61% and 67% respectively, compared
to their separate application under water stress. Similarly,

the intensity of root mycorrhization was improved by the
application of M or M0 in combination with C and A (CMA
and CM0A) or B (CMB and CM0B) by 75%, 66%, 80% and
64% respectively, compared to their separate application
under drought stress conditions.

Physiological Parameters

Water stress negatively affected physiological parameters
(Fig. 3). Under stress conditions 35% FC, tomato plants
amended with compost and inoculated with M0 and A sig-
nificantly improved Fv/Fm by 35% compared to the un-
amended and uninoculated plants (Fig. 3a). Similarly, the
application of compost in combination with B (CB) or M0
(CM0) enhanced stomatal conductance by 76% and 50%
respectively, compared to the control plants under water
stress conditions 35% FC (Fig. 3b). Analysis of variance
showed a highly significant difference between treatments
and water regimes while there was no significance between
interactions.

Sugar and Proteins Content

According to Fig. 4, a decrease in the amount of sugars was
observed in the leaves and roots of tomato plants according
to the different water regimes. Analysis of leaf and root
sugars in tomato seedlings under water stress conditions
revealed that tomato seedlings inoculated with B and M
and/or amended with C increased leaf and root protein con-
tent compared to the control (Fig. 4a,b). This accumulation
of leaf and root protein contents reached higher values in
B-inoculated and C-amended (CB) plants under 35% FC
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Fig. 4 Protein content on
shoots (a) and on roots (b),
sugar content on shoots (c)
and on roots (d) on tomato
plants stressed or not. Means
that do not share a letter are
significantly different at P≤ 0.01
(Tukey’s HSD)

by 6% and 4%, respectively, than in uninoculated and un-
amended plants. Furthermore, the sugar content of tomato
leaves and roots was significantly reduced during the wa-
ter stress conditions (Fig. 4c,d). However, the combination
of compost with M0 and A (CM0A) significantly increased
leaf and root sugar content by 34% and 30% compared
to the control plants under water stress conditions. These
results were confirmed by the analysis of variance, which
detected highly significant differences between the two wa-
ter regimes.

Chlorophyll a, b and Carotenoids

Chlorophyll a and b and carotenoid levels decreased sig-
nificantly after the application of 35% FC of water stress,
regardless of the presence/absence of bio-stimulants. Under
35% FC, the added bio-stimulants increased the concen-
trations of chlorophyll a and b and carotenoids in leaves

of tomato plants compared to the controls (Fig. 5). The
application of actinomycete A alone and/or in the pres-
ence of compost C and consortium M0 increased Chl “a”,
“b” and carotenoids compared to the uninoculated and un-
amended plants under the 35% FC. Under 35% FC, the
highest level of pigments was obtained in tomato plants
treated with CM0A, where the concentrations of Chl “b” and
carotenoids showed an improvement of 14% and 86% re-
spectively, compared to the control plants. Chl “a” recorded
an improvement of 6% and 2% respectively, with the ap-
plication of A and CM0A in comparison with the control
plants.

Antioxidant Enzyme Activities

Water stress induced a substantial increase in the activities
of catalase (CAT), peroxidase (POX) and polyphenolox-
idase (PPO) and superoxide dismutase (SOD) in tomato
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Fig. 5 Chlorophyll a content (a)
chlorophyll b (b), carotenoids
content (c) on tomato plants
stressed or not. Means that do
not share a letter are significantly
different at P≤ 0.01 (Tukey’s
HSD)

leaves compared to the well-watered 75% FC conditions
(Fig. 6). The activities of these antioxidant enzymes were
much higher in plants amended with C and inoculated with
the M0 and A consortium (CM0A). Under water stress con-
ditions, the activities of CAT, PPO, POX and SOD were
improved by 92%, 33%, 177%, 84% and 79% respectively,
for the CM0A treatment (Fig. 6) compared to the control.

Lipid Peroxidation Assessment, H2O2 and Total
Phenol Content

Under 35% FC, H2O2 and MDA content increased strongly
especially in the control plants compared to plants under
75% FC (Fig. 7). However, plants inoculated with AMF
(M or M0) and/or bacteria (A or B) and/or amended with
compost showed low levels of MDA in tomato leaves com-
pared to the control plants regardless of the imposed water
regime. Indeed, tomato control plants showed higher H2O2

levels of 14%, 13%, 11%, and 8% compared to CM0A,
CM0B, CMA, and CMB treatments, respectively, under the
water stress conditions (Fig. 7a). Similarly, we observed an
increase in MDA content in unamended and uninoculated
plants of 93%, followed by CM0B, CM0A, and CMB and

CMA by 92%, 81%, and 78% respectively, compared to the
control plants under 75% FC (Fig. 7b).

Analysis of leaf phenols during water stress revealed
that both inoculated and amended plants significantly in-
creased phenol content compared to the control (Fig. 7c).
Application of compost in combination with M (CM) or B
(CB) significantly boosted phenol levels by 98% and 76%,
respectively, compared to the control plants under water
stress conditions.

Principal Component Analysis

Principal component analysis revealed that AMF (M or M0)
alone or in combination with compost and/or PGPR were
the most effective treatments for improving growth, phys-
iological traits, osmolytes and enzymatic and non-enzy-
matic antioxidant activity under favorable 75% and un-
favorable 35% water conditions (Fig. 8). PC1 accounted
for 41.05% and PC2 for 24.35% of the total variance. Fig-
ure 8 shows that all treatments inoculated with AMF and/or
PGPR and/or amended with compost, were distinct from the
control which segregated to the left of the PC1 component
and was correlated with the traits H2O2, MDA and phenol
content.
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Fig. 6 Catalase activity
(CAT) (a), polyphenol oxi-
dase (PPO) (b), peroxidase
(POX) (c) and superoxide
dismutase (SOD) (d) on leafs
of tomato plants stressed or not.
Means that do not share a letter
are significantly different at
P≤ 0.01 (Tukey’s HSD)

Discussion

Under water stress, tomato plants growth was significantly
limited by decreasing root length, shoot height and number
of leaves as well as shoot and root dry matters. This could
be due to the rapid response of tomato to drought stress,
which could be related to the closure of stomata as well
as the decrease in transpiration and photosynthetic activ-
ity. However, the application of AMF (M0 or M), bacteria
(A or B) and OMWW-compost, alone or in combination,
resulted a significant increase in the different growth param-
eters. Previous studies showed a better growth of tomato
and date palm inoculated with native and exogenous AMF
and/or amended with organic fertilizer under drought stress
conditions (Baslam et al. 2014; Tahiri et al. 2022a). More-
over, another study on chili and wheat, showed a significant
improvement of growth plants inoculated with Bacillus sp.

and Pseudomonas sp., respectively (Gou et al. 2020; Yaseen
et al. 2019). This is in line with the obtained results in this
study, as treatments with AMF+Compost+Bacteria showed
a beneficial effect on tomato biomass under drought stress.
The interactions between AMF, bacteria and compost can
be rather specific, and have the potential to improve plant
growth (Ben-Laouane et al. 2020; Ojuederie et al. 2019).
This could be because compost, AMF, and bacteria change
the soil structure and increase organic matter while simulta-
neously increasing the amount of plant-available nutrients,
boosting plant growth (Armada et al. 2014; Tahiri et al.
2022b).

The intensity and frequency of mycorrhization recorded
the highest values with the application of compost com-
bined with bacteria in the presence of AMF under well-
watered and drought stress conditions. Studies of other
researchers support our observations (Bernardo et al. 2017;
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Fig. 7 Malondialdehyde
(MDA) (a), hydrogen perox-
ide (H2O2) (b) and phenols
content (c) on leafs of tomato
plants stressed or not. Means
that do not share a letter are
significantly different at P≤ 0.01
(Tukey’s HSD)

Fig. 8 Principal component
analysis (PCA) of all inves-
tigated traits. (SH shoots and
RH roots height, LN leaf num-
bers, SDM shoots and RD roots
dry matter, PL leaf and, PR root
protein, TSSL leaf and TSSR root
total soluble sugar, Chl a chloro-
phyll a, Chl b chlorophyll b,
Car carotenoids, Fv/Fm chloro-
phyll fluorescence, gs stom-
atal conductance, MDA mal-
onyldialdehyde, PT total phe-
nol content, H2O2 hydrogen
peroxide content, CAT Cata-
lase, PPO polyphenol oxidase,
POX peroxidase, SOD super-
oxide dismutase, F% AMF in-
fection frequency and I% AMF
infection intensity)
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Mathur et al. 2019). The same results were obtained by
Anli et al. (2020) and Boutasknit et al. (2021b), who
showed significant improvement of date palm and carob
tree roots colonization when AMF were combined with
organic fertilizers and/or PGPR under drought stress. Other
studies revealed an increase in root colonization when
plants were treated by AMF combined with compost and
bacteria (Aalipour et al. 2020; Anli et al. 2020; Azizi et al.
2021). These investigations clearly showed that a combi-
nation of AMF and PGPR might have a positive effect on
root colonization.

In this study, water stress significantly decreased physi-
ological parameters. This could be due to the restricted dif-
fusion of CO2 into the leaf caused by the closure of stomata
and the photosynthetic activity (Molero et al. 2019; Nadal
and Flexas 2019; Yang et al. 2021). However, AMF/bacteria
and/or compost improved tomato physiology by increas-
ing chlorophyll fluorescence (Fv/Fm) as well carotenoids
content. Previous studies reported that showed significant
improvement of plant physiology when biofertilizers were
applied under drought stress conditions (Boutasknit et al.
2021b; Meddich et al. 2021; Zoppellari et al. 2014). The
improvement of physiological attributes in tomato leaves
in the presence of compost and/or AMF and/or bacteria
could also be explained by the availability of mineral el-
ements with the addition of compost and better uptake by
the AMF mycelium (Zhang et al. 2019). Mineral nutrients
are known to play an important role in the improvement
of photosynthesis (Dhalaria et al. 2020). In addition, bac-
teria and AMF could improve plant physiological traits by
increasing soil aggregation and maintaining a higher water
potential around the roots, which can increase pore size and
the passage of solutes (Lemichez 2020; Vurukonda et al.
2016). It is known that AMF and/bacteria and/or compost
improve the plant’s gas exchange by enhancing stomatal
conductance and photosynthetic activity leading to a better
acquisition and assimilation of CO2 by the treated-plants
(Cheng et al. 2021; Sadeghi et al. 2020; Xu et al. 2016).

Considering protein content, our results showed no sig-
nificant difference for applied biofertilizer treatments re-
gardless the water regime applied compared to the con-
trol. This could explain by the fact that water deficit stimu-
lates the protein synthesis of many enzymes including those
involved in the detoxification of reactive oxygen species
(ROS). This is in agreement with the findings of Choud-
hury et al. (2017). Furthermore, it is known that protein
concentration is not already improved under water stress
conditions (Dineshkumar et al. 2019). The improvement
of protein is related to the induction shock specific pro-
teins to protect plant tissues under abiotic stress in plant
tissues (Avin-Wittenberg 2019). In addition, organic os-
molytes, such as carbohydrates (sugars), are known to be
key molecules for carbon budget. In this study, the concen-

tration of sugars was significantly reduced under drought
stress. Sugars’ increased concentration in plants might be
explained as a response to soil drought, as they were able to
lower osmotic potential in plants and act as water precursors
(Brunner et al. 2015; Granot and Kelly 2019). However, un-
der severe water stress conditions, compost combined with
AMF and bacteria showed significant increment of sugars
compared to the stressed control. The same findings were
reported in sugarcane and date palm under water drought
stress conditions (Anli et al. 2020; Ferreira et al. 2017).
The application of AMF and/or compost and/or bacteria
can cause an increase in growth parameters and physiolog-
ical traits, which may influence the metabolism of sugars
in cells (Secchi et al. 2017). Indeed, numerous studies re-
vealed an increment of sugars concentration coupled with
photosynthetic activity when plants were treated by biofer-
tilizers in single or in combination (Ma et al. 2018; Zhang
et al. 2019).

In this study, it was clear that the inoculation of tomato
with AMF and/or PGPR and compost application were ef-
fective to increase the antioxidant enzymes activity and
reduce ROS production. Peroxidase is hemoprotein with
a hem prosthetic group: the Ferro proto porphyrin IX, 3
(Atamna et al. 2015). They are glycoprotein oxid-reduc-
tases that catalyze the oxidation of many organic and in-
organic compounds by hydrogen peroxide (H2O2) (Huang
et al. 2021). In this study, the recorded CAT, PPO, POX and
SOD activities were significantly elevated in plants exposed
to water stress and inoculated with AMF and/or bacteria
and/or amended with compost. These results are in corrob-
oration with those of Tahiri et al. (2022a), who showed
that the induction of CAT, SOD, PPO, and POX constitute
biochemical response of plant to oxidative stress caused by
drought stress. They are enzymatic biomarkers, which are
very important in the defense system and the detoxification
of ROS production (Pirzadah et al. 2019) and protect cells
against oxidative damage by toxic H2O2 (Xie et al. 2019).
The increase of enzymatic activity under oxidative stress
generated by water deficit revealed its important role in the
elimination of H2O2 formed. POX reduces H2O2 to water
molecule using ascorbate as electron donor resulting from
dehydroascorbate (Pisoschi et al. 2021). The stimulation
of these enzymes reflects the establishment of a state of
tolerance in the cells of tomato plants inoculated by AMF/
bacteria and/or amended by compost (Ait Rahou et al. 2021;
Tahiri et al. 2022a).

H2O2 and MDA are considered a marker for the evalu-
ation of ROS production and membrane of plasmalemma
lipid peroxidation, respectively under environmental stress.
Our findings showed in increment of H2O2 and MDA con-
tent in tomato plant under water stress conditions. However,
they were significantly decreased when biofertilizers were
applied alone or in combination, which linked with high
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antioxidant activity. This could be related to a decrease of
ROS, membrane damage and oxidative stress and an im-
provement tolerance to oxidative stress increased (Adwas
et al. 2019; Saleem et al. 2020). In addition, antioxidant
enzymes such as CAT is very important for trapping H2O2

in the peroxisome by converting it to water (Corpas et al.
2019; Kapoor et al. 2019). In this organelle, H2O2 is pro-
duced from β-oxidation of fatty acids and photorespiration
(Yu et al. 2019). Moreover, high POX activity increases
membrane stability and CO2 fixation in the Calvin cycle
within chloroplasts, which are very sensitive to environ-
mental stress (Hameed et al. 2021; Sharma et al. 2020).
This could be related to the capacity of AMF/bacteria and/
compost to reduce MDA and H2O2 by stimulating the activ-
ities of various biomolecules like osmoprotectants and an-
tioxidant enzymes as well as secondary metabolites (Ghan-
barzadeh et al. 2019; Meena et al. 2020; Ojuederie et al.
2019). AMF and PGPR inoculation and/or compost appli-
cation could be able to reduce MDA content by decreas-
ing membrane peroxidation and maintaining its structure
and stability, which could improve plant stress tolerance
(Ben-Laouane et al. 2019; Shafiq et al. 2021). Accord-
ing to an increase in antioxidant enzyme activities and os-
molytes synthesis, plants are required to cope with drought
stress by eliminating ROS (Ghanbarzadeh et al. 2019; Lah-
bouki et al. 2022). Under drought stress conditions, in-
oculated tomato plants produce less ROS and accumulate
more antioxidant enzymes and osmolytes, which could be
considered as a drought avoidance mechanism. This incre-
ment of enzymes activity would minimize the impacts of
drought stress, particularly oxidative stress, by maintaining
a higher water status, largely through increased water in-
take and/or reduced water loss, as well as mineral nutrient
uptake (Halder et al. 2022; Inculet et al. 2019).

Overall, the findings revealed that soil amendment with
compost combined with native AMF/PGPR/actinomycete
led to higher growth, and stress-related photosynthetic fea-
tures like stomatal conductance and compound buildup. It
really is worth noting that application of autochthonous bio-
products might be a novel way to promote tomato growth
and tolerance, and it could be an ecological combination
for tomato to sustain dry soils.

Conclusion

Altogether, the findings demonstrated that adding local
compost to the soil along with native AMF/bacteria resulted
in increased growth, and stress-related photosynthetic as-
pects such gas exchange and compound accumulation. It’s
worth noting that employing autochthonous biofertilizers
to promote tomato growth and tolerance could be a novel

approach, and it could be a suitable combination for tomato
plants to thrive in dry environments.
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