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Abstract

In calcareous soil, two field experiments were conducted to investigate the effects of two potassium silicate treatments
(with and without) and three irrigation levels (100, 80 and 60%, of crop evapotranspiration, abbreviated as IW100, IW80
and IW60, respectively) on wheat yield and nutrient uptake and water use efficiency (WUE). The experimental design
was a strip plots design in randomized complete block arrangement with three replicates. Findings reveal that potassium
silicate improved grain weight spike™! by about 1.06 times whether with IW80 or IW60. Also, seed index increased by 1.03,
1.06 and 1.04 times owing to potassium silicate in the 1st season under IW100, IW80 and IW60 treatments, respectively.
Application of potassium silicate surpassed the control treatment by about 1.05, 1.4 and 1.07 times for biological straw and
grain yields under IW80. The interaction of IW80 x potassium silicate significantly equaled IW100 x potassium silicate for
P, S Mg and Mn uptake in both seasons as well as N, K and Zn uptake in the 1st season and Fe uptake in the 2nd season.
IW80 or IW60 with potassium silicate application were the efficient combinations for improving WUE in both growing

seasons.
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Introduction

Due to its contribution as the major staple food crop uni-
versally, wheat is ranked at the first position among cereals
(Igbal et al. 2021). However, crop yield potential is lim-
ited because of climate change impacts, especially abiotic
stresses, including heat, salinity and drought (Saudy et al.
2020a; Yadav et al. 2020; Saudy et al. 2021a, c; El-Bially
et al. 2022a, b).

In numerous field crops, deficit irrigation tactic is one
of the practical strategies in crop irrigation programs to
save water, however, crop productivity is negatively affected
(El-Bially et al. 2018; Saudy et al. 2020a; El-Metwally
et al. 2021, 2022). Water scarcity or deficit irrigation re-
duces plant growth and yield (Abd El-Mageed et al. 2021;
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Salem et al. 2021) due to production of reactive oxygen
species (ROS), causing lipid peroxidation of membrane
and interaction with other macromolecules (Bistgani et al.
2017). Under moderate or severe drought stress, plants close
stomata and leaf pigments reduced causing reduction in
photosynthesis rate and nutrient uptake (Yan et al. 2016;
El-Metwally and Saudy 2021a; Saudy et al. 2021a).

Mineral nutrition plays a beneficial role in developing
environmental stress tolerance in crop plants (Saudy 2014,
2015; Jan et al. 2017). Potassium (K*) is a phyto-benefi-
cial macro-element that performs a pivotal role in organiz-
ing physio-biochemical processes to support plant survival
against abiotic stresses, including salinity (Merwad 2016;
Abd El-Mageed et al. 2022). Adequate K* nutrition has
been shown to mediate PM H*-ATPase activation to in-
crease protons extrusion under abiotic stresses (Weng et al.
2020).

In several plant species, as wheat, the potentiality of
silicon (Si) to reinforce the environmental stresses tolerance
was obtained (Rodrigues et al. 2015). Si could enhance
plant growth under normal and stress conditions (Saudy
and Mubarak 2015). Application of Si increased water and
osmotic potential in roots and leaves as well as alleviated
water stress partially (Ming et al. 2012).
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Therefore, the current study aimed to investigate the po-
tentiality of potassium silicate (as a source of K and Si) for
alleviating the adverse impacts of drought stress in wheat
through enhancing water use efficiency under calcareous
soil conditions.

Materials and Methods
Study Site and Experimental Procedures

Two field experiments were implemented during winter
seasons of 2019/20 and 2020/21at Maryout experimental
station, Desert Research Centre, Alexandria, Egypt. The
soil was a calcareous and sandy loam in texture containing
92.0% sand, 2.1% silt, 5.9 clay, and 24.1% calcium carbon-
ate with pH of 8.1 and 0.72dS m' electrical conductivity.
Sorghum (Sorghum bicolar L.) was the preceding crop in
both seasons.

In a strip plots design based on randomized complete
block arrangement using 3 replicates, two potassium sili-
cate containing 0.05% Si (0 and 500ml L) and three ir-
rigation levels, were applied as ratio of crop evapotranspi-
ration (100, 80 and 60%, abbreviated as IW100, IW80 and
IW60, respectively) were tested. The experimental unit size
was 10.5m? (3mx3.5m). On 19 November in 2019 and 2
December in 2020, wheat grains (cv. Giza—171) were sown
in lines, 10cm distance, at a rate of 150kg grains ha™!. Dur-
ing land preparation, single super phosphate (15.5% P,0s),
at a rate of 240kg ha!, and gypsum, as a soil conditioner,
at a rate of 2.4t ha!, were incorporated. At 30 days after
sowing (DAS), ammonium nitrates fertilizer (33.5% N) at
a rate of 450kg ha™! was applied.

Potassium silicate treatment was applied as foliar appli-
cations twice, 65 and 80 DAS. Irrigation water was ap-
plied equally to all irrigation treatments to increase the
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Fig.1 Irrigation water amount applied under different irrigation lev-
els in wheat during 2019/20 and 2020/21 seasons. IW100, IW80 and
IW60: Irrigation at 100, 80 and 60% of crop evapotranspiration, re-
spectively
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soil moisture up to field capacity until the 4-6 leaf growth
stage (25 DAS); then, the irrigation treatments were started.
Based on the meteorological data of the study area, refer-
ence evapotranspiration was calculated using FAO 56-Pen-
man—Monteith method (formula 1) given by Allen et al.
(1998). Using the formula 2 (Allen et al. 1998), wheat
crop evapotranspiration was estimated. The irrigation water
quantity (m?* ha™') received by wheat plants under different
irrigation levels are illustrated in Fig. 1. Gated pipe irri-
gation system was exploited for crop irrigation. The PVC
gated pipes were installed in irrigation channel against the
upper end of the furrows, which convey the water based on
the required flow rate (one gate per furrow). The temporary
dam was used to keep a constant hydraulic head, to realize
adequate inflow rate during irrigation events. The inflow
rate was 90 lpm furrow!, which predetermined according
to the technique of Merriam et al. (1983). The amount of
water applied was estimated by a flow meter installed on the
delivery line of the irrigation system. Soil surface slope was
0.20%. Irrigation cutoff was at 90% of furrow length and
runoff was negligible, which the furrows were closed—ends.
The water amount applied during each irrigation event was
appropriate to the crop’s growth stage as described by Dor-
renbos and Pruitt (1977). Soil water content was measured
by gravimetric method (Merriam et al. 1983) before and af-
ter irrigation events along furrow length to a depth of 1.0m
in depth increments of 0.2m to evaluate the soil moisture
distribution and irrigation performance.

Assessments
Yield and Yield Components

At harvest (15th and 21st of April in 2020 and 2021 sea-
sons, respectively), spike number m~ was measured. More-
over, ten plants were randomly obtained from each plot to
measure grains number spike™!, grains weight spike™! and
seed index. Furthermore, whole plants of each plot were
collected to estimate biological, straw and grain yields ha!.

Grain Nutrients Uptake

At Central Laboratory, Soil and Water Unit, Faculty of
Agriculture, Ain Shams University, representative samples
of grains were obtained to estimate the chemical anal-
ysis. Total nitrogen (N) was determined by micro Kjel-
dahl using 5% boric acid and 40% NaOH as described by
Chapman and Pratt (1961). Total phosphorus (P) was es-
timated using Spectrophotometer according to the method
described by Watanabe and Olsen (1965). Total potassium
(K) was measured using Flame photometer (Chapman and
Pratt 1961). Sulphur (S), magnesium (Mg), iron (Fe), zinc
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(Zn), and manganese (Mn) were determined using ICP
Mass Spectrometry (Benton 2001). After that, nutrient up-
take was computed by multiplying the element concentra-
tion by grain yield ha™..

Water Use Efficiency

Based on the calculated applied irrigation water quantities
for IW100, IW80 and IW60 in 2019/20 and 2020/21 sea-
sons (Fig. 1), water use efficiency (WUE) was estimated
according to Jensen (1983) (Eq. 1).

. -1
WUE = Yield (kgha™)

- kgm™ 1
Water applied (m3ha™!) (kem™) v

Statistical Analysis

Data of the two seasons was subjected to analysis of vari-
ance (ANOVA) according to Casella (2008). Costat soft-
ware program, Version 6.303 (2004) was used for carrying
out ANOVA. Means were separated using Duncan’s mul-
tiple range test only when the F—test indicated significant
(p<0.05) differences among the treatments.

Results
Wheat Yield Components
Potassium silicate significantly influenced grain weight

spike™! in 2019/20 and 2020/21 seasons and seed index in
2019/20 season (Table 1). Application of potassium silicate

(500ml L") enhanced grain weight spike™! by 4.7 and
5.1% in 1st and 2nd seasons, respectively, and seed index
by 4.2% in 1st season.

Full irrigation (IW100) achieved the maximum values of
yield components in wheat in both growing seasons. While,
reducing water amount by 40% (IW60) caused the maxi-
mum reductions. Moderate water deficit IW80) caused 4.4,
4.9, 11.4 and 7.1% decreases (averages of the two seasons)
in spike number m=2, grains number spile!, grain weight
spile! and seed index, respectively, compared to no deficit
water.

Interaction effect of potassium silicate and irrigation wa-
ter revealed that potassium silicate applied in full irrigated
plots showed the highest values of all yield parameters
(Table 1). However, under each irrigation level, no notice-
able differences between potassium silicate and tap water
were obtained for all yield components in both seasons, ex-
cept grain weight spike™' and seed index in the 1st season.
Herein, potassium silicate improved grain weight spike™! by
about 1.06 times whether with IW80 or IW60. Also, seed
index was increased by 1.03, 1.06 and 1.04 times owing
to potassium silicate in the 1st season under IW100, IW80
and IW60 treatments, respectively.

Wheat Yields

Wheat yields markedly responded to potassium silicate ap-
plication in both growing seasons, except biological and
straw yields in the 2nd season (Table 2). In the first season,
increases in biological and straw yields due to potassium sil-
icate were 5.7 and 6.1%, respectively. Moreover, increases

Table 1 Effect of potassium silicate and irrigation on wheat yield components in 2019/20 (I) and 2020/21 (II) seasons

Variable Spike number m2 Grains number spile™! Grain weight spile™! (g) Seed index (g)
Season 1 Season 11 Season | Season 11 Season I Season 11 Season | Season 11
Potassium silicate, PS (mg L")
With, 500 294.0a 298.6a 45.11a 45.33a 2.02a 2.06a 44.63a 45.38a
Without, 0 294.0a 295.7a 44.88a 44.77a 1.93b 1.96b 42.85b 43.75a
Irrigation, I
IW100 311.0a 318.0a 47.66a 47.00a 2.22a 2.31a 46.73a 49.33a
W80 303.0b 298.6b 44.83b 45.16ab 2.03b 1.98b 45.31b 43.86b
W60 268.0c 275.0c 42.50c 43.00b 1.66¢ 1.74c 39.17¢c 40.50c
PSxI
IW100 500 311.0a 318.6a 47.33a 47.00a 2.25a 2.38a 47.52a 50.75a
0 311.0a 317.3a 48.00a 47.00a 2.21a 2.25a 45.95b 47.92b
W80 500 303.0b 302.0b 45.00b 45.66ab 2.09b 2.01b 46.53b 44.23¢
0 303.0b 295.3b 44.66b 44.66ab 1.97c 1.94bc 44.10c 43.49¢cd
W60 500 268.0c 275.3¢ 43.00c 43.33b 1.71d 1.78cd 39.86d 41.17de
0 268.0c 274.6c 42.00c 42.66b 1.61e 1.69d 38.49% 39.83e

IW100, IW80 and IW60: Irrigation at 100, 80 and 60% of crop evapotranspiration, respectively; Different letters within columns indicate that there

are significant differences by Duncan’s Multiple Range Test at p < 0.05
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Table 2 Effect of potassium silicate and irrigation on wheat yields (t ha™!) in 2019/20 (I) and 2020/21 (IT) seasons

Variable Biological yield Straw yield Grain yield
Season | Season II Season | Season 11 Season | Season II
Potassium silicate, PS (mg L")
With, 500 12.98a 12.85a 7.34a 6.92a 5.64a 5.93a
Without, 0 12.28b 12.15a 6.92b 6.42a 5.36b 5.72b
Irrigation, 1
IW100 14.62a 14.35a 8.20a 7.37a 6.41a 6.98a
IW80 13.05b 12.78b 7.26b 6.86a 5.79b 5.92b
W60 10.23¢ 10.36¢ 5.92¢ 5.79 4.31c 4.57c
PSxI
IW100 500 14.75a 14.58a 8.22a 7.48a 6.52a 7.05a
0 14.48a 14.16a 8.18a 7.25a 6.29b 6.90a
W80 500 13.42b 13.12b 7.43b 6.94a 5.98¢ 6.17b
0 12.69¢ 12.45b 7.10c 6.78a 5.59d 5.67¢
IW60 500 10.78d 10.90c 6.36d 6.33ab 4.41e 4.56d
0 9.68e 9.83d 5.48¢e 5.25b 4.20f 4.58d

IW100, IW80 and IW60: Irrigation at 100, 80 and 60% of crop evapotranspiration, respectively; Different letters within columns indicate that there

are significant differences by Duncan’s Multiple Range Test at p < 0.05

Table 3 Effect of potassium silicate and irrigation on grain macronutrients uptake (kg ha™') of wheat in 2019/20 (I) and 2020/21 (IT) seasons

Variable N uptake P uptake K uptake S uptake Mg uptake
Season]  SeasonII ~ Seasonl Season Il  SeasonI SeasonIl = Seasonl Season Il  Seasonl  Season II

Potassium silicate, PS (mg L")

With, 500 137.5a 127.9a 19.6a 22.3a 157.5a 174.5a 10.5a 9.4a 15.6a 14.3a

Without, 121.6a 126.5a 19.5a 21.6a 155.6a 163.2b 9.9a 11.2a 8.0b 14.8a

0

Irrigation, 1

IW100 156.4a 155.4a 22.0a 26.6a 178.0a 208.1a 15.2a 13.5a 12.8a 16.8a

W80 136.3ab 127.0b 20.4ab 22.6b 168.7a 164.1b 9.3ab 9.5a 14.9a 16.7a

W60 95.4b 99.2¢ 16.2b 16.6¢ 123.0b 134.4c 6.1b 7.9a 7.8a 10.2a

PSxI

IW100 500 16l1.4a 155.3a 22.1a 26.5a 171.7a 208.3a 14.6ab 10.7a 17.7a 16.2a
0 151.5ab 155.5a 21.9a 26.6a 184.3a 207.9a 15.7a 16.2a 7.9b 17.3a

W80 500  154.7ab 129.0b 20.7ab 23.4ab 171.4a 179.4b 10.5abc 10.2a 20.5a 15.7a
0 118.0bc 125.1b 20.1b 21.9b 166.0a 148.7¢c 8.2bc 8.9a 9.4b 17.7a

W60 500  96.6¢c 99.4¢c 16.0c 16.9¢ 129.5b 135.9¢ 6.3c 7.2a 8.7b 10.8a
0 95.2¢ 98.9¢ 16.4c 16.3¢ 116.6b 132.9¢ 5.8¢c 8.6a 6.8b 9.5a

IW100, IW80 and IW60: Irrigation at 100, 80 and 60% of crop evapotranspiration, respectively; Different letters within columns indicate that there

are significant differences by Duncan’s Multiple Range Test at p < 0.05

in grain yield were 5.2 and 3.6% in the 1st and 2nd seasons,
respectively.

As shown in Table 2, supplying wheat plants with IW 100
recorded the highest yields, while, reductions associated
lower water supply. Accordingly, as averages of the two
seasons, reductions in biological, straw and grain yields
were approximately 10.8, 9.2 and 12.4% with IW80 as well
as 28.9, 24.6 and 33.6% with IW60, respectively.

The impact of potassium silicate on wheat yields was
more pronounced under lowering water supply. In this re-
spect, significant differences in biological straw and grain
yields between addition or no addition of K2Si4 under

@ Springer

IW60 or IW80. For instance, in the first season, applica-
tion of potassium silicate surpassed the control treatment
by about 1.05, 1.4 and 1.07 times for biological straw and
grain yields under IW80. Moreover, with irrigation by IW60
the corresponding increases reached 1.11, 1.16 and 1.05, re-
spectively (Table 2).

Grain Nutrient Uptake
There were insignificant variations between potassium sili-

cate and control treatments for macronutrient (Table 3) and
micronutrient (Table 4) uptake of wheat grains in both sea-
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Table 4 Effect of potassium silicate and irrigation on grain micronutrients uptake (kg ha™') of wheat in 2019/20 () and 2020/21 (II) seasons

Variable Fe uptake Zn uptake Mn uptake
Season | Season II Season | Season 11 Season | Season II
Potassium silicate, PS (mg L")
With, 500 154.2a 168.5a 52.8a 48.8a 21.2a 38.3a
Without, 0 146.1a 165.8a 37.4a 44.9a 19.7a 28.8a
Irrigation, 1
IW100 179.8a 194.8a 48.5a 76.8a 25.7a 38.0a
W80 155.1b 173.3a 56.2a 43.5a 20.3ab 36.6a
W60 115.4c 133.3b 30.7a 20.4a 15.3b 26.1b
PSxI
IW100 500 178.9a 189.4ab 46.5a 105.7a 27.8a 44.5a
0 180.6a 200.3a 50.6a 48.2bc 23.6ab 31.4b
W80 500 164.7b 179.1ab 69.0a 25.4bc 19.6ab 42.0a
0 145.5¢ 167.6b 43.3a 61.6b 21.1ab 31.1b
IW60 500 118.9d 137.1c 43.1a 15.8¢ 16.3b 28.3b
0 112.0d 129.4c 18.3a 25.0bc 14.3b 23.8b

IW100, IW80 and IW60: Irrigation at 100, 80 and 60% of crop evapotranspiration, respectively; Different letters within columns indicate that there
are significant differences by Duncan’s Multiple Range Test at p < 0.05

175 . sons, except K uptake in the second season and Mg uptake
17 m2019/20 ®2020/21 in the first season. Due to application of potassium silicate
1.65 ’ grain K uptake increased by 6.9% in 2020/21 season and
grain Mg uptake increased by 95.0% in 2019/20 season.
H ke : s All nutrients uptake recorded with IW80 were similar to
B 185 a those measured with IW100 in both growing seasons, ex-
15 cept N uptake in 2020/21 season and Fe uptake in 2019/20
145 season. Also, all irrigation treatments statistically equaled
- in S uptake in the 1st season as well as Mg uptake and Zn

uptake in both seasons.
Macro- and micro-nutrients uptake significantly re-

With Without
Potassium silicate

Fig.2 Effect of potassium silicate on water use efficiency, WUE, (kg
m~3) of wheat in 2019/20 and 2020/21 seasons. Different letters within
bars indicate that there are significant differences by Duncan’s Multiple
Range Test at p<0.05

sponded to the interaction between potassium silicate and
irrigation in both seasons, except S and Mg uptake in
the 2nd season (Table 3) and Zn uptake in the Ist sea-
son (Table 4). Superiority of full irrigation IW100) still
pronounced with potassium silicate for enhancing grain

1.8 . .
" a '2019/30a”2°20"21 nutrients uptake of wheat. However, IW80 x potassium
17 silicate significantly equaled IW100 x potassium silicate
1.65 for P, S Mg and Mn uptake in both seasons as well as N, K
B 16 b a and Zn uptake in the 1st season and Fe uptake in the 2nd
= 1'152 a / season.
1.45 .
id Water Use Efficiency
135 ‘

TW100 IW80 W60

Irrigation level

Fig.3 Effect of irrigation on water use efficiency, WUE, (kg m~) of
wheat in 2019/20 and 2020/21 seasons. IW100, IW80 and IW60: Ir-
rigation at 100, 80 and 60% of crop evapotranspiration, respectively;
Different letters within bars indicate that there are significant differ-
ences by Duncan’s Multiple Range Test at p < 0.05

Potassium silicate surpassed the control for WUE in the first
season causing 5.6% increase (Fig. 2). There was no signif-
icant difference among the studied irrigation treatments in
WUE of wheat (Fig. 3). Concerning the interaction, Fig. 4
depicted that IW80 or IW60 with potassium silicate appli-
cation were the efficient combinations for improving WUE
in both growing seasons.
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Fig.4 Effect of potassium silicate and irrigation interaction on water
use efficiency, WUE, (kg m) of wheat in 2019/20 and 2020/21 sea-
sons. IW100, IW80 and IW60: Irrigation at 100, 80 and 60% of crop
evapotranspiration, respectively; Different letters within bars indicate
that there are significant differences by Duncan’s Multiple Range Test
at p<0.05

Discussion

Wheat productivity is severely hampered by drought, owing
to its negative impacts on crop growth and development.
Deficit water caused serious reduction in yield productiv-
ity and quality (Saudy and El-Bagoury 2014; Saudy and
El-Metwally 2019). Owing to drought, reductions in stom-
atal conductance, photosynthesis and transpiration rates
were observed, and consequently CO, assimilation rates
declined (Farooq et al. 2012). Low water supply caused
reduction in leaf pigments and soluble sugars, hence dry
matter accumulation and nutrient uptake decreased (Saudy
and El-Metwally 2019, 2022). The significant reduction in
relative water content of leaves positively correlated with
soil water availability under different irrigation treatments
(Kalariya et al. 2015). Also, drought adversely influences
the absorption and use of mineral nutrients shackling plant
growth and production (Sun et al. 2012; Mubarak et al.
2021). Because of drought plant nutrient uptake capacity
was reduced (Sanaullah et al. 2012; Abd—Elrahman et al.
2022). Low water supplies reduced plant growth and devel-
opment by influencing uptake, transport, and partitioning
of nutrients (Gessler et al. 2017; Saudy et al. 2020a).
Also, reducing water supply caused severe depression
in plant physiological, anatomical, and agronomic traits
(El-Metwally et al. 2021; Makhlouf et al. 2022). Accord-
ingly, in crop production management, all tools reduced
water lost should be adopted.

Supplying of crop plants in appropriate quantities and
forms of nutrients certainly promotes growth and devel-
opment both under favorable and unfavorable conditions
(Saudy et al. 2018, 2020b; El-Metwally and Saudy 2021b;
Saudy et al. 2021b). The current study proved that potas-
sium silicate alleviated, partially at least, the hazards of
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drought with enhancing yield traits (Tables 1 and 2), nu-
trients uptake (Tables 3 and 4) and water use efficiency
(Fig. 3). In this respect, Debona et al. (2017) and Luy-
ckx et al. (2017) stated that Si fertilization had can im-
prove plant tolerance to drought. Si also can enhance the
anti-oxidative defense mechanisms thus, avoid damage
from reactive oxygen species produced by various abiotic
stresses (Maghsoudi et al. 2019). Si promotes the plant
growth by modulating the nutrient (Na, Mg and Si) up-
take and phytohormone levels and alleviating plant stress
levels (Gong et al. 2008). On the other hand, potassium
is an essential nutrient for growth with maintaining cell
turgor and regulating the water content plant cells (Rengel
and Damon 2008). Moreover, potassium supply plays an
important role in regulating osmotic potential, increasing
water uptake ability and avoiding K* depletion (Zengin
et al. 2009). Also, K may help in maintaining a normal bal-
ance between carbohydrates and proteins (Monreal et al.
2007). It is a major nutrient for photosynthesis and the
transport of assimilates (Wang et al. 2015). Potassium af-
fects the osmotic adjustment of the plant and by enhancing
the translocation of assimilates and maintaining osmotic
charge (Marschner 1995; Mubarak et al. 2016). Therefore,
providing wheat plants with potassium silicate is regarded
as a crucial action for keeping productivity particularly
under adverse conditions as drought (Salem et al. 2022).

Conclusion

It could be concluded that in calcareous soils, providing
potassium silicate to wheat plants is seen as a critical mea-
sure for maintaining productivity, commonly under suitable
conditions, or particularly in adverse situations such as lack
of irrigation water. Moreover, farmers can mitigate drought
stress effects and improve water use efficiency by using
judicious application of potassium silicate and a moderate
irrigation level (80% of crop evapotranspiration) in their
fields, thus saving the applied water by 20%.
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