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Abstract
The potential productivity of calcareous soils is high when adequate nutrients can be available. However, these soils are
frequently deficient in nitrogen (N) and phosphorus (P) and cannot meet plant nutrient requirements. The application of
microbes with chemical fertilizers can be beneficial in fulfilling plant-nitrogen-phosphorus (NP) requirements. Given that,
a field experiment was conducted to determine the effect of arbuscular mycorrhiza fungi (AMF) infected roots of maize
and single super phosphate (SSP) in improving NP acquisition, yield, root infection activity, and AMF spore density in
alkaline-calcareous soil. The experiment was composed of five levels of SSP (0, 30, 60, 90, 120kgha–1) and two levels of
AMF (with and without) arranged in a two factorial randomized complete block design (RCBD) with three replications.
Yield-related parameters were significantly (P≤ 0.05) improved with the addition of AMF and SSP. Post-harvest soil
total N, extractable soil P, plant N, and plant P concentration and its uptake by wheat plants were also significantly
(P≤ 0.05) improved by the combined application of AMF and SSP compared to sole SSP application. Very often, the
performance of 90kgha–1 SSP with AMF was either similar to or better than 120kgha–1. Moreover, AMF inoculation was
found effective in soil AMF spore density and root infection intensity leading to an increase of 18 to 48/20g soil and
19 to 42% compared to no AMF inoculation. It was proved that wheat-NP requirements could be improved with AMF
inoculation, and it has the potential to increase crop yield in alkaline calcareous soils.
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Introduction

Plant growth and development are majorly dependent on
the availability of nutrients and their level in the soil. An
inappropriate, minimum or excessive amount of nutrients in
the soil inhibits soil fertility, plant growth, and yield (Pan
et al. 2022). Among those soil nutrients, phosphorus (P)
is a macro-element and an essential requirement for plants
and almost all life on earth (Lambers 2022). It plays a cru-
cial role in many processes such as photosynthesis, energy
transfer, and metabolism of nucleic acid (Tshibangu Kazadi
et al. 2022). Besides its vital role in crop growth, it is chal-
lenging to manage adequate P levels in alkaline calcareous
soil because of its narrow pH range of 6–6.5, which is de-
sirable for plants to uptake P. In calcareous soils, calcium
(Ca2+) and magnesium (Mg2+) are the dominant cations due
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to which P immobilizes, and plants are unable to uptake P
(Tshibangu Kazadi et al. 2022). The role of P is yet vital
for plant growth and crop production. It is supplied through
various chemical fertilizers such as single superphosphate
(SSP), rock phosphate (RP), and diammonium phosphate
(DAP). The issues related to the frequent use of chemical
fertilization are that it is costly, disturbs soil quality, and
its utilization issues. It has been reported that only 25–30%
of the applied P is available to plants, while the rest are
converted into plant unusable forms (Pan et al. 2022; Penn
and Camberato 2019). Therefore, the researchers adopted
different management practices to increase plant-P acqui-
sition. The use of targeted P fertilizers, the development
of sustained released P fertilizers, various manures, grow-
ing crops with low P requirements, and advanced cropping
systems are some P-management practices (An et al. 2021;
Aziz et al. 2014; Penn and Camberato 2019). Due to some
limitations of these strategies, researchers have adopted an
alternative way, such as inoculation with beneficial microor-
ganisms in the form of bio-fertilizer, to reduce dependency
on chemical fertilization and improve crop-P acquisition
(Cozzolino et al. 2013; Higo et al. 2018; Khan et al. 2022).

In this regard, beneficial microbes such as arbuscular my-
corrhiza fungi (AMF) are most pronounced in alkaline cal-
careous soils as they are eco-friendly and efficient. Around
90% of crops are mycorrhizal. They form a symbiosis in
which both fungi and plants benefit, primarily arbuscular,
such as glomus, gigaspora scuteusllospora, acaulospora,
and sclerocystis. AMF is regarded as a natural fertilizer
due to its potential to boost the availability of nutrients to
plant roots, piquing the interest of most scientists worldwide
(Ahanger et al. 2014; Toussaint et al. 2007). The creation
of AMF symbiosis is beneficial to plants because it gives
a natural remedy to plants when they thrive in nutrient-de-
ficient circumstances with limited fertilizer supply (Wahid
et al. 2020). AMF root colonization is accomplished by es-
tablishing a mycelial network of fungi that spreads beneath
plant roots, allowing the intake of otherwise unapproach-
able nutrients to plants (Begum et al. 2019).

Previous research has found that inoculation of AMFs
can improve plant development by increasing nutrients up-
take, especially in low-nutrients soil (Meng et al. 2015;
Tarraf et al. 2017). Inoculation of AMF improves nutrients
uptake, particularly phosphorus (P), by secreting phosphate
in the rhizosphere, which catalyzes and releases P for plant
uptake (Erdinc et al. 2017), and plant tolerance to many
types of stresses, influencing plant growth and reproduc-
tion (d Oliveira et al. 2022), and hence increase crop yield
(Jan et al. 2014; Tshibangu Kazadi et al. 2020).

In Pakistan, the soils are usually alkaline and calcareous,
with low organic matter content, N and P for plant growth
(Ahanger et al. 2014; Rahim et al. 2020). Even though these
soils have plenty of stores of total P; the bio-available frac-

tion is frequently 100 times less than the total P due to its
adsorption on the calcite surface and becomes unavailable
to plants (Hinsinger et al. 2011; Izhar Shafi et al. 2020).
Likewise, N concentration in these soils is sufficient but
lost through ammonia volatilization and becomes deficient
for plant growth (FAO 2022). AMF could be a produc-
tive biological approach to replenishing NP availability in
calcareous soils. However, the effect of AMF in soils of
calcareous nature and alkaline reactions has not been well-
studied. Therefore, the current study was performed to de-
termine the influence of AMF inoculation with different
levels of SSP on the wheat-NP availability, yield, spore
density, and root infection intensity in alkaline calcareous
soils of the semiarid climate of Khyber Pakhtunkhwa, Pak-
istan.

Material andMethods

Experimental Setup

A field experiment was conducted during the winter of
2018at a research farm, the University of Agriculture
Peshawar Pakistan, located at 34.1o 2100 N, 71o 280500 E
(Fig. 1), to investigate the impact of mycorrhiza inocu-
lation along with different levels of SSP on wheat-N-P-
acquisition, yield, and AMF spore density and root in-
fection intensity in alkaline-calcareous soil of the semiarid
region of Khyber Pakhtunkhwa, Pakistan. During the period
of the field experiment, Peshawar city had a soil temper-
ature of 10.09–33.12°C with an average temperature of
22.64 oC, while the air temperature was within the range
of 9.47–31.11 oC with an average temperature of 21.50°C.
Monthly mean relative humidity and rainfall were 53.08%
and 12.66mm (Fig. 2). Wheat variety Pirsabaq-2013 was
used as a test crop with a seed rate of 120kgha–1. Recom-
mended levels of nitrogen (N) and potassium (K) @ 120
and 60Kg ha–1 were applied uniformly as basal doses to
all plots. K was applied at the sowing time in the form
of potassium sulfate, while N was applied in the form of
urea in two equal splits, i.e., with sowing and after 20 days
of wheat germination at the time of irrigation. Phosphorus
was applied in the form of single super phosphate (SSP) at
different levels of 0 (control), 30, 60, 90, and 120kgha–1

with or without AMF inoculation (Table 1). The AMF
inoculation was produced in the sterilized pots by growing
maize crop inoculated with AMF spores isolated from the
fresh growing berseem crop. The AMF infected maize root
and soil were used uniformly as inoculum at 1.5kgplot–1.
A randomized complete block design (RCBD) was used
with three replicates.
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Fig. 1 Geographical location
of the study site (Agricultural
Research Farm, The University
of Agriculture, Peshawar, Pak-
istan). (Khan et al. 2022; CC BY
4.0, http://creativecommons.org/
licenses/by/4.0/)

Fig. 2 Weather data during field experiment

Production of the AMF Inoculum

The soil as a substrate was autoclaved at 121°C for 30min
to ensure complete sterility. A total of 100 AMF spores per
pot with 4 maize seeds were inoculated. The plants were
harvested after 80 days, and the whole root system along
with the soil was removed from each pot. The air-dried
soil and roots were having an average of 55–60 spores per
10g of soil with 43% AMF colonization. All roots were
cut carefully and mixed with the soil and stored at 4°C for
field application as inoculum.

Soil Sampling, Processing, and Analysis

Soil samples were collected at a depth of 0–30cm in
a zigzag manner before the experiment (pre-harvest) to
represent the experimental site and at the end of the exper-
iment (post-harvest) to evaluate the effect of treatments in
each experimental plot. Both soil samples (pre and post-har-
vest) were air-dried and were subjected to a sieve (<2mm)
to analyze different soil parameters. Soil and plant total
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Table 1 Treatment combinations of AMF and SSP

Treatments Factor A
SSP Levels

Factor B
AMF

T1 0 0

T2 AMF AMF

T3 30 No AMF

T4 60 No AMF

T5 90 No AMF

T6 120 No AMF

T7 30 AMF

T8 60 AMF

T9 90 AMF

T10 120 AMF

nitrogen content was determined by the method of (Brem-
ner 1996), AB-DTPA extractable soil P by the method of
(Soltanpour and Schwab 1977), while total P content in
the plant was analyzed by the method of (Kuo et al. 1996).
Pre-harvest soil analysis reveals that the experimental field
was silt loam, alkaline in reaction, calcareous in nature,
and deficient in organic matter, ABDTPA extractible P, and
total N content (Table 2).

Morphological and Yield-related Parameters

Data regarding morphological and yield-related traits such
as grain yield, straw yield, and thousand-grain weight were
collected and analyzed using the appropriate procedure as
suggested by (Akram et al. 2008). Grains were removed
from the straw by threshing each plot separately to esti-
mate grain yield. Grain yield was noted for a single plot and
converted into grain yield kgha–1. A thousand grains were
collected from each treatment plot randomly and weighed
with the help of electric balance. Mycorrhiza infection rates
in the roots of wheat were determined by staining the myc-
orrhiza chitin with lactic-trypan blue according to the pro-
cedure described by (Koske and Gemma 1989; Phillips and
Hayman 1970). Soil spores density of mycorrhiza in 20g
soil was calculated and analyzed by dispersion method as
suggested by (Berta et al. 2014).

Statistical Analysis

Data obtained from various parameters were statistically
analyzed using the one-way analysis of variance (ANOVA).
A significant difference in the means of treatments at a 5%
level of significance was parted using the least significant
difference (LSD) test using the statistix 8.1 package tool.

Table 2 Physico-chemical properties of soil under investigations

Properties Unit Values

Silt % 65.1

Sand % 28.9

Clay % 5.5

Texture class – Silt loam

EC(e) dSm–1 0.27

pH – 7.8

Organic matter content % 0.73

Lime % 15.1

Total N content % 0.09

AB-DTPA extractable P Mg kg–1 3.21

Results

Wheat Yield Parameters

Data regarding yield-related parameters revealed that the
sole applications of AMF and SSP levels significantly
(P≤ 0.05) affected the yield parameters of wheat (grain
yield, straw yield, and thousand-grain weight); however,
their interactive effect was non-significant (Table 3). SSP
application at the rate of 90kgha–1 performed better and
recorded a maximum grain yield of 3340.2kgha–1, a straw
yield of 5010kgha–1, and a thousand-grain weight of
47g as compared to 0, 30, 60, and 120kgha–1 SSP.
Although SSP application at the rate of 90kgha–1 SSP
recorded maximum yield, the differences b/w 90 &
120kgha–1 SSP are negligible. The data shows the trend of
90≥ 120> 60> 30> 0kgha–1 SSP concerning wheat yield.
In the case of mycorrhiza, AMF inoculation performed
better and recorded a maximum grain yield of 3177kgha–1,
a straw yield of 4765kgha–1, and a thousand-grain weight
of 44g compared to un-inoculated treatment.

Post-harvest Soil and Plant NP
Concentration, and Its Uptake

Soil NP Concentration

The data regarding post-harvest soil NP concentrations
recorded contrasting effects as shown in Table 4. AMF
resulted in a drastic increase in soil total nitrogen from
1550mgkg–1 to 1555mgkg–1, whereas SSP levels had no
effect. Interestingly, AMF increase the concentration of
soil P compared to control but the effect was non-signifi-
cant statistically, while, SSP levels had a significant effect.
Among SSP levels, 90 & 120kg/ha–1 recorded the same
concentration of P in soil i.e., 4.9mgkg–1. The interac-
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Table 3 Effect of mycorrhiza inoculation with different levels of SSP on yield parameters of wheat

Grain yield (kgha–1) Straw yield (kgha–1) Thousand grain weight (g)

SSP
levels
Kg ha–1

No Myc-
orrhiza

With My-
corrhiza

Mean No Myc-
orrhiza

With My-
corrhiza

Mean No Myc-
orrhiza

With My-
corrhiza

Mean

0 2769 2958 2863.8 d* 4154 4437 4296 d* 35 37 36 d*

30 2878 3026 2952.2 c 4318 4539 4428 c 40 44 42 c

60 2981 3127 3054.2 b 4471 4691 4581 b 43 47 45 b

90 3280 3399 3340.2 a 4920 5099 5010 a 45 49 47 a

120 3306 3373 3339.2 a 4958 5059 5008 a 42 46 44 b

Mean 3042 b* 3177 a* – 4564 b* 4765 a* – 41 b* 44 a* –

LSD value (P≤ 0.05) for SSP= 71,
AMF= 45 and SSP×AMF=NS

LSD value (P≤ 0.05) for SSP= 97,
AMF= 61 and SSP×AMF=NS

LSD value (P≤ 0.05) for SSP= 1.6,
AMF= 1 and SSP×AMF=NS

* Means with different letter (s) in columns and rows are significantly different at P≤ 0.05

tive effect of AMF with SSP levels on soil total N and
extractable P was found non-significant.

Plant NP Concentration

Data regarding plant N reveals that P levels significantly
affect plant N (Table 4). Maximum plant N concentration,
i.e., 1.1%, was recorded with 90kgha–1 SSP and 120kgha–1

SSP. In the case of mycorrhiza inoculation, it had no sig-
nificant effect on plant N concentration. However, the inter-
action effect of AMF inoculation and different P levels on
plant N concentration was significant. The mean values in-
dicate that a maximum plant N concentration of 1.15% was
obtained from the plot inoculated with AMF and 90kgha–1

SSP. Interestingly the same results were also given by AMF
inoculation with 120kgha–1 SSP. The lowest plant N con-
centration of 0.92% was recorded in the control. Data con-

Table 4 Effect of mycorrhiza inoculation with different levels of phosphorus on soil and plant NP concentrations

Soil total nitrogen concentra-
tion
(mgkg–1)

Extractable P content in soil
(mgkg–1)

Plant nitrogen concentration
(%)

Plant phosphorous concentra-
tion (%)

SSP
levels
kgha–1

No
Myc-
orrhiza

With
Myc-
orrhiza

Mean No
Myc-
orrhiza

With
Myc-
orrhiza

Mean No
Mycor-
rhiza

With
Mycor-
rhiza

Mean No
Mycor-
rhiza

With
Mycor-
rhiza

Mean

0 1529 1539 1534
c*

3.5 3.4 3.4 b* 0.92 1.02 0.9 b* 0.1 0.2 0.1 b*

30 1545 1549 1547 b 3.7 3.7 3.7 b 0.97 1.0 0.98 b 0.1 0.2 0.1 b

60 1556 1561 1558 a 4.4 4.8 4.6 a 1.0 1.09 1.04 ab 0.2 0.2 0.2 a

90 1562 1564 1563 a 4.6 5.2 4.9 a 1.12 1.15 1.13a 0.2 0.3 0.3 a

120 1560 1562 1561 a 4.7 5.0 4.9 a 1.13 1.15 1.1a 0.2 0.2 0.2 a

Mean 1550
b*

1555
a*

– 4.1 4.4 – 1.0 a* 1.07 a* – 0.16 b* 0.21 a* –

LSD value (P≤ 0.05) for
SSP= 6,
AMF= 3.6 and
SSP×AMF=NS

LSD value (P≤ 0.05) for
SSP= 0.4,
AMF=NS and
SSP×AMF=NS

LSD value (P≤ 0.05) for
SSP= 0.13,
AMF= 0.08 and
SSP×AMF= 0.18

LSD value (P≤ 0.05) for
SSP= 0.04,
AMF= 0.02 and
SSP×AMF=NS

NS Non-significant
* Means with different letters (s) in columns and rows are significantly different at P≤ 0.05

cerning plant P concentration indicates that the application
of different levels of phosphorus increases plant P con-
tent. Maximum plant P content of 0.3% was recorded with
the application of 90kgha–1. The application of 120 and
60kgha–1 SSP recorded the same results of plant P con-
centration (0.2%). A higher plant P concentration of 0.21%
was recorded from AMF inoculation than from un-inoc-
ulated treatment (0.16%) between mycorrhiza inoculation
and un-inoculated treatments. Moreover, the interaction ef-
fect of AMF inoculation and different P levels on plant P
concentration was found non-significant.

Plant NP Uptake

The application of AMF and SSP levels significantly
(P≤ 0.05) enhanced the uptake of NP by wheat plants.
However, their interactive effect on NP uptake was non-
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significant (Table 5). Specifically, the combined application
of AMF and 90kgha–1 resulted in maximum N (98kgha–1)
and P (22kgha–1) uptake compared to other SSP levels
applied either in combination with AMF or not.

Effect On Soil Spores Density and Root
Infection Intensity

SSP levels resulted in a linear increase in AMF spore den-
sity and root infection activity (Table 6). AMF spore densi-
ties were 30–36 per 20g for all SSP levels, maximum those
of control (28). The root infection activities were 31–35%
for all SSP levels compared to control (23%). Mycorrhiza
treatment also resulted in a notable increase in AMF spore
density and root infection activity. Higher AMF spore den-
sity (47.5 spores per 20g soil) was recorded with AMF
inoculation than with un-inoculated treatment (18 spores
per 20g soil). Similarly, higher root infection intensity of
42% was recorded with AMF inoculation compared to un-
inoculated treatment (19%). Furthermore, the interactive ef-
fect of AMF inoculation and P levels on both AMF spore
density and root infection activity were found significant.
Maximum mycorrhiza spore density of 53 spores per 20g
soil was obtained from the plots inoculated with AMF and

Table 5 Plant NP uptake as affected by mycorrhiza inoculation with different levels of phosphorus

Plant N uptake (kgha–1) Plant P uptake (kgha–1)

SSP levels
kgha–1

No Mycorrhiza With Mycorrhiza Mean No Mycorrhiza With Mycorrhiza Mean

0 63 62 62 d* 9 9 9 c*

30 68 76 72 c 11 12 12 c

60 74 83 79 b 14 17 16 b

90 92 98 95 a 17 22 19 a

120 93 93 93 a 17 20 18 ab

Mean 78 b* 82 a* – 14 b* 16 a* –

LSD value (P≤ 0.05) for SSP= 4.2,
AMF= 2.9 and SSP×AMF=NS

LSD value (P≤ 0.05) for SSP= 3.5,
AMF= 2.2 and SSP×AMF=NS

* Means with a different letter (s) in columns and rows are significantly different at P≤ 0.05

Table 6 Effect of mycorrhiza inoculation with different levels of phosphorus soil spores density and root infection intensity

Soil AMF pores density (per 20g soil) Root infection intensity (%)

SSP levels
kgha–1

No Mycorrhiza With Mycorrhiza Mean No Mycorrhiza With Mycorrhiza Mean

0 15 40 28d* 16 31 23 c*

30 16 44 30 c 19 43 31 b

60 18 49 33 b 21 43 32 ab

90 19 53 36 a 20 47 33 ab

120 18 51 35 ab 22 47 35 a

Mean 18 b* 48 a* – 19 b* 42 a* –

LSD value (P≤ 0.05) for SSP= 2.3,
AMF= 1.4 and SSP×AMF= 3.2

LSD value (P≤ 0.05) for SSP= 3.4,
AMF= 2.1 and SSP×AMF= 4.8

* Means with a different letter (s) in columns and rows are significantly different at P≤ 0.05

90kgha–1 SSP compared to control plots (15 spores per 20g
soil). Similarly, maximum root infection intensity of 47%
was obtained from the plots inoculated with AMF and both
120 & 90kgha–1 SSP compared to control (15.6%).

Discussion

The availability of nutrients such as phosphorous and ni-
trogen in alkaline-calcareous soil is challenging worldwide
(Karimi et al. 2020). The current trends toward less use
of chemical fertilization and techniques based on microbes
to improve crop yield in alkaline soils are increasing daily
(Khan et al. 2022). Improvement in the availability and
uptake of plant nutrients is an alternative to the higher ap-
plication of chemical fertilization. The use of AMF is of
particular importance for improving the efficiency of ap-
plied nutrients in alkaline soils (Bush 2008; Smith and Read
2010). Therefore, in the current study, we investigated the
effect of AMF with SSP levels on wheat-NP availability,
uptake, yield, root infection activity, and AMF spores den-
sity in nutrient deficient alkaline-calcareous soil.

Wheat yield were significantly (P≤ 0.05) improved with
the integrated use of AMF and SSP. The application of
AMF with 90kgha–1 SSP level produced a significantly
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maximum grain yield of wheat (3399kgha–1), straw yield
(5099kgha–1), and thousand-grain weight (49g) compared
to no AMF treatment, and other SSP levels including, con-
trol. However, the interaction of AMF and SSP was non-
significant. These differences in wheat yield among treat-
ments indicated that the yield of wheat was limited by N
& P, confirming that the soil is deficient in N and plant-
available P. The increase in wheat yield by AMF with SSP
could be due to the stimulating effect of AMF inoculation
and SSP levels on nutrient availability and uptake, resulting
in desirable plant growth and production (Zhou et al. 2015;
Zhu et al. 2018).

Our results also indicated that AMF with SSP at the
rate of 90kgha–1 significantly enhance STN from 1529 to
1564mgkg–1, extractable P from 3.5 to 5.2mgkg–1, plant N
concentration from 0.92 to 1.15%, plant P concentration
from 0.1 to 0.3%, N uptake from 63 to 98kgha–1, and P
uptake from 9 to 22kgha–1 compared to no AMF treat-
ment, and other SSP levels including control. These results
revealed that AMF stimulated the NP use efficiency and
its uptake by wheat plants which ultimately increased the
yield-related parameters of the wheat crop. This increase
in P use efficiency and uptake in alkaline calcareous soils
could be ascribed to the release of exudates and organic
acids in the rhizosphere that neutralized the high pH of
and increase the availability of P in the calcareous soil for
plant growth (Samadi 2006; Wahid et al. 2020). In addition,
the maximum uptake of NP in wheat and maize plants by
the inoculation of AMF could be due to the fact that the
fungi extended their hyphae beyond the plant rhizosphere
and enhanced nutrients (NP) uptake (Pierre et al. 2014).
In more detail, the arbuscular mycorrhizal (AM) symbiosis
plays a key role in the nutrient uptake of more than 60%
of land plants, including many important crop species such
as wheat, maize, and soybean (Wang and Qiu 2006). There
are various mechanisms that explain how AMF inoculation
enhances P acquisition. Likewise, root extension mecha-
nism, the extra radical mycelium (ERM) of the fungus acts
as an extension of the root system and increases the uptake
of phosphate (P) (Bolan 1991; Bücking and Kafle 2015),
enhancing the adsorption from soil solution by lowering
threshold concentration (Howeler et al. 1982), production
of exudates which enhance the availability of P (Bethlen-
falvay et al. 1997; Bolan 1991; Tawaraya and Saito 1994),
changing the pH of rhizosphere due to an anion and cation
adsorption by mycorrhizal plants making phosphorus read-
ily available to plants (Lapeyrie et al. 1990), production of
enzyme particularly phosphatase that solubilizes organic P
enhance its availability (Tarafdar and Marschner 1994).

N uptake and nutrition can also be enhanced via AMF
(McFarland et al. 2010; Meding and Zasoski 2008). The
extra radical mycelium (ERM) fungal hyphae effectively
acquire nitrate (NO3

–) (Bago et al. 1996; Tobar et al. 1994),

ammonium (NH4
+) (Breuninger et al. 2004; Hawkins et al.

2000; Toussaint et al. 2004), and amino acids (AAs) from
the external medium (Azcón et al. 2001; ShacharHill et al.
1997; Vázquez et al. 2001), and then transport them to the
roots of the host plant. The ERM of AM fungi associated
with the roots of the host plant absorbs various forms of
N from the surroundings. Johansen et al. (1996) proved
that G. intraradices grown in a medium containing 15NH4+

generated abundant free AA in the ERM, among which
glutamate (Glu), glutamine (Gln), asparagine (Asn), aspar-
tate, and alanine were predominantly produced and labeled
with 15N. These results indicated that AM fungi can uptake
and assimilate exogenous NH4+. When both NH4

+ and NO3
–

were present in the medium, the AM fungi preferentially
used the former (Toussaint et al. 2004), signifying that it is
more energy-efficient for the ERM to assimilate NH4+ than
NO3

–. As well, these results suggested that a reduced-N
source, such as NH4

+ or a downstream N metabolite, might
repress NO3

– influx at both the transcriptional and post-
translational levels, like in plants (Coruzzi and Zhou 2001).
Nevertheless, NO3

– is more mobile in soil and more readily
accessible to the roots of the host plant.

The application of SSP of 90kgha–1 along with inocula-
tion of AMF resulted in a 240% increase in spore density
compared to control. Moreover, sole inoculation of AMF
increased spore density by 166.66% compared to no AMF.
This increase could be due to the strong regulation of AMF
spore density in soils by seasonal climate (Silva-Flores et al.
2019). Additionally, according to the (Barea 2015), differ-
ent soil microorganisms produce some chemicals that could
improve the amount of root exudates, resulting in higher
rates of mycorrhizal colonization. The application of SSP
of 90kgha–1 along with inoculation of AMF resulted in
a 193.75% increase in root infection intensity compared
to control, while a 121.05% increase was recorded in the
case of sole inoculation of AMF compared to no AMF.
Our results are in line with Xie et al. (2021), who reported
that AMF inoculation in the soil can improve above-ground
plant growth and change root morphology.

Conclusions

AMF integrated with different levels of SSP improved
wheat-NP acquisition, yield, root infection intensity, and
AMF spore density in alkaline-calcareous soil compared
to control. Generally, SSP at the rate of 90kgha–1 with
AMF performed better than other SPP levels and no-in-
oculation treatments. Overall, we conclude that the sole
application of SSP and AMF inoculation could be an ex-
cellent way to increase wheat-N-P acquisition and yield
of wheat in alkaline-calcareous soil of semi-arid areas.
Further field-based research is suggested by using AMF

K
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and NPK compound fertilizers with variable rates on NPK
availability, uptake, and crop performance under different
agro-ecological conditions.
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