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Abstract
This study aimed to examine the dynamics of soil functional indicators under the influence of deadwood in old mixed beech 
forests in northern Iran. In January and February 2006, several strong wind events occurred in the forest of Khanikan, which 
led to severe windthrow. All the fallen trees remained in the protected parcel and were not removed. Immediately after tree 
felling in the studied areas, five common tree species [Fagus orientalis (Fagus), Acer velutinum (Acer), Carpinus betulus 
(Carpinus), Alnus subcordata (Alnus), and Tilia begonifolia (Tilia)] with the highest abundance of deadwood (with 14 indi‑
vidual trees) were marked as permanent plots for monitoring their effect on soil functions. Wood samples were collected 
from the trunks and soil samples (0–10 cm depth) from the lower part of deadwood in August 2011, 2016, and 2021. In 
addition, soil samples were taken from areas that did not have deadwood as control areas. For the study of soil biological 
parameters, soil samples were collected in August and November (2011, 2016, and 2021). However, for monitoring soil 
N transformation, soil samples were taken in August, September, November, and December (2011, 2016, and 2021). We 
found that Alnus and Carpinus deadwood had higher N, K, P, and Ca contents than deadwood of other species. Higher 
values of C and Mg were observed in Fagus deadwood in the final stages of sampling (2021). Anlus deadwood enhanced 
the stability of soil aggregates, soil nutrient contents, as well as soil enzyme and microbial activities, and soil fauna and 
microflora populations during the decay process. Based on our findings, the intensity of soil functions increased in the order 
control < Fagus < Tilia < Acer < Carpinus < Alnus, which corresponds to the increasing quality of the deadwood of the tree 
species. Our data emphasize that retaining deadwood is highly effective in boosting carbon and nutrient cycling in forest 
ecosystems, which may have implications for forest management strategies to improve soil ecological functions and forest 
sustainability. Although our observations were obtained in an old mixed beech forest, the importance of deadwood on soil 
functional characteristics can also be assumed in a broader range of forest environments, but this requires further investiga‑
tion to determine the mechanisms that explain these phenomena.
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Introduction

The Caspian forest (Hyrcanian region) is a natural green 
belt that covers the northern slopes of the Alborz Moun‑
tains and extends to the southern slopes of the Caspian 
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Sea. The Hyrcanian region is approximately 110 km wide, 
800 km long and has a total area of 2.1 million ha, equiva‑
lent to 15% of Iran’s total forest area and 1.1% of Iran’s 
entire area. Hyrcanian region or Caspian forests is one of 
the last remnants of natural temperate deciduous forests in 
the world (Sagheb Talebi et al. 2014), which are very valu‑
able in terms of ecological, social, economic, and cultural 
terms and recently were included in the UNESCO World 
Heritage List (Hosseini 2019). Forest areas located at high 
altitudes are often exposed to strong wind events. In this 
regard, some tree species are more affected by the wind 
and uprooted due to their special crown and root structures. 
Deadwoods that appear due to the uprooting of trees in the 
forest will have many ecological effects on the habitat and 
affect the soil functions over time. Deadwood plays a vital 
role in protecting biodiversity, forest ecosystem dynamics, 
soil fertility, and C stocks (Shannon et al. 2022; Uhl et al. 
2022; Sacher et al. 2022). The type and amount of dead‑
wood are the results of several factors occurring in forest 
ecosystems, including climatic factors such as humidity and 
temperature conditions (Herrmann and Bauhus 2013), tree 
species (Kahl et al. 2017; Minnich et al. 2021), decay age 
(Bond‑Lamberty et al. 2002; Jomura et al. 2022), chemical 
properties such as nitrogen (N) and lignin content (Berg and 
McClaugherty 2008; Błońska et al. 2017), fungal commu‑
nity structure (Fukami et al. 2010; Odriozola et al. 2021), 
enzyme activities, and decomposer biomass (Bradford et al. 
2014; Jiang et al. 2022). Since felled deadwood is in direct 
contact with the forest floor, the soil microbial community 
penetrates the wood and accelerates the wood degradation 
process (Tláskal et al. 2021). The main processes involved 
in deadwood decomposition include fragmentation, respira‑
tion, transformation, and leaching (Magnússon et al. 2016).

Over time, as dead wood decomposes, residues enter the 
soil and alter the fertility (Błońska et al. 2019; Jiang et al. 
2022) and several characteristics of the soil (Błonska et al. 
2017; Piaszczyk et al. 2019; Shannon et al. 2021; Hollands 
et al. 2022). Carbon includes almost 50% of the woody dry 
mass (Weiss et al. 2000). During the decomposition process, 
C is partially released into the atmosphere and at certain 
shares stored in the soil, thereupon increasing C resources in 
the forest soil (Błońska et al. 2019). Biologically, deadwood 
is an important component of resilience and belongs to the 
above‑ground litter fraction, and its accumulation leads to 
significant interactions with below‑ground soil components. 
Deadwoods are major contributors to soil organic matter 
(SOM), providing input to long‑term nutrient cycling, ensur‑
ing nutrients for beneficial soil organisms, and forming 
ectomycorrhizal root tips. Despite the global significance 
of forest sustainability, the N and C cycle in forest ecosys‑
tems, and the effects of dead wood in nutrient cycling and C 
dynamics (Persoh 2015), very little information is available 
concerning nutrient dynamics, soil functional indicators and 

providing of microclimates in temperate forests (Woodall 
et al. 2020; Shannon et al. 2022). Deadwood is a central 
structural element influencing various essential ecological 
and biogeochemical functions by generating heterogeneous 
microsites in old mixed forests (Perreault et al. 2021). Natu‑
ral old mixed forests are trees of different ages with a high 
amount of CWD in different sizes and species in all stages 
of decay in the forest ground (Lassauce et al. 2011). Dead‑
wood is not only an essential reservoir of terrestrial biomass, 
soil carbon (C), and nutrients but also provides a habitat 
and food source for a variety of forest species, including 
microbes and fungi (Norden et al. 2004; Mayer et al. 2022), 
fauna communities (Zuo et al. 2021), vertebrate species 
(Spiering and Knight 2005), bryophytes and lichens (Paltto 
et al. 2008), and also vascular plants (Scheller and Mlad‑
enoff 2002).

Assessing the sustainability of forest management 
requires indicators, and in this regard, forest soils are of 
great importance due to their ability to supply the nutrients 
necessary to sustain forest productivity and sustainability 
(Dale et al. 2008; Jamil et al. 2016). Soils provide a wide 
range of vital ecosystem services that maintain global sus‑
tainability and ecological balance (Drobnik et al. 2018). 
Sustainable forest management includes soil quality as 
the criterion for sustainability. In the past decades, several 
attempts were made to introduce terms such as soil func‑
tions, soil quality, soil health, and soil resilience to support 
politicians and managers related to soil conservation and 
rehabilitation (Álvarez et al. 2003; Wienhold et al. 2004). 
However, in recent years the concept of soil functions has 
become synonymous with soil quality. (Kooch et al. 2022). 
Soil quality can be determined by appropriate indicators, 
which are the results of the physical, chemical and biological 
processes of the soil. Soil science has embraced the concept 
of soil functions, which brings various capabilities of soils to 
the fore and has emphasized the multi‑functionality of soils 
and their very different properties (Greiner et al. 2017). Soil 
functions cannot be measured independently, but soil func‑
tions can be evaluated by measuring the physical, chemical, 
and biological soil characteristics (Doran and Parkin 1994; 
Larson and Pierce 1994). Therefore, new studies are needed 
to explore ecological processes that can explain changes in 
various soil functions when various indicators are taken into 
account (Teixeira et al. 2020). In forest ecosystems, various 
factors can affect soil functions and quality; deadwood, or 
coarse woody debris (CWD), which contributes to forest 
ecosystem functioning and carbon, nutrient and gas fluxes, 
improving microclimate, increasing nutrient availability, and 
habitat quality (Magnússon et al. 2016; Błonska et al. 2017).

Although deadwood is increasingly being included in 
ecological studies and environmental assessments, even 
in the Hyrcanian forest (Kooch et al. 2012; Moghimian 
et al. 2020), here we tried to monitor the long‑term effects 
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(15 years) of deadwood, in a mixed beech forest in north‑
ern Iran, on a wide range of functional characteristics of 
the soil (various parameters of soil physical, chemical, and 
biological) in order to achieve its effects on sustainable 
forest management. We hypothesized that the tree species 
with a lower C/N ratio and higher nutrient content would 
be degraded faster and, therefore, would contribute to soil 
fertility more instantly than other, more recalcitrant wood 
species. We also expected that during the monitoring time 
and further decomposition of deadwood, the biological 
activities of the soil are changed and differ depending on 
the deadwood of different tree species.

Materials and methods

Study area

Khanikan forest, covering an area of 2807 hectares, is 
located near the city of Chalus in Mazandaran Province, 
northern Iran (Fig. 1a). The study area has an elevation 
range of 100–1600 m above sea level with a slope range 
of 0–30%. The average annual temperature is 16.05 °C, the 
average annual rainfall is 1313 mm, and the dry season runs 
from May to August (Fig. 1b). From late December to early 
April, the land is usually covered with snow in higher alti‑
tudes. According to the USDA Soil Classification, the parent 

Fig. 1  Study area located in 
Mazandaran province, north 
of Iran (a). Climate diagram 
of monthly temperatures and 
precipitation for the years 
1991–2021 (b). Schematic 
representation of the spatially 
separated sampling sites (figure 
not to scale) (c) and state at the 
time of sampling (d) 
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material is dolomitic limestone from the late Jurassic to the 
early Cretaceous. The soil is in Alfisol composition with a 
loamy texture from silty clay. The area consists of a mixed 
beech forest dominated by oak (Quercus castaneifolia C. 
A. Mey.), besides oriental beech (Fagus orientalis Lipsky), 
zelkova (Zelkova carpinifolia Dippe), maple tree (Acer 
velutinum Boiss.), wingnut (Pterocarya fraxinifolia Lam.), 
lime tree (Tilia begonifolia Stev.), Caucasian hornbeam 
(Carpinus betulus L.), ash (Fraxinus excelsior L.), Cauca‑
sian alder (Alnus subcordata C.A. Mey.), and Cappadocian 
maple (Acer cappadocicum Gled). The average height and 
diameter of the trees were 20–25 m and 50–60 cm, respec‑
tively. Tree density was 250–300  Nha−1 in the Khanikan for‑
est. Other less common species (< 10%) are the wild service 
tree (Sorbus torminalis Crantz), elm (Ulmus glabra Huds.), 
and the wild cherry (Prunus avium L.). Herbaceous plants 
such as Hypericum androsaemum L., Euphorbia amygda-
loides L., Asperula odorata L., and Polystichum sp. covered 
more than 85% of the forest floor.

Sampling and laboratory analysis

In January and February 2006, several strong wind events 
occurred in the forest of Khanikan, which led to the 
windthrow of some trees (Kooch 2008). All of the fallen 
trees remained in the protected parcel (an area of about 
60  ha−1 of the forest where there is no human interven‑
tion) and were not exited of the forest. This study was car‑
ried out in the protected parcel (control), where harvesting 
and any human activity that leads to the cutting, logging, 
and removal of trees from the protected parcel (control) is 
prohibited (in all the years). The windthrow event caused 
the falling of individual trees across the protected parcel. 
Immediately after tree felling in that field, five common tree 
species of the Hyrcanian forest [Fagus orientalis (Fagus; 
with 17.6% of the volume and 30% of the total number), 
Acer velutinum (Acer; with 5.8% of the volume and 2.7% of 
total number), Carpinus betulus (Carpinus; with 30.5% of 
the volume and 30% of the total number), Alnus subcordata 
(Alnus; with 9.1% of volume and 5% of the total number), 
and Tilia begonifolia (Tilia; with 2.7% of the volume and 
1% of the total number)] (Sagheb Talebi et al. 2014) with the 
highest abundance of deadwood (with 14 individual trees) 
were marked as permanent plots to be monitored in order to 
study their effect on soil functions. All selected deadwoods 
(with a range of 40–50 cm diameter at breast height and 
height 20–25 m) are in close proximity to each other with a 
distance of less than 1000–1500 m between them and were 
considered if physiographic characteristics (i.e., elevation 
between 1500 and 1600 m above sea level, the slope between 
10 and 15% and north aspect) of bedrock and climate had 
similar conditions (Fig. 1c). Wood samples were collected 
by using a core driller (12‑mm drill bit) taking samples from 

the trunks at the lower part of deadwood (0–10 cm depth) in 
August of 2011, 2016, and 2021 (Fig. 1d). Three soil sam‑
ples (0–10 cm depth) were taken from the right and the left 
side along the trunks using iron frames (30 × 30 cm area) and 
mixed. In addition, 14 soil (0–10 cm depth) samples were 
taken from areas that did not have deadwood (at a distance of 
about 50 m from the deadwood) as control areas using iron 
frames (30 × 30 cm area). For the study of soil biological 
parameters, samples were collected in August and November 
(2011, 2016, and 2021). However, soil samples for moni‑
toring N transformation were taken in August, September, 
November, and December (2011, 2016, and 2021).

Wood and soil samples were immediately transferred to 
cooled and insulated containers, transported to the labora‑
tory, and stored at 4 °C until further analysis. Several prop‑
erties of deadwood and soil were measured at the labora‑
tory based on standard protocols (see Table 1). In detail, 
deadwood properties, including carbon (DWC), phosphorous 
(DWP), potassium (DWK), calcium (DWCa), and magne‑
sium (DWMg) were determined in quadruplicate using dry 
combustion with an elemental analyzer (Fisons EA1108, 
Milan, Italy) calibrated by the BBOT [2, 5‑bis‑(5‑tert‑
butyl‑benzoxazol‑2‑yl)‑thiophen] standard (ThermoQuest 
Italia s.p.a.) (Kooch et al. 2017). The pycnometer method 
(Blake and Hartge 1986) and the cold method (Plaster 
1985) were applied to measure the particle and bulk den‑
sity, respectively. We used the formula [1—(bulk density/
particle density)] for soil porosity calculated that proposed 
by Pires et al. (2014). Yoder’s method was used to deter‑
mine soil stability (Kemper and Rosenau 1986). The Bouy‑
oucos hydrometer method proposed by (Bouyoucos 1962) 
was used for measuring soil texture. We used a wet sieve 
with a sieve size of 0.25–0.50 mm to determine the particle 
size distribution of the aggregates. The size of micro‑ and 
macrograins was calculated between 0.053–0.25 mm and 
0.25–0.50 mm, respectively (Cambardella and Elliott 1992). 
The Walkley–Black method was used for measuring soil 
organic carbon (Allison 1975), and then the formula (OM 
% = Organic C % × 1,724) was applied for calculated organic 
matter content (OM) (Ezeigbo et al. 2013). The stratifica‑
tion of soil organic matter was calculated based on the OM 
(0‑10 cm)/OM (10–20 cm) depths (Bongiorno et al. 2019). 
The semi‑micro‑Kjeldahl method was used to measure total 
N (Bremner and Mulvaney 1982). Soil C and N stocks were 
calculated using the bulk density data and C and N con‑
centrations at the studied depth (e.g., 0–10 cm) (Sariyildiz 
et al. 2015). The carbon pool index (CPI) was calculated 
from the change in total carbon, and the lability index (LI) 
was determined based on changes in the proportion of labile 
C in the soil. These two indices were applied to calculate 
the carbon management index (CMI), with CMI = C pool 
index (CPI) × lability index (LI) × 100 (Blair, et al. 1995). 
The soil/water solution was used to measure soil pH and 
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Table 1  Methods for measuring deadwood and soil properties and associated calculation procedures

Deadwood and soil properties Abbreviation Unit Method Reference for method

Deadwood properties
Deadwood carbon DWC % Dry combustion with an 

elemental analyzer
Kooch et al. (2017)

Deadwood nitrogen DWN % – –
Deadwood carbon to nitrogen 

ratio
DWC.N %

Deadwood phosphorous DWP %
Deadwood potassium DWK %
Deadwood calcium DWCa %
Deadwood magnesium DWMg %
Soil properties
Bulk density BD g  cm−2 Clod method Plaster (1985)
Particle density PD
Porosity Porosity % Calculated based on bulk and 

particle density data
Pires et al (2014)

Stability Stability % Yoder method Kemper and Rosenau (1986)
Sand Sand % Bouyoucos hydrometer Bouyoucos (1962)
Silt Silt %
Clay Clay %
Macroaggregate (0.25 and 

0.50 mm)
Mac agg % Wet sieving with screen diam‑

eters of 0.25 and 0.50 mm
Elliot and Cambardella (1991)

Microaggregate (0.053 and 
0.25 mm)

Mic agg

Macroaggregate/Microaggre‑
gate

Macagg.Micagg – – –

pH pH 1:2.5  H2O Orion Ionalyzer Model 901 pH 
meter

Electrical conductivity EC ds  m−1 Orion Ionalyzer Model 901 EC 
meter

Organic carbon C % Walkley–Black technique Allison (1975)
Carbon in microaggregate Cmic %
Carbon in macroaggregate Cmac %
Carbon macro‑/microratio C mac.Cmic ratio %
Carbon stock Csrock Using bulk density data and the 

C contents
Kooch et al. (2012)

Carbon management index CMI – CMI = C pool index 
(CPI) × lability index 
(LI) × 100

Blair et al. 1995

Total nitrogen N % Micro‑Kjeldahl technique Bremner and Mulvaney (1982)
Nitrogen stock Nstock Using bulk density data and the 

N contents
Kooch et al. (2012)

Nitrogen in macroaggregate Nmac % Micro‑Kjeldahl technique Bremner and Mulvaney (1982)
Nitrogen in microaggregate Nmic %
Nitrogen macro‑/microratio N mac.Cmic %
Carbon to nitrogen ratio C.N ratio – mg  kg−1

Available phosphorous P mg  kg−1 Olsen method Homer and Pratt (1961)
Available potassium K mg  kg−1 Atomic absorption spectropho‑

tometer
Bower et al. (1952)

Available calcium Ca mg  kg−1

Available magnesium Mg mg  kg−1

Particulate organic carbon POC mg  kg−1 Physical fractionation method Cambardella and Elliot (1992)
Particulate organic nitrogen PON mg  kg−1 Physical fractionation method Cambardella and Elliot (1992)
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EC of Orion Ionalyzer Model 901 pH and EC meter in a 
1:2.5. Available phosphorous (P) was measured spectropho‑
tometrically using Olsen’s method (Homer and Pratt 1961), 
and available potassium (K), calcium (Ca), and magnesium 
(Mg) were determined using atomic absorption spectropho‑
tometry (Bower et al. 1952). Determination of particulate 
organic carbon (POC) and particulate organic nitrogen 
(PON) was done by physical fractionation. Determination 
of dissolved organic carbon (DOC) and dissolved organic 
nitrogen (DON) was performed using a total organic carbon 
(TOC) analyzer (Shimadzu TOC‑550A) (Cambardella and 
Elliot, 1992). The buried‑bag technique was used to estimate 

soil N mineralization, nitrification, and ammonification rates 
over 30 days. NH4 + and  NO3

‑ extraction was done with 
2 M KCl solution (soil/solution, 1:5) and filtered using a 
0.45 µm filter. The NH4 + and  NO3

‑ concentrations in the 
extraction solution were determined colorimetrically at 645 
and 420 nm, respectively (Li et al. 2014).

Earthworms were collected by manual identification at 
the same time as soil samples, which were divided into eco‑
logical groups (i.e., epigeic, anecic, and endogeic) based on 
external characteristics and weighed (Jeffery et al. 2010). 
Soil Acarina and collembola were extracted using a modified 
Tullgren funnel (Hutson and Veitch 1987). Soil nematodes 

Table 1  (continued)

Deadwood and soil properties Abbreviation Unit Method Reference for method

POC/PON ratio POC.PON – – –
Dissolved organic carbon DOC mg  kg−1 TOC analyzer Jones and Willett (2006)
Dissolved organic nitrogen DON mg  kg−1 Based on dissolved nitrogen, 

 NH4
+ and  NO3

−

Stratification ratio OMstr % Stratification ratio (SR: OM 
surface soil/OM subsurface 
soil)

Franzluebbers (2002); Causa‑
rano et al. (2008)

Ammonium NH4
+ mg  kg−1 Colorimetric techniques at 645 

and 420 nm
Li et al (2014)

Nitrate NO3
− mg  kg−1 Colorimetric techniques at 645 

and 420 nm
Li et al (2014)

Nitrification Nitri mg  kg−1  d−1 net increase in  NO3
−

Ammonification Ammon mg  kg−1  d−1 net increase in  NH4
+

Nitrogen mineralization Nmin mg N kg  soil−1 Incubation procedure under 
controlled conditions

Robertson et al. (1999)

Urease activity Urease µg  NH4
+– N  g−1 2  h−1 Urea (200 mM), pH = 9, 37◦C, 

2 h
Schinner and von Mersi (1990)

Acid phosphatase Acid phos µg PNP  g−1  h−1 Disodium p‑nitrophenyl phos‑
phate (15 mM)

Arylsulfatase Arylsul µg PNP g − 1 h − 1 Potassium p‑nitrophenyl sulfate 
(25 mM)

Invertase Invertase µg Glucose  g−1 3  h−1 Sucrose (1.2%), pH = 2, 50◦C, 
3 h

Earthworms density (epigeic, 
anecic and endogeic)

Earthden n  m−2 Hand sorting Parsapour et al. (2018)

Earthworms biomass (epigeic, 
anecic and endogeic)

Earthbio mg  m−2 Biomass was determined after 
drying

Kooch et al. (2014)

Acarina Acarina n  m−2 Modified Tullgren funnel Hutson and Veitch (1987)
Collembola Collembola n  m−2 Modified Tullgren funnel
Nematode Nematode  ×  102 g soil Modified cotton–wool filter 

method
Liang et al. (2009)

Protozoa Protozoa  ×  102 g soil Extraction method Mayzlish and Steinberger (2004)
Fungi Fungi  ×  107 g  soil−1 Potato dextrose agar (PDA) Asadu et al. (2015)
Bacteria Bacteria  ×  107 g  soil−1 Nutrient agar (NA) Wollum, (1982)
Basal respiration BR mg  CO2  g−1  day−1 Measuring the  CO2 evolved Alef (1995)
Substrate‑induced respiration SIR mg  CO2  g−1  day−1 Using glucose 1% as the 

substrate
Anderson and Domsch (1990)

Microbial biomass carbon MBC mg  kg−1 Fumigation‑extraction method Brookes et al. (1985)
Microbial biomass nitrogen MBN mg  kg−1 Fumigation‑extraction method Brookes et al. (1985)
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were extracted from a 100 g soil sample (fresh weight) using 
a modified filter method as described by Hutson and Veitch 
(1987). Soil protozoa population density was calculated 
microscopically according to the extraction method (May‑
zlish and Steinberger 2004). Potato dextrose agar (PDA) and 
nutrient agar (NA) were used for bacterial and fungal cul‑
ture, respectively (Wollum, 1982; Asadu et al. 2015). The 
evolved  CO2 was determined during a 3 day incubation at 
25 °C to measure soil basic respiration (BR) (Alef 1995). 
Glucose 1% was used as a substrate to measure substrate‑
induced respiration (SIR) and, after 72 h of incubation, the 
released  CO2 was measured.  CO2 evolved was absorbed in 
NaOH and then measured by titration with HCl (Anderson 
and Domsch 1990). The chloroform fumigation method was 
used for extraction of soil microbial biomass C (MBC) and 
microbial biomass N (MBN) (Brookes et al. 1985). Activi‑
ties of urease (EC 3.5.1.5), acid phosphatase (EC 3.1.3.2), 
arylsulfatase (EC 3.1.6.1), and invertase (EC 3.2.1.26) were 
determined according to the method described by Schinner 
and von Mersi (1990).

Statistical analysis

The normality of the variables (p‑value > 0.05) was checked 
by the Kolmogorov–Smirnov test, and the homogeneity of 
the variances was assessed using Levene’s test. Two‑way 
repeated measured analysis of variance (ANOVA) was 
employed for deadwood and soil physical and chemical prop‑
erties concerning different tree species and years. Three‑way 
repeated measured analysis of variance (ANOVA) was used 
for N transformation and soil biological properties in rela‑
tion to deadwood trees, years, and seasons. A post hoc test 
(using Duncan’s test) was used to make multiple compari‑
sons of features with significant differences (p‑value < 0.05). 
All analyzes were performed in SPSS ver. 22.0 statistical 
software. Principal component analysis (PCA) was applied 
to analyze the relationships between deadwood and soil 
properties using PC‑ORD ver. 5.0. Correlations between 
soils and PCA components (i.e., PC1 and PC2) were ana‑
lyzed using the Pearson correlation coefficient. The heat 
plots for soil function indicators were identified as part of 
the PCA output.

Results

Deadwood properties

The results of repeated measured analysis of variance 
(ANOVA) indicated that there were significant differences 
(p‑value < 0.05) in the deadwood properties among different 
deadwood tree species (Table S1). Among the deadwood 
properties studied, only N and Ca had significant differences 

(p‑value < 0.01) comparing different years of sampling 
(2011, 2016, and 2021). During our study period, the highest 
amount of OC was in Fagus deadwood, whereas the lowest 
amount was detected in Alnus (by 24–32%; Alnus < Carpi-
nus ≈ Acer ≈ Tilia < Fagus) (Fig. S1a). However, Alnus 
had 1.5–2 times higher deadwood N at three sampling years 
than in the other deadwood trees (Alnus > Carpinus > Acer ≈ 
Tilia ≈ Fagus) (Fig. S1b). The C/N ratio of Fagus deadwood 
increased by 30 units in Fagus ≈ Tilia > Acer > Carpinus ≈ 
Alnus (Fig. S1c). The total P content in deadwood of Alnus 
was 45% higher than under Fagus and Tilia (Alnus > Carpi-
nus ≈ Acer > Tilia ≈ Fagus) (Fig. S1d). Total amounts 
of deadwood K and deadwood Ca in Alnus were nearly 
half of those found in the other deadwood tree species 
(Alnus > Carpinus ≈ Acer ≈ Tilia > Fagus) (Fig. S1e and 
f). Deadwood of different tree species did not significantly 
differ (p‑value < 0.01) concerning the amount of total Mg 
(Fig. S1g).

Soil properties

ANOVA results indicated that there was a significant dif‑
ference (p‑value < 0.05) in the soil’s physical and chemi‑
cal properties in the vicinity of the deadwood of several 
tree species (Table S2). The bulk density was significantly 
higher in the control plot than for soil around deadwood 
of the other studied tree species with the lowest values for 
Alnus and Carpinus (18 and 25%) (Control > Fagus ≈ Tilia 
≈ Acer < Carpinus < Alnus), respectively. The soil around 
deadwood from five tree species had no significant differ‑
ences in soil particle density (Table S2). Different years 
(2011, 2016, and 2021) did not affect bulk density and 
particles among tree species. However, there were signifi‑
cant differences in the porosity of soil around deadwood, 
with the highest values under Alnus and Carpinus and 
lowest values for the control (Alnus ≈ Acer ≈ Carpinus ≈ 
Tilia > Fagus > control), respectively (Table S2). The soil 
under the studied tree species had the same texture, but 
sand decreased in the vicinity of deadwood under Alnus and 
Carpinus species (by 40–50%) compared to the control (con‑
trol > Fagus > Tilia > Acer > Carpinus > Alnus), whereas the 
clay content increased (by 40–50%) under deadwood from 
Alnus and Carpinus compared to the control (Alnus > Carpi-
nus > Acer > Tilia > Fagus > control). Soils under deadwood 
from the trees under study had no significant differences 
(p‑value > 0.05) in silt content (Table S2). The amount of 
soil clay increased significantly in 2021 compared to other 
years, but this amount of silt decreased in 2021 in soils under 
all deadwood trees. Soil pH and EC under Alnus (pH = 7.04; 
EC = 0.32) were higher compared to other deadwood in 
ranked order of (Alnus > Acer ≈ Carpinus ≈ Tilia ≈ Fagus 
≈ control) (Table S2).
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Soil organic C and C stock did not vary significantly 
in deadwood trees, except in 2021, when Acer, Carpinus, 
and Fagus had significantly higher values than other spe‑
cies and lower values for the control (Acer ≈ Carpinus 
≈ Fagus > Alnus > Tilia > control). The amount of soil 
C in 2021 was significantly higher than in other years 
(p‑value < 0.05). The total soil N varied among deadwood 
tree species under Alnus ≈ Acer ≈ Carpinus, being higher 
than Fagus and the control (Table S2). The C/N ratio in soils 
under Alnus deadwood was almost half of those in the con‑
trol and Fagus, whereas available forms of P, K, Ca, and Mg 
in Alnus and Carpinus were nearly triple those in the control 
and Fagus (Alnus > Carpinus > Acer > Tilia > Fagus > con‑
trol). Annual changes from 2011 to 2021 showed higher 
effects on Alnus for available forms of P, K, Ca, and Mg, 
with higher values in 2021 and 15 years after the wind throw 
(Table S2). Soil DOC, POC, and contents of N in macro‑ and 
microaggregates, the N stock as well as N mineralization, 
the contents of  NH4

+and  NO3
−, nitrification, ammonifica‑

tion, PON, and DON indicated a significant decrease of 
almost 50–80% from soils under Alnus deadwood to the 
control (Alnus > Acer > Carpinus > Tilia > Fagus ≈ con‑
trol), respectively (Table S2 and Fig. 2a–e). Based on the 
data from the three studied sampling periods, lower values 
for soil C in macro‑ and microaggregates were found under 
control compared to other deadwood tree species. The C in 
macro‑ and microaggregates in 2016 and 2021 were signifi‑
cantly higher than in 2011 (p‑value < 0.05). The stratification 
ratio (OMstr) was higher in soils around Alnus and Carpinus 
deadwood (almost 25%) compared to Tilia, Acer, Fagus, and 
the control (Fig. S2a). The carbon management index (CMI) 
showed differences in the deadwood of different tree species, 
with the highest value detected under Tilia (Fig. S2b).

All studied soil enzymatic activities (i.e., urease, aryl‑
sulfatase, invertase, and acid phosphatase) around dead‑
wood were significantly affected by deadwood tree spe‑
cies (Alnus > Carpinus > Acer > Tilia > Fagus > control), 
i.e., by a decrease of approximately 60% from Alnus to 
the control. The annual variation from 2011 to 2021 was 
most effective in soils around deadwood under Alnus 
(Table S3). Deadwood tree species significantly affected 
all studied soil biological characteristics (Tables S3 and 
S4; Table 2). Except for the total earthworms, the anecic 
and endogenic biomasses and the seasons significantly 
affected soil biological characteristics (Tables S3 and S4). 
Alnus and Carpinus deadwood increased soil density and 
biomass (Alnus > Carpinus > Acer ≈ Tilia ≈ Fagus ≈ con‑
trol) of ecological earthworm groups (epigeic, anecic, and 
endogeic). The populations of collembola, Acarina, proto‑
zoa, nematodes, as well as soil fungi and bacteria around 
deadwood were significantly affected by tree species, sea‑
sons, and years (Tables S3 and S4); and declined along the 
order of Alnus > Carpinus > Acer > Tilia > Fagus > control, 

respectively (Table S4). Soil microbial indicators (i.e., BR, 
SIR, MBN, and MBC) had the highest values under Alnus 
and Carpinus deadwood and lowest values in the control and 
under Fagus (Table S4).

Relationship among deadwood and soil properties

The PCA output clustered properties of soil and deadwood 
(Fig. 3a–i; Table 3). Significant differences were found in 
the soil surrounding the deadwood of the five species. Fur‑
thermore, the studied tree species, deadwood quality, and 
soil biochemical characteristics in the years 2011–2021 
could be separated by PCA output. In general, 59.76 and 
11.34% (in 2011), 57.74 and 13.12% (in 2016), and 57.06 
and 12.42% (in 2021) of the variance were explained by 
axis 1 and axis 2, respectively. The deadwood quality, soil 
functional, and soil biological properties had the highest 
values under Alnus and Carpinus. In contrast, the lowest 
values of soil biochemical characteristics were observed 
under control and Fagus. In this regard, Alnus and Carpi-
nus had more deadwood nutrients (i.e., N, K, P, and Ca). 
The soil under these deadwood species had higher aggregate 
stability and soil porosity, higher EC, pH values and nutri‑
ent contents, as well as increased organic matter fractions, 
soil fauna and microbial populations. The lower values of 
deadwood C, deadwood C/N ratio, soil bulk density, sand, 
organic C, and C stock were assigned to Alnus and Carpinus 
deadwoods. Soils around deadwood having a higher fertility 
and increased biota abundance can be attributed to Alnus 
in the disintegration development stage (regarding the heat 
map plots; see Fig. 4), while the controls had a lower fertility 
and biota abundance.

Discussion

Deadwood properties

During our study period, C concentration in deadwood 
of Fagus and Tilia was significantly higher than that in 
Alnus, reflecting the higher C concentration in undecom‑
posed wood of Fagus compared to Alnus (Thomas and 
Martin 2012; Kahl et al. 2017; Herrmann et al. 2018). 
With advancing decomposition from 2011 to 2021, a slight 
increase in C concentration was observed for all wood spe‑
cies, but this difference was not significant. Lignin (with C 
content of 63–66%) has a higher C concentration than cel‑
lulose (with C content about 44%), so this change is prob‑
ably due to an increase in lignin and a decrease in cellulose 
(Herrmann et al. 2015). Accordingly, the results of Chris‑
tensen and Vestural (2003) that followed C concentrations 
in beech did not observe a significant difference in the C 
concentration of deadwood with different decomposition 
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stages. Beech (Fagus) stores more C than alder (Alnus) 
because of different wood densities among these species 
(Herrmann et al. 2018). Generally, we obtained the most 
significant increase in nutrient concentrations in dead 
Alnus trees. In our study, all species showed an increase in 
N concentration with a progressive decomposition stage. 
The N content increased after 15 years of decay, prob‑
ably due to N fixation by bacteria, accumulation of fungal 

biomass and the effects of rainfall input (Garrett et al. 
2008). The increase in N content resulted in a declining 
C/N ratio with the decay process in 2021; thus, the C/N 
ratio could be a potential indicator of the decay rate (Yang 
et al. 2010). With the ongoing decomposition from 2011 
to 2021, a slight increase in P and K concentration was 
observed for all wood species, but this difference was not 
significant. Generally, we observed the most significant 

Fig. 2  Mean (± SE) of  NO3
− − N (a) and NH4 +  − N (b) concentra‑

tion, nitrification rate (c), net ammonification rate (d) and N miner‑
alization in the top mineral soil. Different lower case letters indicate 
significant difference (P < 0.05) among sampling times (i.e., 2011, 

2016, and 2021), and different capital letters indicate significant dif‑
ferences (P < 0.05) among deadwood from different tree species and 
control plots
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increase in nutrient concentrations in CWD of Alnus and 
Carpinus compared to Fagus. The variation in wood prop‑
erties between the tree species (e.g., wood density) may 
cause these differences in deadwood nutrient concentra‑
tion during decomposition (Harmon et al. 2013). This has 
been attributed to lower absolute lignin concentrations and 
higher nutrient contents (Stutz et al. 2017) in Alnus com‑
pared to Fagus. According to Laiho and Prescott (2004), 
the contents of P, K, Ca, and N in CWD depend mainly on 
the wood’s initial N, P, K, and Ca concentrations, which 
are determined by tree species and the nutrient status of 
the site, besides the characteristics of the wood (e.g., wood 
structure and type, C/N ratio). We tested the effect of each 
nutrient on the degradation of CWD and found that most 
nutrients were positively related to the duration of dead‑
wood decay after the windthrow event. The content of 
most nutrients increases during the study period, suggest‑
ing that nutrient content changes with mass loss in CWD 
(Krankina et al. 1999; Yang et al. 2010).

Soil properties

Soil physical properties

In the present research, a wide variety of soil proper‑
ties were assessed to inform how soil functions change 
and interact during the decay of deadwood from different 
tree species. Our study demonstrated the effects of dead‑
wood decomposition on several physical properties of 
forest soils. Differences in the bulk density between soil 
around deadwood and control plots were found for five 
species, especially for Alnus and Carpinus deadwood. As 
organic matter increased due to the ongoing decomposi‑
tion of deadwood, soil bulk density decreased. According 
to Yue et al. (2017), organic matter content effectively 
affects soil bulk density, thus, organic matter concentra‑
tion predicts soil bulk density (Prévost et al. 2004; Perie 
and Ouimet 2008). In general, wood quality influences 
soil properties that provide sources for SOM formation 

Table 2  Earthworm species found in the studied forest sites

In the table, the sign + and – indicate on presence and absence, respectively, of earthworms in different years (2011/2016/2021)

Earthworm information Deadwood of different tree species and control plot

Species Genus Family Ecological group Alnus Carpinus Acer Tilia Fagus Control

Dendrobaena octaedra Dendrobaena Lumbricidae Epigeic −/−/ +  ± /− −/ ±  ± / + −/−/− −/−/−
Bimastos parvus Bimasto Lumbricidae Epigeic  + / + / +  + / + / + −/−/− −/−/− −/– −/−/−
Dendrodrilus rubidus Dendrodrilus Lumbricidae Epigeic −/ + / + −/ + / + −/−/ + −/−/− −/−/− −/−/−
Lumbricus festivus Lumbricus Lumbricidae Epigeic  + / + / +  + / + / +  + / + / + −/−/ + −/−/ + −/−/ + 
Eisenia Foetida Eisenia Lumbricidae Epigeic −/−/ + −/−/ + −/−/− −/−/− −/−/ + −/−/ + 
Lumbricus castaneus Lumbricus Lumbricidae Epigeic −/ + / + −/ + / + −/−/− −/−/− −/−/− −/−/−
Lumbricus rubellus Lumbricus Lumbricidae Epigeic  + / + / +  + / + / + −/ + / + −/−/ + −/−/ + −/−/ + 
Eisenella tetraedra Eisenella Lumbricidae Epigeic  + / + / +  + / + / +  + / + / + −/−/ + −/−/ + −/−/ + 
Pheretima indica Pheretima Lumbricidae Epigeic −/−/ + −/−/ + −/−/ + −/−/− −/−/− −/−/−
Eisenia malekae Eisenia Lumbricidae Epigeic −/ + / + −/ + / + −/−/ + −/−/− −/−/− −/−/−
Eisenia omranii Eisenia Lumbricidae Epigeic −/ + / + −/ + / + −/ + / + −/−/− −/−/− −/−/−
Microscolex phosphoreus Microscolex Lumbricidae Epigeic −/ + / + −/ + / + −/−/ + −/−/ + −/−/− −/−/−
Perelia persiana Perelia Lumbricidae Epigeic −/ + / + −/ + / + −/ + / + −/−/ + −/−/− −/−/−
Microscolex dubius Microscolex Acanthodrilidae Epigeic −/ + / + −/ + / + −/ + / + −/−/− −/−/− −/−/−
Dichogaster bolaui Dichogaster Acanthodrilidae Epigeic  + / + / +  + / + / +  + / + / + −/−/ + −/−/ + −/−/−
Amynthas corticis Amynthas Megascolecidae Epigeic −/ + / + −/ + / +  ± / + −/−/ + −/−/ + −/−/ + 
Dichogaster bolaui Dichogaster Acanthodrilidae Epigeic  + / ±  ± / + −/−/ +  ± /− −/−/ + −/−/–
Aporrectodea longa Aporrectdoea Lumbricidae Anecic  + / + / +  + / + / + −/ ±  ± / + −/−/ + −/−/ + 
Aporrectodea trapezoids Aporrectdoea Lumbricidae Anecic −/−/ + −/−/ + −/−/ +  ± / + −/−/−  + / + / + 
Aporrectodea tuberculata Aporrectodea Lumbricidae Anecic  + / + / +  + / + / + −/ + / + −/ + / + −/−/ + −/−/−
Lumbricus terrestris Lumbricus Lumbricidae Anecic  + / + / +  + / + / +  + / + / +  + / + / +  + / + / +  + / + / + 
Aporrectodea rosea Aporrectodea Lumbricidae Endogeic −/ + / + −/ + / + −/−/− −/−/− −/−/− −/−/−
Aporrectodea icteria Aporrectodea Lumbricidae Endogeic −/−/ + −/−/ + −/−/ + −/−/ + −/−/− −/−/−
Perelia kaznakovi Perelia Lumbricidae Endogeic −/ + / + −/ + / + −/ + / + −/−/− −/−/− −/−/−
Octolasion cyaneum Octolasion Lumbricidae Endogeic −/−/ + −/−/ + −/ ±  ± / + −/−/− −/−/−
Allolobophora persiana Allolobophora Lumbricidae Endogeic −/ + / + −/ + / + −/ + / + −/−/− −/−/ + −/−/ + 
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(Wambsganss et al. 2017). We observed a positive rela‑
tionship between soil structural stability, clay content, 
porosity, and macro‑ and microaggregation around dead 
trees across tree species. Soil properties such as soil type, 
texture, aggregate stability, and moisture influence the 
soil’s organic matter content (Matus 2021) and affect 
the decomposition process. Organic matter derived from 
dead trees enriches soil and determines soil particles’ 
structure and cohesion. Plant residues such as decaying 
wood stimulate microbial activity and contribute to sta‑
bilizing soil structure (Piaszczyk et al. 2017; Piaszczyk 
et al. 2019). Releasing organic matter from deadwood can 
stimulate the formation of soil aggregates, improve soil 
porosity, significantly increase the number of micropores, 
and increase soil water‑holding capacity (Villada 2013; 
Matus 2021; Jiang et al. 2022).

Soil chemical properties

The soil pH was lower in control compared to the soil 
around deadwood species. Jiang et al. (2022) pointed to the 
leaching of nutrients from deadwood decomposition into 
the soil. In addition, Kooch et al. (2021) demonstrated that 
increasing urease activity contributes to increasing soil pH. 
In our study, urease enzyme activity increased in the soil 
around deadwood for all species compared to the control. 
We observed an increase in several soil biochemical charac‑
teristics located directly under decomposing deadwood com‑
pared to control soils. Thus, the wood decomposition process 
determines the activity of enzymes and nutrient contents in 
the soil under the deadwood. Available forms of P, K, Ca, 
and Mg in Alnus and Carpinus were nearly triple those in the 
control areas. Deadwoods are rich in macroelements such as 

Fig. 3  Grouping of deadwood species and soil properties based on principal component analyses (PCA) at different sampling times. Abbrevia‑
tions are explained in Table 1
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Table 3  Correlations of 
deadwood and soil properties 
with PCA components

Deadwood and soil properties 2011 2016 2021

PC1 PC2 PC1 PC2 PC1 PC2

Deadwood carbon −0.46** −0.49** −0.34** −0.60** −0.31** −0.43**
Deadwood nitrogen −0.84** −0.17 ns −0.75** −0.04 ns −0.76* −0.12 ns
Deadwood carbon to nitrogen ratio −0.07 ns −0.42** 0.07 ns −0.52** 0.10 ns −0.46**
Deadwood phosphorous −0.78** −0.29* −0.62** −0.40** −0.72** −0.28*
Deadwood potassium −0.71** −0.39** −0.56** −0.18 ns −0.57** −0.25*
Deadwood calcium −0.84** −0.22* −0.64** −0.06 ns −0.81** 0.00 ns
Deadwood magnesium −0.70** −0.36** −0.45** −0.24* −0.37** −0.34**
Bulk density 0.76** −0.01 ns 0.57** −0.28* 0.42** −0.13 ns
Particle density 0.04 ns −0.15 ns −0.06 ns 0.16 ns −0.04 ns 0.19 ns
Porosity −0.57** −0.06 ns −0.50** 0.34** −0.20 ns −0.21 ns
Stability −0.68** 0.05 ns −0.62** 0.10 ns −0.62** −0.19 ns
Sand 0.78** −0.04 ns 0.62** 0.05 ns 0.53* 0.21 ns
Silt −0.07 ns −0.02 ns −0.16 ns 0.02 ns −0.12 ns −0.02 ns
Clay −0.80** −0.08 ns −0.84** −0.08 ns −0.53** −0.23*
pH −0.51** −0.01 ns −0.42** 0.11 ns −0.40** −0.03 ns
Electrical conductivity −0.41** 0.11 ns −0.32** 0.08 ns −0.51** −0.03 ns
Organic carbon 0.07 ns −0.64* −0.18 ns −0.70* −0.40 ns −0.41**
Carbon stock 0.28* −0.59* −0.10 ns −0.77* −0.15 ns −0.49**
Total nitrogen −0.66* 0.11 ns −0.76** −0.38* −0.73** −0.18 ns
Nitrogen stock −0.41** 0.08 ns −0.52** −0.58* −0.53** −0.27*
Carbon to nitrogen ratio 0.44** −0.48** 0.75** −0.18 ns –0.41** −0.14 ns
Available phosphorous −0.77* −0.04 ns −0.88** 0.02 ns −0.78* 0.13 ns
Available potassium −0.83* −0.10 ns −0.85** 0.11 ns −0.76* −0.04 ns
Available calcium −0.69* −0.19 ns −0.86** 0.10 ns −0.73* −0.11 ns
Available magnesium −0.86* 0.06 ns −0.85** 0.07 ns −0.80* −0.12 ns
Urease −0.78* −0.08 ns −0.87** 0.08 ns −0.64* −0.19 ns
Acid phosphatase −0.80* 0.14 ns −0.85** 0.09 ns −0.70* −0.10 ns
Arylsulfatase −0.71* −0.11 ns −0.64** −0.23* −0.50* −0.17 ns
Invertase −0.76* −0.17 ns −0.75** 0.06 ns −0.48 ns −0.16 ns
Particulate organic carbon (POC) −0.68* 0.69** −0.49** −0.35** −0.52* −0.03 ns
Particulate organic nitrogen (PON) −0.69* −0.04 ns −0.80** 0.07 ns −0.58* −0.1 ns
POC/PON ratio −0.01 ns 0.03 ns 0.22* −0.27* 0.16 ns −0.12 ns
Macroaggregate −0.66* −0.17 ns −0.49** −0.19 ns −0.59* −0.11 ns
Microaggregate −0.79* −0.07 ns −0.64* 0.02 ns −0.48** −0.33**
Macro‑/microratio 0.02 ns −0.08 ns −0.21 −0.07 ns 0.00 ns 0.21*
Carbon in macroaggregate 0.07 ns −0.43** −0.19 ns −0.35** −0.27** −0.50**
Carbon in microaggregate −0.00 ns 0.03 ns −0.26* −0.01 ns −0.45** −0.22*
Carbon macro‑/carbon microratio −0.08 ns −0.29* −0.14 ns −0.23* 0.17 ns −0.15 ns
Nitrogen in macroaggregate −0.39** −0.03 ns −0.51** 0.19 ns −0.54** 0.11 ns
Nitrogen in micro−aggregate −0.53** −0.06 ns −0.50** 0.03 ns −0.36** −0.21*
Nitrogen macro‑/nitrogen microratio 0.01 ns 0.05 ns −0.19 ns 0.23* −0.04 ns 0.26*
Dissolved organic carbon (DOC) −0.74* 0.04 ns −0.57** 0.02 ns −0.56* 0.15 ns
Dissolved organic nitrogen (DON) −0.81* 0.01 ns −0.66* 0.12 ns −0.62* 0.10 ns
DOC/DON ratio 0.28* 0.03 ns −0.09 ns 0.02 ns −0.03 ns −0.04 ns
Carbon management index (CMI) 0.13 ns −0.54** 0.02 ns −0.58* 0.01 ns −0.35**
Stratification ratio (OMstr) −0.01 ns −0.43** −0.52** −0.23* −0.52* −0.35**
Ammonium  (NH4

+) −0.94** −0.08 ns −0.94** −0.00 ns −0.92** 0.02 ns
Nitrate  (NO3

−) −0.92** −0.08 ns −0.94** 0.00 ns −0.92 0.02 ns
Ammonification −0.72** −0.27* −0.72** 0.07 ns −0.7** 0.17 ns
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N, P, K, and Ca, which ultimately end up in the soil and sig‑
nificantly improve soil quality (Piaszczyk et al. 2019). In our 
study, examining the characteristics of wood showed that N, 
K, P, and Ca concentrations in Alnus were higher compared 
to other species. Furthermore, our results claimed that wood 
with the highest stock of microelements (such as Alnus and 
Carpinus) released more ions to the soil surface than wood 
with lower concentrations of microelements (Lasota et al. 
2018). In general, the concentration of nutrients in the top‑
soil layer released by dead trees depends on the type of wood 
and its decay stage (Jomura et al. 2022). Similar results were 
reported by Błońska et al. (2019) for the dead trees of seven 
tree species in the Czarnalozga reserve in central Poland.

Total N, contents of  NH4
+,  NO3, nitrification, ammonifi‑

cation, N mineralization, DON, as well as N in macro‑ and 
microaggregates and PON concentrations are significantly 
higher in soils under degrading deadwood. Therefore, we 
hypothesize that the increased N concentrations are due to 
fungal N translocation (Hart 1999) and bacterial N fixation 
(Hicks et al. 2003) contributing to the higher concentra‑
tion of N in wood and its transfer to the soil during the 
decomposition process, especially at the late decay process 
in Alnus. Ammonification rates are affected by C/N ratio, 
soil pH, and soil nutrient contents (Lee et al. 2009). Resi‑
dues with a high C/N ratio cause strong competition for 
available soil N (Vallejo et al. 2011). Compared to other 

species, Alnus and Carpinus had higher values of  NH4
+‑N 

as a result of stronger abiotic fixation or microbial compe‑
tition (Giardina et al. 2001). Decreased nitrification rates 
in Fagus species were associated with higher C/N ratios 
in soil and deadwood (Burton et al. 2007). Also, soil pH 
is crucial in the nitrification reaction, as the nitrification 
rate decreases rapidly below pH 7.0 (Ahn 2006; Lee et al. 
2009). It is generally assumed that acidic forest soils have 
negative nitrification levels because autotrophic nitrifica‑
tion is inhibited (Li et al. 2001). Soil N mineralization 
rate is impacted by forest conversion and site manage‑
ment (Yan et al. 2007; Scott et al. 2014). Correspondingly, 
Alnus had a lower C/N ratio than Fagus in the dataset of 
this study. Forest areas containing N‑fixing species can 
increase soil N mineralization (Rothe et al. 2002). Differ‑
ences in soil N mineralization may be due to differences 
in the availability of labile N substrates (Mc Kinley et al. 
2008). High‑quality deadwood reduces microbial immo‑
bilization of N, leading to N mineralization and improved 
plant N availability (Mc Kinley et al. 2008). The contents 
of soil organic C, DOC, C in macro‑ and microaggregates, 
and POC are significantly higher in the soil around dead‑
wood than those in the control, corresponding to the con‑
clusion by Błonska et al. (2019) and Jiang et al. (2022) in 
other forest ecosystems. These findings show that C input 
by deadwood contributes to decomposition processes that 

* P < 0.05.**P < 0.01. ns = not significant. Bold and italic numbers indicate a significant correlation

Table 3  (continued) Deadwood and soil properties 2011 2016 2021

PC1 PC2 PC1 PC2 PC1 PC2

Nitrification −0.50** −0.08 ns 0.56** 0.12 ns 0.45** 0.16 ns
Nitrogen mineralization −0.23* −0.25 ns −0.14 ns −0.15 ns −0.24* −0.03 ns
Epigeic density −0.68** 0.39** −0.65** 0.20 ns −0.64** −0.41**
Epigeic biomass −0.65** 0.40** −0.64** 0.20 ns −0.65*** −0.45**
Anecic density −0.55** 0.29* −0.54** 0.18 ns −0.54* −0.39**
Anecic biomass −0.53** 0.34** −0.51** 0.21 ns −0.49** −0.36**
Endogeic density −0.48** 0.36** −0.45** 0.20 ns −0.31** −0.46**
Endogeic biomass −0.52** 0.38** −0.49** 0.23* −0.48** −0.53*
Total earthworm density −0.77** 0.46** −0.74* 0.25* −0.74* −0.55*
Total earthworm biomass −0.74** 0.48** −0.70* 0.26* −0.71* −0.57*
Acarina density −0.94** −0.11 ns −0.95** −0.01 ns −0.88* −0.01 ns
Collembola density −0.94** −0.04 ns −0.93** −0.07 ns −0.91** −0.04 ns
Total nematode −0.91** 0.01 ns −0.90** 0.06 ns −0.93** −0.19 ns
Protozoa density −0.93** 0.00 ns −0.94** 0.21 ns −0.82* −0.01 ns
Total fungi −0.93** 0.00 ns −0.92** 0.00 ns −0.91** 0.12 ns
Total bacteria −0.86** −0.00 ns −0.85* 0.08 ns −0.84* 0.02 ns
Basal respiration −0.78** −0.05 ns −0.61* −0.28* −0.70* 0.02 ns
Substrate‑induced respiration −0.70** −0.24* −0.68* −0.25* −0.66* −0.23*
Microbial biomass carbon (MBC) −0.71** −0.12 ns −0.74* −0.17 ns −0.67* −0.12 ns
Microbial biomass nitrogen (MBN) −0.90** −0.11 ns −0.85* −0.05 ns −0.77* −0.02 ns
MBC/MBN ratio 0.46** 0.09 ns 0.61* −0.16 ns 0.53* 0.40**
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Fig. 4  Ranking of the tree species, deadwood species and soil proper‑
ties based on axis 1 (a) and 2 (b) of principal component analyses 
(PCA). Abbreviations are explained in Table 1. The intensity in red 

color (from weak to strong) indicates the increase of values for dead‑
wood species and soil properties during the years 2011–2021
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Fig. 4  (continued)
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impact the composition of soil organic C, but this impact 
is a long‑term process only to be observed in the long‑term 
because most of the C characteristics were not yet signifi‑
cant in 2011 and 2016. The content of DOC in the soil 
below fallen wood at the Alnus site is higher than that of 
the control and for Fagus, which may be caused by a lower 
decomposition rate of the fallen Fagus wood compared to 
Alnus. Furthermore, the high concentration of DOC in lea‑
chates from deadwood in Alnus can be explained by wood 
structure and state of fragmentation. The Alnus wood fea‑
tures a soft and loose structure, resulting in greater water‑
holding capacity and hydrophilicity (Błońska et al. 2018).

Soil enzymes properties

The present study demonstrates the prominent role of the 
tree species and decay processes in promoting soil enzyme 
activity in the immediate vicinity of deadwood. Activi‑
ties of all enzymes studied (i.e., urease, arylsulfatase, acid 
phosphatase, and invertase) showed a trend of increase for 
all tree species compared to control plots. This finding is 
most likely due to the increased N and P content of soils 
under deadwood. Moreover, the increased SOM accumula‑
tion contributes to enhanced extracellular enzymatic activ‑
ity by providing a more comprehensive range of C and N 
substrates that can be accessed and utilized by different 
groups of soil microbes (Cenini et al. 2016). Urease is 
an enzyme widely considered to be a proxy of nitrogen 
(N) mineralization; therefore, its activity strongly depends 
on the amount of N (Keeler et al. 2009). Urease plays an 
influential role in the hydrolysis of urea to carbon dioxide 
and ammonia and may contribute to increasing soil pH. 
The results of Ling et al. (2014) claimed that increasing 
amounts of clay increased the activity of arylsulfatase and 
invertase (Zvyagintsev and Velikanov 1968; Mahmoud 
and Attia 1970). It can be concluded that increased clay 
accumulation in the soil around dead trees of various tree 
species plays an essential role in the increased activity of 
this enzyme (Kooch et al. 2021). P is an essential element 
for life, which is often limiting in terrestrial ecosystems, 
with organic P being the most important P fraction for soil 
microorganisms and acid phosphatase activity (Cleveland 
and Townsend 2006; Zhao et al. 2017). Other studies also 
determined an increased soil enzymatic activity directly 
impacted by decomposing deadwood (Błońska et  al. 
2017). The increased enzymatic activity may be related 
to the translocation of deadwood degradation products 
or the leaching of soluble compounds to the soil directly 
beneath. Accordingly, changes in soil microbial activity 
and changes in the structure of soils directly exposed to 
deadwood have been reported by Angst et al. (2018) and 
Bani et al. (2018).

Soil microbial properties

Throughout the present study, BR, SIR, MBC, and MBN 
showed a clear seasonality with a peak in summer. Statisti‑
cally, significantly higher values for BR, SIR, MBC, and 
MBN were observed in soils under the direct impact of 
decomposing deadwood, with a maximum in the Alnus site 
and a minimum in the control. The high BR for Alnus may 
result from conditions favorable to microbial growth and 
enzymatic activities, due to increased input of labile organic 
substrates, especially in the upper soil layers (Kooch et al. 
2020). In the current study, the lowest respiration activities 
were observed in the controls, which is probably due to the 
low organic matter contents and microbial activities. Dead‑
wood had a strong effect on MBC for all tree species. Even 
deadwood in Fagus led to an increase in MBC with slow 
decomposition conditions in 2021. Microbial biomass is 
directly related to soil C and N contents. According to Pea‑
cock et al. (2001), the amount and quality of detritus input 
impact the amount of soil microbial biomass, which can be 
easily measured, indicating changes in soil organic C con‑
tent at an early stage (Wiesmeier et al. 2019). Furthermore, 
microbial biomass C and N reflect the size and activity status 
of the soil microflora and provide a biologically bonded pool 
of nutrients in the soil (Nair et al. 2012). The results of this 
study support the view that soil microbial biomass can be 
efficiently used to readily detect long‑term changes in soil 
functions, especially organic C transformation.

Soil fauna and flora properties

Earthworms are known as ecosystem engineers. It has been 
mentioned in many studies that earthworms have a spe‑
cific food preference (Kleeman et al. 2017; Capowiez et al. 
2020). Accordingly, populations around deadwood are very 
different from species in other environments. The results 
of the present study indicate that the abundance of earth‑
worms from the Lumbricidae family and the epigeic ecologi‑
cal group was increased around deadwoods. According to 
several literature reviews (e.g., Nahidan and Ghasemzadeh 
2022; Xiao et al. 2022; Zhao et al. 2022), Lumbricus ter-
restris is one of the most active species of earthworms in 
forest ecosystems of the temperate regions. Accordingly, in 
our study, among the different species of earthworms, Lum-
bricus terrestris was observed in all the treatments and years 
throughout the study area (see Table 2). Furthermore, the 
populations of collembola, Acarina, protozoa, nematodes, 
as well as fungi and bacteria in the soil around deadwood 
were significantly affected by tree species, seasons, and 
years; and were declining along the order of Alnus > Carpi-
nus > Acer > Tilia > Fagus > control, respectively. Various 
studies have shown that in fresh wood, the density of bac‑
teria, fungi, or microbial communities is generally minimal 
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and increases with the progress of the decomposition pro‑
cess (Johnston et al. 2016; Wilhelm et al. 2019). Consistent 
with Gómez‑Brandón et al. (2020), more ecological niches 
become available for microbial colonization as decomposi‑
tion progresses, increasing the wood surface area and the 
availability of nutrients (e.g., N and P). Moreover, our results 
suggest increased metabolic diversity is required within 
bacterial and fungal communities to take advantage of the 
gradually available substrates as wood decay proceeds. Total 
N and soil pH were the main factors driving microbial com‑
munities, which is confirmed by the conclusions of Dong 
(2021). Particularly, increasing the N content provides more 
N sources for soil microbial growth and improves microbial 
community richness.

Relationships among deadwood species and soil 
properties

Generally, it can be pointed out that tree species and pro‑
cesses of deadwood decay have various effects on soil 
properties and functions (Gómez‑Brandón et  al. 2020; 
Pastorelli et  al. 2021; Jomura et  al. 2022). The output 
of PCA showed apparent differences in soil properties 
between plots with different tree species, showing that the 
decomposition period and tree species are essential factors 
determining soil functions. The current findings indicate 
that soil biological and chemical properties are decreased 
following tree species in the rank order of Alnus > Carpi-
nus > Acer > Tilia > Fagus > control. Retaining deadwood 
trees or biological legacies can prepare a hotspot of soil 
functions, such as biological activities, abundance and diver‑
sity of microbial communities, and nutrient transformation 
in old mixed beech forests. While removing dead trees in the 
forest ecosystems, especially in case of Alnus and Carpinus, 
can threaten soil functional indicators and disrupt ecosystem 
services in the forests. The beneficial effects of deadwood 
on soil functions can suggest various strategies to improve 
forest sustainability and ecosystem conditions for forest 
management. A first step should be to prevent the removal 
of deadwood from forests, especially in areas of high dis‑
turbance. The next step is to determine the amount and type 
of deadwood that should be left in the forest to improve soil 
functional indicators. However, more research on deadwood 
is needed to plan for protection of soil function and health in 
sustainable forest ecosystems.

Conclusions

The deadwood of five tree species (i.e., Alnus, Tilia, Carpi-
nus, Acer, and Fagus) strongly controls the dynamics of soil 
functional indicators during chemical modifications of the 
wood in an old mixed beech forest of northern Iran. Most 

of the deadwood properties differed significantly among 
the tree species of measured parameters for Alnus. Conse‑
quently, deadwood nutrients distinctly change with degra‑
dation and differ between tree species. In the case of Fagus 
deadwood, the C/N ratio was higher, and macroelement 
contents were lower values than for other tree species. This 
issue has also caused a reduction of soil nutrients around 
Fagus deadwood compared to other dead trees. Thus, in sup‑
port of the first hypothesis of our study, we can claim that 
the tree species with lower C/N ratio and higher nutrient 
content would contribute to soil fertility more rapidly than 
species with more recalcitrant wood quality. Although not all 
features showed exactly the same pattern, our data strongly 
confirm the effects of deadwood on soil biological activi‑
ties during the stages of wood decomposition, confirming 
our second hypothesis. In general, soil functions increased 
ranked in the order of control < Fagus < Tilia < Acer < Carpi-
nus < Alnus, which can be assigned to the higher quality of 
deadwood in the different trees. It can be concluded that tree 
deadwood is essential in promoting soil functions and sus‑
tainability in old‑growth beech forest ecosystems. Moreover, 
the present investigation provides a theoretical basis for the 
importance and applications of deadwood for sustainable 
forest management that can be useful in a broader range 
of forest ecosystems in determining the mechanisms that 
explain these phenomena.
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