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Abstract
Elevated atmospheric  CO2 concentration and changes in precipitation patterns affect plant physiological processes and 
alter ecosystem functions. In combination, the interactions between these factors result in complex responses that chal-
lenge our current understanding. We aimed to investigate the effects of elevated  CO2 and drought stress on the growth and 
physiology traits of One-year-old Pistacia atlantica seedlings. Seedlings of P. atlantica were grown at two different  CO2 
concentrations (ambient 380 ppm and elevated 700 ppm) and the two irrigation regimes (100% and 50% of field capacity) 
for one growing season. Seedlings collar diameter, height, leaf area, biomass accumulation, root length and volume, photo-
synthetic parameters, pigment content, and relative water content increased at elevated  CO2. At the same time, the amounts 
of proline, electrolyte leakage, malondialdehyde, and antioxidant enzymes decreased at elevated  CO2. Drought stress had 
negative effects on the measured growth parameters. These, however, ameliorate in the presence of elevated  CO2 through 
enhanced photosynthesis performance and maintaining better water status, and possibly also by a reduction of oxidative 
stress. Increased  CO2, as expected in a future climate, might thus mitigate the negative effects of drought in P. atlantica 
trees under natural conditions.
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Introduction

Atmospheric  CO2 concentration has increased since the 
onset of the industrial revolution, and a future increase in 
 CO2 concentration is expected (IPCC 2018). Increasing  CO2, 
along with other greenhouse gases, is supposed to trigger 
global warming, changes in precipitation patterns (IPCC 
2013), and more frequent, intense, and erratic drought (Sip-
pel et al. 2018; Jiang et al. 2021). Global warming impacts 
eco-physiological processes in terrestrial plants and eco-
systems (Jentsch and Beierkuhnlein 2008; Albert et  al. 
2011a). The simultaneous drought and warming occurrence 
emphasize the need to investigate their impact on plants and 

ecosystems (Adams et al. 2009; Allen et al. 2010). Con-
sidering co-occurrences of climate features, studying each 
factor alone and in combination with others’ effects on envi-
ronmental changes is necessary, especially in interaction 
investigations.

Available water is a major limiting factor for plant 
growth because the water restriction induces changes in 
various physiological and biochemical processes (Farooq 
et al. 2009; Sippel et al. 2018). Stomata close progressively 
with increased drought stress, followed by reduced net pho-
tosynthetic rates (Reddy et al. 2004). Drought stress also 
reduces the contents and activities of photosynthetic carbon 
reduction cycle enzymes, including the critical enzyme, 
ribulose-1,5-bisphosphate carboxylase/oxygenase (Reddy 
et al. 2004). In addition, drought stress-induced generation 
of reactive oxygen species (ROS) is well recognized at the 
cellular level and is tightly controlled at both the produc-
tion and consumption levels in vivo through increased anti-
oxidative systems (Reddy et al. 2004). Antioxidant enzyme 
activity is an adaptive mechanism in plants to reduce ROS 
damage. In other words, the activity of the antioxidant 
enzyme scavenges the accumulated Hydrogen peroxide 
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 (H2O2) and reduces it to non-toxic levels, and in this way, 
alleviates oxidative stress (Gill and Tuteja 2010; Lotfi et al. 
2019). Long-term exposure of plants to elevated  CO2 leads 
to several physiological effects, many of which are inter-
preted in the context of ameliorating the negative impacts of 
drought stress (Wullschleger et al. 2002). The direct effects 
of elevated  CO2 are typically increased photosynthesis and 
water use efficiency in vegetation (Ainsworth et al. 2020). 
Acclimation of photosynthesis during long-term exposure to 
elevated  CO2 reduces critical enzymes of the photosynthetic 
carbon reduction cycle, increasing nutrient use efficiency 
(Drake et al. 1997).

More recently, observations of widespread drought-
induced tree mortality (Allen et al. 2015) have sharpened 
the focus on  CO2-induced changes in plant water use as a 
mechanism to maintain vegetation function during drought 
(De Kauwe et al. 2021). Numerous studies have reported 
the mitigation effects of elevated  CO2 on drought stress 
in different plant species (Drake et al. 1997; Wullschleger 
et al. 2002). Most elevated  CO2 field studies have addressed 
the potential for system-wide water savings under mild or 
moderate drought conditions (De Kauwe et al. 2021). On 
the contrary, elevated  CO2 may enhance plant performance 
during drought while water storage is depleted similarly to 
plants in control environments. For example, Jiang et al. 
(2021) found that elevated  CO2-grown eucalypts exhibited 
less drought stress during short-term drought, with less 
negative leaf water potentials despite having larger biomass 
and no change in soil moisture content. The positive and 
extended photosynthetic response to elevated  CO2 during 
drought stress may provide plants with additional nonstruc-
tural carbohydrates (NSC) to maintain lower osmotic poten-
tial and sustain metabolic activity (Jiang et al. 2021). Other 
studies, show a shift of biomass allocation into more roots 
in coffee plants exposed to elevated  CO2 during moderate 
drought (e.g. Avila et al. 2020). They suggested that this was 
associated with a higher transcript abundance of aquaporin 
genes (Avila et al. 2020). However, studies show different 
effects of elevated  CO2 on plant water relationships during 
drought, possibly influenced by experimental treatment (e.g. 
duration of  CO2 exposure, nutrient availability, and drought 
severity) as well as species-specific morphological, physi-
ological, and biomass adjustments to the growth conditions 
(Zhou et al. 2013; Becklin et al. 2017). For example, it was 
shown that the elevated  CO2 benefits on plant growth, pho-
tosynthesis and nonstructural carbohydrates diminished with 
increasing aridity (Albert et al. 2011b; Duan et al. 2013). In 
addition, spring and early season leaf responses are most 
susceptible to elevated  CO2 and are followed by a down-reg-
ulation towards the onset of autumn. At the whole-tree level, 
 CO2 fertilization only causes consistent biomass increments 
in young seedlings, whereas mature trees show a variable 
response (Lauriks et al. 2021). Overall, it is necessary to 

consider various influencing factors to reconcile the dispa-
rate experimental evidence on the possible ameliorating role 
of elevated  CO2 during drought stress.

Atlas mastic tree, Beneh in Iran (Pistacia atlantica Desf.) 
is one of the most important native species distributed exten-
sively in Zagros forests located in western Iran. These for-
ests, characterized by a semi-Mediterranean climate, are one 
of Iran's most important and sensitive ecosystems (Ahmadi 
et al. 2014). Many studies have shown the ecological flex-
ibility and tolerance of P. atlantica to challenging envi-
ronmental conditions in Iran. Therefore, natural forests of 
this species are found throughout Iran but are particularly 
common in the western and southern parts of the country 
(Heydari et al. 2016). Although it tolerates and adapts to 
diverse ecological conditions, the natural regeneration and 
reforestation of P. atlantica have become difficult (Mirzaei 
and Karamshahi 2015; Sadeghzadeh Hallaj et al. 2022). The 
harsh climate of Zagros prohibited the natural regeneration 
of P. atlantica (Mirzaei and Karamshahi 2015). In recent 
years, the mortality of P. atlantica has been increasing rap-
idly and has become a public concern (Attarod et al. 2016; 
Hosseini et al. 2017). These extreme events are attributed 
to regional consequences of global climate change and are 
projected to further increase in intensity and frequency. In 
order to better adapt forest management, we aim to better 
understand the functional traits and physiological responses 
of this species to the expected combined changes in climate 
and  CO2 concentration.

This study aims to elucidate whether elevated  CO2 con-
centration mitigates or exacerbates the negative effects of 
drought stress in P. atlantica seedlings. We are particularly 
interested in responses that increase or decrease the vulner-
ability of P. atlantica in the Zagros region. It is hypothesized 
that elevated  CO2 concentration leads to increased assimi-
lation and improved water use efficiency due to a higher 
photosynthetic pigment concentration, resulting in increased 
diameter and height growth, as well as a relative increase 
of the root system. These effects will be more expressed 
in drought stressed plants. In addition, increased  CO2 con-
centration mitigates the drought stress-induced proline con-
centration, electrolyte leakage (EL), malondialdehyde, and 
antioxidant enzyme activity.

Materials and methods

Plant material

The seeds of P. atlantica were grown for one year in 5-L 
pots containing a mixture of natural soil, sand, and manure 
(1:3:1, v/v). The pot’s soil properties are shown in Table 1. 
The seedlings were watered twice every week at field capac-
ity in the nursery. One-year-aged seedlings in the nursery 



659European Journal of Forest Research (2023) 142:657–670 

1 3

were transferred to the two growth chambers (3. 3. 2 m, 
L, W, H) with the two different  CO2 concentrations (the 
ambient  CO2, 380 ppm, and the elevated  CO2, 700 ppm) 
for one growing season from April 15 to December 10, 
2019. We considered the other climatic factors fixed in the 
two chambers (170 μmol  m−2  s−1 photosynthetically active 
radiation (PAR), 60 ± 5% humidity, 27/16 °C day/night air 
temperature, and 14/10, 15/9, and 10/14 h day/night pho-
toperiod in spring, summer, and autumn, respectively). 
Pistacia atlantica's natural regeneration commonly occurs 
under the canopy shade of nurse trees (Sadeghzadeh Hal-
laj et al. 2022; Jahanpour et al. 2010; Negahdarsaber and 
Abbasi 2010). Reforestation attempts by Pistacia atlantica 
also could be successful if the seedlings were treated with 
the shade of nurse trees (Hamzepour et al. 2006). A study 
on the growth and development of Pistacia atlantica seed-
lings also revealed that full sunlight inhibits growth even for 
well-watered seedlings (Sadeghzadeh Hallaj et al. 2022). 
Field observations in the Zagros forest confirm that the early 
development of Pistacia atlantica seedlings depends on the 
low light intensity. This species grows solely under the shade 
of light-tolerant trees. It is unclear whether improved per-
formance under shade is due to protection against severe 
sunlight, moderation of drought stress or both. According 
to the literature and experiences, we thus applied a very low 
light intensity (170 μmol  m−2  s−1) for the experiment. The 
seedlings were rotated within the growth chambers every 
week to avoid micro-environmental effects.

Experimental design and treatments

The experiment was conducted in the two growth chambers 
located at the Faculty of Agriculture and Natural Resources, 
Lorestan University (33° 26′ 14.4″ N, 48° 15′ 38.7″ E). The 
experiment was done as a factorial based on a completely 
randomized design. The experimental treatments consisted 
of the control or ambient conditions (C), drought stress (D), 
elevated  CO2 concentration  (CO2), and the two factorial 
combinations  (CO2 × D) with four replicates. We considered 
ten seedlings in each replicate, which resulted in 40 seed-
lings for each treatment. At each  CO2 concentration, seed-
lings were divided into two groups. One group was subjected 
to well-watered treatment (100% of field capacity), and the 
other was subjected to drought stress (50% of field capacity).

Growth measurements

Each seedling's stem diameter and height were measured 
using a digital calliper and ruler at the end of the grow-
ing season. Then, the seedlings were carefully dug out of 
the pots. The roots were hand-washed to remove all soil 
particles. Roots' lengths were carefully measured using a 
ruler. Also, root volume was estimated directly through Ta
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the transposition of water in the graded container cylinders 
(Norouzi Haroni et al. 2019). Scanned leaf images were used 
to determine the leaf area for each seedling using the soft-
ware Image Tool 3.0 (Wilcox et al. 2002). The seedlings 
shoot and root were dried at 80 °C for 48 h, and then bio-
mass was measured.

Measurements of gas exchange parameters

Leaf gas exchange parameters were measured using an LC4 
portable gas exchange system (ADC Bioscientific, Ltd., 
Hoddesdon, UK). Net  CO2 assimilation  (Anet, μmol  CO2 
 m−2  s−1), stomatal conductance  (gs, mol  H2O  m−2  s−1), and 
transpiration (E, mmol  H2O  m−2  s−1) were simultaneously 
measured of the first fully expanded leaves. Leaf temperature 
was held at 27 °C at a relative humidity of 60%. Measure-
ments were made under a PAR of 170 μmol  m−2  s−1. The 
 CO2 concentration in the leaf chamber was the same as in 
the growth conditions. The  Anet/gs ratio was used as intrin-
sic water use efficiency  (WUEi, μmol  mol−1), according to 
Farquhar et al. (1989).

Measurements of photosynthetic pigments

At first, frozen leaves (0.1 g) were extracted at − 80 °C with 
0.1 g calcium carbonate and 4 ml 80% acetone in the dark. 
Since chlorophyll is light-sensitive, the extraction took 
place in a dark room (Bergstrasser et al. 2015). The result-
ing extract was centrifuged at 4000 rpm for 10 min at 4.0 °C. 
The light absorption was measured at 470, 662, and 645 nm 
wavelengths using a spectrophotometer (Mapada UV-1800, 
Shanghai, People’s Republic of China). The contents of 
chlorophyll a, chlorophyll b, total chlorophyll, and carot-
enoids were calculated according to Lichtenthaler (1987).

Relative water content measurement

First, the fresh weights (FW) of the sample leaves were 
recorded, and the leaves were floated in distilled water in 
Petri dishes. After 24 h, the leaves were removed, the leaf 
surface was gently wiped, and the turgid weight (TW) was 
measured. The samples were dried in an oven at 80 °C for 
48 h to measure dry weight (DW). Relative water content 
(RWC) of leaf tissue was determined using the equation 
RWC = 100[(FW − DW)/(TW − DW)] (Ritchie et al. 1990).

Proline, electrolyte leakage, and malondialdehyde 
determination

Free proline content in leaves was quantified following Bates 
et al. (1973). 0.5 g of fresh leaf tissue was removed and 
mixed with sulfosalicylic acid and acetic acid. After adding 
the ninhydrin solution, samples were placed in hot water. 

Light absorbance was read at 520 nm. 100 mg fresh leaf 
samples were cut into 5 mm lengths and placed in test tubes 
containing 10 mL distilled deionized water, then EL was 
determined. The tubes were placed in a water bath main-
tained at a constant 32 °C. After two hours, the initial elec-
trical conductivity of the medium  (EC1) was measured using 
an electrical conductivity meter. Then, the samples were put 
in an oven at 120 °C for 120 min. Then, samples were cooled 
to 25 °C, and the final electrical conductivity  (EC2) was 
measured. We used the equation suggested by Nayyar (2003) 
to calculate El.

Malondialdehyde (MDA) as a measure for oxidative 
destruction of lipids was determined by forming a pink dye 
when reacting with thiobarbituric acid (TBA). First, 0.5 g 
of the fresh leaf was mixed with 0.5% (w/v) thiobarbituric 
acid solution containing 20% (w/v) trichloroacetic acid. The 
mixture was heated at 95 °C for 25 min, and the reaction was 
stopped by quickly placing it in an ice bath. The absorbance 
of the supernatant was read by spectrophotometer at 532 nm 
(Valentovic et al. 2006).

Activities of antioxidant enzymes in leaf extracts

Catalase (CAT) activity was determined in leaf extracts 
according to Chance and Maehly (1955). Leaf tissue (0.3 g 
FW) was ground in liquid  N2, homogenized with 1.5 mL of 
K phosphate buffer (containing 1 mM EDTA and 2% PVPP), 
and centrifuged at 14,000 rpm for 20 min at 4 °C. The CAT 
activity in the supernatant was calculated from the decrease 
in  A240 and expressed as μmol  H2O2 reduced  min−1 g  FW−1. 
Peroxidase (POD) activity was assayed in leaf extracts as in 
MacAdam et al. (1992). Leaf tissue (0.3 g FW) was ground 
in liquid  N2, homogenized with 1.5 mL K phosphate buffer 
(pH 7.0), and centrifuged at 14,000 rpm and 4 °C for 20 min. 
The POD activity in the supernatant was calculated from the 
decline in  A475 and expressed as μmol  H2O2 reduced  min−1 g 
 FW−1. Ascorbate peroxidase (APX) activity was assayed in 
leaf extracts as in Nakano and Asada (1981). Leaf tissue 
(0.3 g FW) was homogenized with 3 mL 0.05 mM sodium 
phosphate buffer (pH 7.8) containing 1 mM EDTA and 2% 
PVPP and centrifuged at 14,000 rpm for 20 min. The APX 
activity in the supernatant was calculated from the decline 
in  A290 and expressed as μmol  H2O2 reduced  min−1 g  FW−1.

Statistical analysis

We checked the data’s normality with the Kolmogo-
rov–Smirnov test. Results indicated that the normality 
assumption was met for all variables, and no transformation 
was necessary. Two-way analysis of variance (ANOVA) was 

EL = 100
[

EC1∕EC2
]

.
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used to test the effects of  CO2 concentrations, drought stress, 
and their interaction on all dependent variables. The Duncan 
test at P ≤ 0.05 was used to compare means. All statistical 
analyses were conducted using the SPSS software version 
21.0.

Results

Growth parameters

Elevated  CO2 concentration and drought stress signifi-
cantly affected the diameter growth of P. atlantica seed-
lings, while  CO2 × D had no effect (Table 2). Elevated  CO2 
concentration enhanced the mean diameter growth by 19% 
compared to the control seedlings, whereas the diameter 
of drought stressed seedlings only reached 57% (Fig. 1a). 
Height growth and leaf area also increased under elevated 
 CO2 concentration (Table 2). The height and leaf area 
increments were 38% and 27% greater under elevated  CO2 
than the control seedlings (Fig. 1b, c). Under  CO2 × D, 
height growth and leaf area decreased by 6% and 30%, 
respectively, compared to the control (Table 2, Fig. 1b, c). 

The positive effect of  CO2 could be better revealed when 
we compare  CO2 × D with drought stress alone. Under 
 CO2 × D, height growth and leaf area increased by 24% 
and 17%, respectively, compared to drought stress alone 
(Table 2, Fig. 1b, c).

Root length and volume tended to increase relative to the 
control when P. atlantica seedlings were exposed to elevated 
 CO2 (by 30% and 43%, respectively), while drought stress 
reduced the root length and volume by 12% and 69%, respec-
tively (Table 2, Fig. 2a, b). Root length and volume were 
considerably higher under  CO2 × D than under drought stress 
alone (13% and 23%, respectively) (Table 2, Fig. 2a, b).

Elevated  CO2 concentration and drought stress also 
affected shoot, root, and total biomass (Table  2). As 
expected, elevated  CO2 concentration increased shoot bio-
mass by 73%, root biomass by 47%, and total biomass by 
58% in comparison to the control, while drought stress 
reduced the shoot, root, and total biomass by 76%, 84%, 
and 80%, respectively (Fig. 3a–c). Under  CO2 × D, shoot 
and total biomass increased by 50% and 56%, respectively, 
compared to drought stress alone (Table 2, Fig. 3a, c).

Table 2  F-values obtained 
from the two-way variance 
analysis for the elevated  CO2 
concentration  (CO2) and 
drought stress (D) treatments, 
and their interactive effects on 
the growth and physiological 
traits of 1-year-old P. atlantica 
seedlings

Asterisks (*) denote the level of significance (*P < 0.05, **P < 0.01, ***P < 0.001). Arrows indicate the 
increase or decrease of the parameters

Trait Factor

CO2 D CO2 × D

Diameter (mm) 21.0**↑ 146.0***↓ 1.6
Height (cm) 51.0***↑ 75.5***↓ 6.2*↓
Leaf area  (cm2) 24.7***↑ 165.9***↓ 5.1*↓
Root length (cm) 23.1***↑ 21.3**↓ 4.7*↑
Root volume  (cm2) 29.7***↑ 114.3***↓ 8.0*↓
Shoot biomass (DW g per plant) 89.2***↑ 148.2***↓ 17.3**↓
Root biomass (DW g per plant) 17.4**↑ 29.5***↓ 0.4
Total biomass (DW g per plant) 52.8***↑ 88.6***↓ 4.8*↓
Net photosynthesis (μmol  CO2  m−2  s−1) 142.8***↑ 138.7***↓ 10.7**↑
Stomatal conductance (mol  H2O  m−2  s−1) 47.4***↑ 147.2***↓ 12.2**↓
Transpiration (mmol  H2O  m−2  s−1) 49.1***↑ 65.4***↓ 4.9*↓
WUEi (μmol  mol−1) 15.6**↑ 0.3 0.9
Chlorophyll a (mg  g−1 FW) 208.4***↑ 89.6***↓ 13.9**↑
Chlorophyll b (mg  g−1 FW) 88.3***↑ 40.1***↓ 4.8*↑
Chlorophyll a + b (mg  g−1 FW) 227.3***↑ 99.5***↓ 14.2**↑
Carotenoids (mg  g−1 FW) 100.4***↑ 24.4***↓ 5.1*↑
Relative water content (%) 192.2***↑ 146.7***↓ 5.5*↑
Proline (mg  g−1 FW) 84.8***↓ 210.1***↑ 48.5***↑
Electrolyte leakage (%) 29.4***↓ 62.8***↑ 4.9*↑
Malondialdehyde (µmol  g−1 FW) 41.4***↓ 97.7***↑ 11.6**↑
Catalase (Unit  g−1 FW) 7.5*↓ 21.6**↑ 5.7*↑
Peroxidase (Unit  g−1 FW) 128.5***↓ 100.6***↑ 0.0
Ascorbate peroxidase (Unit  g−1 FW) 33.6***↓ 52.7***↑ 14.2**↑
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Gas exchange

The net photosynthesis  (Anet), stomatal conductance  (gs), 
and transpiration (E) rate of P. atlantica seedlings were 
influenced by elevated  CO2, drought stress, and  CO2 × D 
treatments (Table 2). The  Anet (by 81%),  gs (by 43%), and 
E (by 61%) increased under elevated  CO2 concentration, 
while their rates decreased under drought stress by 82%, 

56%, and 62%, respectively, in comparison with the control 
treatment (Fig. 4a–c). In the combined treatment, elevated 
 CO2 concentration alleviated the effect of drought stress 
so that the reductions in  Anet,  gs, and E were improved by 
84%, 22%, and 51%, respectively (Table 2, Fig. 4a–c). In 
addition, elevated  CO2 concentration also enhanced intrin-
sic water use efficiency (WUEi) by 27% compared to the 
control seedlings, while its rate did not differ between the 

Fig. 1  Mean (± SE) diameter (a), height (b), and leaf area (c) of P. 
atlantica seedlings after 8 months of growth under control (C), ele-
vated  CO2 concentration  (CO2), drought stress (D), and  CO2 × D con-

ditions (Duncan test; P ≤ 0.05; n = 4). Asterisks (*) denote the level of 
significance (*P < 0.05, **P < 0.01, ***P < 0.001)

Fig. 2  Mean (± SE) root length (a) and volume (b) of P. atlantica 
seedlings after 8 months of growth in control (C), elevated  CO2 con-
centration  (CO2), drought stress (D), and  CO2 × D conditions (Dun-

can test; P ≤ 0.05; n = 4). Asterisks (*) denote the level of significance 
(*P < 0.05, **P < 0.01, ***P < 0.001)

Fig. 3  Mean (± SE) shoot (a), root (b), and total (c) biomass of P. 
atlantica seedlings after 8 months of growth under control (C), ele-
vated  CO2 concentration  (CO2), drought stress (D), and  CO2 × D con-

ditions (Duncan test; P ≤ 0.05; n = 4). Asterisks (*) denote the level of 
significance (*P < 0.05, **P < 0.01, ***P < 0.001)
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two water regimes (Table 2, Fig. 4d). In the  CO2 × D treat-
ment, although the WUEi was increased in comparison with 
drought stress alone (by 55%), it was not significant (Table 2, 
Fig. 4d).

Pigment content

Exposure to elevated  CO2 concentration significantly 
increased chlorophyll a by twofold, chlorophyll b by 86%, 
chlorophyll a + b by twofold, and carotenoids by 87% com-
pared to the control seedlings. In contrast, their concentra-
tions were reduced with increasing drought stress by 46%, 
44%, 45%, and 24%, respectively (Table 2, Fig. 5a–d). When 
elevated  CO2 concentration was combined with drought 
stress, the chlorophyll a, chlorophyll b, chlorophyll a + b, 
and carotenoids increased 86%, 77%, 83%, and 68%, greater 
than drought stress alone treatments, respectively (Table 2, 
Fig. 5a–d).

Water status, proline, electrolyte leakage, 
and malondialdehyde

RWC increased by 13% under elevated  CO2 concentration 
compared to the control treatment, while its level decreased 
under drought stress by 20% (Table 2, Fig. 6a). Increas-
ing  CO2 levels generally reduced or reversed the impact of 
drought stress (by 22%; Table 2, Fig. 6a).

In leaves, drought stress increased the mean proline, EL, 
and malondialdehyde (MDA) concentrations by 85%, 33%, 
and 84% compared to the control seedlings. However, their 
contents decreased by 10%, 12%, and 23% with increas-
ing  CO2 concentration, respectively (Table 2, Fig. 6b–d). 
Elevated  CO2 significantly alleviated the effect of drought 
stress so that proline, EL, and MDA contents were con-
siderably lower under  CO2 × D than under drought stress 
alone treatment (by 53%, 23%, and 51%, respectively; 
Table 2, Fig. 6b–d).

Enzyme activities

Drought stress also promoted an increase in CAT (two-
fold), POD (27%), and APX (66%) activities in compari-
son to control seedlings (Table 2, Fig. 7a–c). In contrast, 
the CAT, POD, and APX activities, measured at the  CO2 
growth concentration, were lower in elevated  CO2 seed-
lings than in ambient  CO2 seedlings (by 7%, 42%, and 
13%, respectively) (Table 2, Fig. 7a–c). Compared to the 
activity of the antioxidant enzymes of leaves between 
drought stress treatments, CAT and APX activities were 
significantly reduced under elevated  CO2 (by 67% and 
55%, respectively). However, POD activity remained unaf-
fected (Table 2, Fig. 7a–c).

Fig. 4  Mean (± SE) net photosynthesis  (Anet) (a), stomatal conduct-
ance  (gs) (b), transpiration (E) (c), and intrinsic water use efficiency 
 (WUEi) (d) rates of P. atlantica seedlings after 8 months of growth 
under control (C), elevated  CO2 concentration  (CO2), drought stress 

(D), and  CO2 × D conditions (Duncan test; P ≤ 0.05; n = 4). Aster-
isks (*) denote the level of significance (*P < 0.05, **P < 0.01, 
***P < 0.001)
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Fig. 5  Mean (± SE) concentrations of chlorophyll a (a), chlorophyll 
b (b), chlorophyll a + b (c), and carotenoids (d) in leaves of P. atlan-
tica seedlings after 8  months of growth under control (C), elevated 

 CO2 concentration  (CO2), drought stress (D), and  CO2 × D conditions 
(Duncan test; P ≤ 0.05; n = 4). Asterisks (*) denote the level of sig-
nificance (*P < 0.05, **P < 0.01, ***P < 0.001)

Fig. 6  Mean (± SE) relative water content (RWC) (a), Proline (b), 
electrolyte leakage (EL) (c), and malondialdehyde (MDA) (d) con-
tents of P. atlantica seedlings after 8 months of growth in control (C), 

elevated  CO2 concentration  (CO2), drought stress (D), and  CO2 × D 
conditions (Duncan test; P ≤ 0.05; n = 4). Asterisks (*) denote the 
level of significance (*P < 0.05, **P < 0.01, ***P < 0.001)
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Discussion

Results show that increasing  CO2 up to 700 ppm increased 
growth, including diameter, height, leaf area, root length, 
root volume, shoot-, root-, and total biomass. Similar results 
also were observed in the previous studies with other plant 
species (Vaz et al. 2012; Arab et al. 2018; Song et al. 2020; 
Lauriks et al. 2021). Increased drought or  CO2 also affects 
root allocation in many cases. Effects on root allocation are 
often observed regarding drought (e.g. Santos et al. 2021; 
Jeong et al. 2021), and sometimes also regarding  CO2 (e.g. 
Norby et al. 2004). However, the latter response depends on 
other soil and weather conditions (e.g. Handa et al. 2008) 
and plant strategies, which also might favour exudation 
instead of root biomass (Fahey et al. 2005). Many studies 
have reported that elevated  CO2 stimulates root growth 
(Crookshanks et al. 1998; Norby et al. 2004; De Graaff et al. 
2006). In a meta-analysis, root biomass exhibited more sig-
nificant increases than shoot biomass with elevated  CO2; 
therefore, increasing root biomass with elevated  CO2 may 
enhance the potential to store C (De Graaff et al. 2006; Luo 
et al. 2006; Nie et al. 2013). In addition, these effects are 
expected to cause increased amounts of C input into the soil 
(De Graaff et al. 2006). The observed plant growth incre-
ment in elevated  CO2 in our experiment was consistent with 
the increase in photosynthetic rate during the same period.

We found that drought stress reduced all the measured 
growth parameters, similar to the findings of Guo et al. 
(2010), Deligoz and Gur (2015), and Jafarnia et al. (2017). 
The reductions in the aboveground growth of seedlings 
under increasing water deficit are well-known adaptations. 
Optimal partitioning theory suggests that “plants prefer-
entially allocate biomass to acquire the resource that most 
limits growth” (Kobe et al. 2010). Therefore, under drought 
stress, plants tend to invest in root growth at the expense of 
diameter and height growth resulting in aboveground bio-
mass reductions (see, for example, Schall et al. 2012; Jeong 
et al. 2021; Santos et al. 2021). In our study, elevated  CO2 

concentration alleviated the negative effects of drought and 
promoted plant growth under stress. Owensby et al. (1997) 
have successfully used a combination of approaches (meas-
urements of leaf water potential to whole-ecosystem gas 
exchange) to show that reduced water use in a  C4 tallgrass 
prairie exposed to elevated  CO2 was sufficient to increase 
above- and below-ground biomass production in years when 
drought stress was frequent.

Elevated  CO2 is often reported to increase photosyn-
thesis  (Anet) and intrinsic water use efficiency  (WUEi) in 
 C3 plants. In this study,  Anet and  WUEi also increased with 
increasing  CO2. The same results are observed for Vitis vin-
ifera (Moutinho-Pereira et al. 2009), Kalopanax septemlo-
bus (Watanabe et al. 2010), Quercus mongolica (Yan et al. 
2010), Deschampsia flexuosa (Albert et al. 2011c), Quercus 
suber (Vaz et al. 2012), and Phragmites australis (Mozdzer 
and Caplan 2018).

Despite many studies that have shown a reduction in 
stomatal conductance  (gs) and transpiration (E) rates under 
elevated  CO2 (Wullschleger et al. 2002; Ainsworth and 
Rogers 2007; Mozdzer and Caplan 2018), the results of this 
study showed that the rate of  gs and E of P. atlantica seed-
lings increased under elevated  CO2, which is in accordance 
to (Albert et al. 2011c; Zinta et al. 2014; Sreeharsha et al. 
2015; Monda et al. 2016). Thus, the decrease in  gs due to 
findings in some other species elevated  CO2 is not a univer-
sal response but may be due to a species-specific strategy. 
The different response of  gs due to elevated  CO2 is particu-
larly found in specific species or ecotypes, plant functional 
types (PFTs), and development stages in cotrast to others 
(Xu et al. 2016). In addition, Medlyn et al. (2001) reported 
that  gs response to elevated  CO2 was significantly stronger in 
young trees than in old trees, deciduous compared to conif-
erous trees, and drought-stressed to nutrient-stressed trees.

According to the current findings, drought stress signifi-
cantly decreased  Anet,  gs, and E rates in P. atlantica. This 
indicates a stomatal closure in response to a reduction in 
relative water content (Reddy et al. 2004). Stomatal closure 

Fig. 7  Mean (± SE) catalase (CAT) (a), peroxidase (POD) (b), and 
ascorbate peroxidase (APX) (c) activities of P. atlantica seedlings 
after 8  months of growth under control (C), elevated  CO2 concen-

tration  (CO2), drought stress (D), and  CO2 × D conditions (Duncan 
test; P ≤ 0.05; n = 4). Asterisks (*) denote the level of significance 
(*P < 0.05, **P < 0.01, ***P < 0.001)
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decreases the foliar photosynthetic rate and internal  CO2 
concentration. In the current study, increasing  CO2 levels 
generally alleviated the negative effects of drought stress on 
gas exchange. Previous studies also observed this finding 
(Zeppel et al. 2012; Bauweraerts et al. 2013; AbdElgawad 
et al. 2015; Miranda-Apodaca et al. 2015; Jiang et al. 2021).

Drought stress significantly decreased the concentrations 
of photosynthetic pigments (chlorophyll a, chlorophyll b, 
chlorophyll a + b, and carotenoids (Dutta et al. 2015; Zhang 
et al. 2018; and Mahmoudian et al. 2021). The chloroplast 
and thylakoid structures are usually injured under increased 
oxidative stress due to drought, leading to decreases in chlo-
rophyll and carotenoid content (Asrar and Elhindi 2011). 
Our findings also support the role of elevated  CO2 in the 
photosynthetic pigments concentration enhancement of 
seedlings under drought stress. It may be due to less oxi-
dative stress and less damage to photosynthetic pigments, 
which is consistent with the findings of AbdElgawad et al. 
(2015).

RWC decreased under drought stress. Similar results were 
obtained by Wang (2014) and Cui et al. (2019). The foliar 
photosynthetic rate of higher plants is known to decrease as 
the relative water content and leaf water potential decrease 
(Cornic 2000). In our study, drought stress led to sto-
mata closure, but in the presence of elevated  CO2, while 
the stomata remained open, the RWC reduction was miti-
gated. Similar results were shown by Atwell et al. (2007) 
and Cui et al. (2019). It may be due to better water sup-
ply through more root biomass. With increasing drought 
intensity and decreasing relative water content, plants try 
to absorb maximum moisture from the soil through osmotic 
adjustment mechanisms and reduced stem water potential 
(Sanchez-Blanco et al. 2004). Some authors have affirmed 
that elevated  CO2 would permit the plant to increase the fine 
roots and, in general, the root biomass, raising the root-to-
shoot ratio and boosting drought tolerance (Xu et al. 2013; 
Miranda-Apodaca et al. 2018).

In our study, the accumulation of proline, malondialde-
hyde and EL concentrations increased with drought stress 
(Wang 2014; Jafarnia et al. 2017; Chiappero et al. 2019; 
Zhang et al. 2019) and a significant increase was seen in 
antioxidant enzyme activities such as CAT, POD, and APX 
(Xu et  al. 2008; Patel and Hemantaranjan 2012; Wang 
2014). While the seedlings grown under drought stress con-
ditions and simultaneously exposed to elevated  CO2 showed 
reduced proline, MDA, and EL contents, similar results were 
obtained by Xu et al. (2014) and AbdElgawad et al. (2015). 
A significant alleviation was seen in the negative effects of 
drought stress on CAT and APX activities in the pistacia 
seedlings exposed to elevated  CO2 (see also Schwanz et al. 
1996). In fact, under conditions of oxidative stress, the per-
oxidation of unsaturated fatty acids increases and various 
aldehydes, including MDA, are produced by the attack of 

free radicals on lipids (Gharibi et al. 2016). EL is also an 
indicator of cell integrity and cellular membrane stability, 
reflecting the degree of damage to the plant by stress factors 
(Kocheva et al. 2004). A reduction in oxidative stress effects 
under elevated  CO2 may originate from reduced ROS gener-
ation, with a concomitant reduction of stress impact (relaxa-
tion) and/or at the level of increased ROS scavenging (anti-
oxidant) capacity (AbdElgawad et al. 2015). A reduction of 
ROS levels by elevated  CO2 is biochemically explained by 
increased rubisco carboxylation capacity, reducing photores-
piratory  H2O2 production. As a consequence of the reduced 
ROS generation, also antioxidant levels may remain low 
under stress conditions in elevated  CO2 (AbdElgawad et al. 
2015).

Conclusions

The obtained results in this study largely supported our 
hypotheses. We found that elevated  CO2 positively pro-
vokes marked changes in the physio-morphological traits 
of P. atlantica seedlings. On the other hand, drought stress 
negatively affected the studied traits. We also observed that 
elevated  CO2 could potentially mitigate the negative effects 
of drought stress by improving photosynthesis and mitigat-
ing drought stress. In summary, plants exposed to drought 
stress may benefit from future elevated  CO2 conditions.
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