
Vol.:(0123456789)1 3

European Journal of Forest Research (2022) 141:1089–1103 
https://doi.org/10.1007/s10342-022-01494-0

ORIGINAL PAPER

Growth performance and G × E interactions of Liriodendron tulipifera 
half‑sib families across ages in eastern China

Hui Xia1 · Lichun Yang1 · Zhonghua Tu1 · Chengge Zhang1 · Ziyuan Hao1 · Weiping Zhong1 · Huogen Li1 

Received: 22 December 2021 / Revised: 26 July 2022 / Accepted: 17 August 2022 / Published online: 29 August 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
To select genotypes with stable growth in diverse environments, tree breeders use multisite trials to evaluate genotypic sta-
bility and adaptation. Since genotype-by-environment (G × E) interaction effects vary with age, most multisite trials focus 
only on site effects, ignoring age effects. Liriodendron tulipifera trees are valuable due to their rapid growth and high-quality 
wood. Currently, multisite trials involving L. tulipifera plants are rare and the lack of data on G × E interaction effects impedes 
its selection. In this study, to explore the better performance and G × E pattern of L. tulipifera across ages, the growth traits 
(tree height, H; and diameter at breast height, DBH) of trees that were of five consecutive ages and grown on progeny-testing 
plantations were studied for 27 open-pollinated families at three sites. The results showed that the heritability of DBH was 
greater than that of H at almost all ages, and the individual breeding value ranking differed across sites and ages. The addi-
tive genetic correlations (rA) between different site pairs were relatively small and varied with age, indicating an age trend 
for G × E, and showed a difference in traits. It was found that the absolute differences in some monthly average climatic 
indicators correlated with the G × E. Based on a comprehensive analysis considering stability and productivity, four elite 
families were identified. These results could aid in selecting stable, adaptable L. tulipifera genotypes and provide a reference 
for evaluating G × E interaction effects in multiage, multisite trials of other tree species.
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Introduction

With global climate change and the frequent occurrence 
of extreme climate change events, forest ecosystems will 
be greatly disturbed in the future, which poses a potential 
threat to the security of timber production. Breeding plant 
varieties with broad adaptability and high productivity is an 
effective approach to coping with changing environments 
(White et al. 2007).

Tree growth is influenced by many environmental fac-
tors (Apiolaza 2012; Burdon et al. 2017). A genotype that 
performs well at one site may not perform well at another 

site. In addition to being controlled by genetic factors, tree 
growth is also affected by interactions between the genotype 
and the environment (G × E) (White et al. 2007; Des Marais 
et al. 2013). To date, G × E have been reported for many tree 
species, including Pinus taeda (Lauer et al. 2021), Pinus 
massoniana (Yuan et al. 2021), Cunninghamia lanceolata 
(Bian et al. 2014), Betula platyphylla (Zhao et al. 2015), 
and Picea glauca (Rweyongeza 2011), indicating that G × E 
interactions are a widespread phenomenon.

G × E interactions will complicate genotype variance and 
affect estimates of genetic parameters, leading to biases in 
family or individual rankings. As a result, genotype perfor-
mance across multiple environments is unpredictable, mak-
ing it difficult to identify the best-performing genotypes for 
a given site (Li et al. 2017). Various analytical methods have 
been proposed to improve the accuracy of evaluations of 
G × E interaction effects, including stability analysis based 
on joint regression (Eberhart and Russell  1966), Shukla’s 
stability (1972), type-B genetic correlations (Burdon 1977), 
additive main effect and multiplicative interaction (AMMI) 
analysis (Gauch and Zobel 1996), and factor analysis (FA) 
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(Cullis et al. 2014) as well as the use of genotype main effect 
plus G × E (GGE) biplots (Yan 2001) and the use of GGE 
biplots based on best linear unbiased prediction (BLUP) 
analysis (BLUP-GGE) (Zhang et al. 2018). GGE biplots can 
visually display G × E results and can be used to analyze the 
representativeness and classification of the test site; how-
ever, similar to AMMI, this method is limited to fixed-effect 
models and requires balanced data as well as environmental 
error homogeneity (Yan et al. 2007). BLUP-GGE analysis, 
which combines GGE with BLUP analysis, can compen-
sate for the above shortcomings and can be used to obtain 
more reliable results than raw data. Additionally, the har-
monic mean of the relative performance of genotypic values 
(HMRPGV) approach proposed by Resende (2007), which 
is based on a mixed model, has been used in many studies 
because it allows unbalanced data to be analyzed and can 
address adaptability, stability, and productivity simultane-
ously (Colombari et al. 2013; de Souza et al. 2020; Evange-
lista et al. 2021; Yuan et al. 2021).

Generally, a single-site test often inaccurately estimates 
genetic variance and overestimates heritability by neglecting 
to consider the G × E variance, whereas a considerable G × E 
interaction effect across multiple sites decreases the esti-
mated heritability (Sierra-Lucero et al. 2003; Li et al. 2017) 
and reduces the accuracy of genetic gain predictions (Diaz 
et al. 2011). Multisite tests are commonly applied in plant 
breeding to analyze G × E and evaluate the relative perfor-
mance of the target genotypes, and they can provide higher 
predictive accuracy than can single-site trials when phe-
notypes at diverse sites are assessed (El-Dien et al. 2015). 
However, in the forestry trials, there is clear environmental 
heterogeneity at tree test sites, resulting in unbalanced data 
in most cases, and the heterogeneous variance of genotypes 
at different sites always exhibits a certain degree of correla-
tion or covariance, i.e., a stronger G × E effect (Isik et al. 
2017). Additionally considering the challenge of dealing 
with large amounts of complex, imbalanced data (Möhring 
and Piepho 2009; Piepho et al. 2012) and the long periodic-
ity of multiage trials, most previous multisite tests in trees 
have been carried out within a single year or at a certain 
growth stage (Zhao et al. 2015; Yuan et al. 2021) and have 
focused mainly on the influence of the site effect, whereas 
few reports have focused on the age effect.

However, in addition to environmental or site effects, age 
effects cannot be ignored, as they can inflate the genotypic 
variance to the magnitude of the genotype × age variance, 
leading to potential bias in genotype performance assess-
ments (Arief et al. 2019). Previous studies in P. taeda and 
Pseudotsuga menziesii revealed that the importance of G × E 
appeared to decline with age, that early growth data might 
not be reliable for evaluating G × E at maturity (Zas et al. 
2003; Roth et al. 2007; Li et al. 2017) and that a multiyear 
data analysis would provide better estimates of genotype 

performance (Arief et al. 2015). In P. glauca, Rweyongeza 
(2011) found that the G × E fluctuated with age and that the 
type-B correlations with heights (H) were always stronger 
than those with diameters at breast height (DBH), thus 
revealing the G × E pattern in the different traits. Therefore, 
the age effect should receive more attention during multi-
site trials, because it is important for accurate evaluations of 
genotypic stability. Furthermore, different studies have iden-
tified many different environmental factors that affect tree 
growth as the main potential factors driving G × E interac-
tions that influence selection (Raymond 2011; Rweyongeza 
2011; Chen et al. 2017). Therefore, assessing the extent of 
and variation patterns in G × E interaction effects, especially 
across ages, and obtaining a better understanding of the 
potential key drivers of G × E interactions are very important 
for tree breeding and deployment purposes.

The L. tulipifera belongs to the Liriodendron genus and is 
a tree species that exhibits rapid growth and produces high-
quality wood and is therefore planted widely in many regions 
around the world for afforestation and timber production 
for its high economic and ecological value (Chen et al. 
2019). Previous studies on superior genotype selection in 
Liriodendron have been concentrated mainly on provenance, 
open-pollinated families, and hybrid combinations (Li and 
Wang 2001; Wang 2003; Li et al. 2005). However, in terms 
of genotypic stability, few studies have employed multisite 
tests of L. tulipifera, especially to analyze multisite data col-
lected over many years. In this study, 27 open-pollinated 
L. tulipifera families from progeny test plantations at three 
sites were used to compose an experimental population. We 
measured their growth traits at five successive ages and ana-
lyzed the additive genetic correlation of genotypes among 
sites and their genotypic stability. The aims of this study 
were as follows: (1) to explore the age trends in G × E inter-
action effects on growth traits and (2) to select genotypes 
with excellent growth performance and stability across ages 
and sites. This work will help to improve the productivity of 
L. tulipifera plantations and promote the extensive applica-
tion of improved varieties.

Materials and method

Experimental sites, materials and design

The progeny tests were conducted at three sites, namely 
Xiashu town (XS), Jingdezhen city (JDZ), and Jingxian 
County (JX), which are located in East China (Table 1). The 
experimental population comprised a total of 27 L. tulipif-
era open-pollinated families (marked as Lt1-27, average of 
23 progenies in each family per site), which were derived 
from the same batch of open-pollinated seeds collected in 
2005 from parental trees during a provenance trial related 
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to growth characteristics and flowering and fruiting per-
formance. The provenance trial plantation was established 
in 1993 and is located at the Xiashu Forest Farm affiliated 
with Nanjing Forestry University (latitude and longitude: 
31°59′ N, 119°14′ E). More details about this provenance 
trial were presented in our previous study (Xia et al. 2021). 
The seeds were sown in 2005, and the seedlings were grown 
at the nursery on the campus of Nanjing Forestry University. 
During the next year, a large proportion of the seedlings 
were used to establish progeny test plantations at the XS and 
JDZ sites. In 2006, because of the inappropriate conditions 
at the target test site, another group of seedlings was tem-
porarily transferred to a nursery located in Siyang County, 
Suqian city, Jiangsu Province, China (33°23′ N, 118°20′ 
E) for 1 year. Then, the progeny test plantation was estab-
lished at the JX site in 2007. All the management measures 
carried out at each location were similar to ensure uniform 
growth conditions. A randomized complete block design was 
applied to the three test sites, and JDZ, JX and XS had 4, 2, 
and 3 blocks, respectively. There were 10 plants per plot at 
these three sites, with a plant spacing of 4 × 4 m. However, 
due to natural mortality, missing manual records and other 
factors, there were unequal numbers of plants per family and 
observed years (unbalanced data).

Growth trait measurements and climatic data 
collection

At each test site, when the trees were 4, 5, 6, 7, and 8 years 
old, tree H and DBH were measured at the end of the vegeta-
tive period each year. The seedling height (SH) and ground 
diameter of the seedlings (SGD) were also measured during 
the year (age 2) when the progeny test plantation was estab-
lished, and they were employed as the fixed covariates to 
eliminate the effects of inconsistent growth at the seedling 
stage during the subsequent model analysis. In total, an aver-
age of approximately 473–1020 trees were measured. The 
daily climatic data for the cities where the test sites were 
located were provided by the China Meteorological Data 
Service Centre (http://​data.​cma.​cn/​en). We obtained some 
daily climatic indexes for the years when the trees were 5 
to 8 years old, and then, the average values for the daily 
temperature (T, °C), daily maximum temperature (TM, °C), 
daily minimum temperature (Tm, °C), daily relative humid-
ity (RH, %) and daily total rain precipitation (PP, mm) were 
calculated separately at the annual and monthly levels.

Statistical analysis of growth traits

All statistical analyses were conducted in R software version 
3.6.0 (Team R Core 2019). The stem volume index (VI) was 
calculated according to the formula of VI = H × DBH2 (Liu 
et al. 1991). The average survival ratio (SR) of one site and Ta
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phenotypic coefficient of variation (PCV) was calculated as 
follows: PCV = SD/u and SR = nob/Nto, where u is the mean 
value of the trait (H or DBH) at one age, SD is the standard 
deviation, and nob and Nto are the average numbers of the 
observed individuals across ages and the total number across 
each site, respectively. Pairwise comparisons of growth traits 
between different locations were performed using the non-
parametric Wilcoxon test with the Wilcox function in R. The 
heatmaps in this study were generated with the Complex-
Heatmap package (Gu et al. 2016).

Variance component and genetic parameter 
estimates

The variance components and genetic parameters were 
estimated using the ASReml-R 3.0 package (Gilmour et al. 
2008) via the BLUP approach with the restricted maximum 
likelihood (REML) method. To estimate the estimated 
breeding value (EBV) of each family at each site across 
ages, we conducted a single-site-single-age (Eq. 1) analysis 
to study the performance differences in families at different 
ages and sites by following a general linear mixed model 
(LMM) as follows:

To explore the age trend of the G × E effects and geno-
typic stability across tree ages, an LMM was constructed 
for the analysis of multisite-single-age (Eq. 2) as follows:

Moreover, to evaluate the growth stability and identify 
the adaptable genotype for each site, we also implement a 
BLUP-GGE biplot analysis based on the multiage-single-site 
(Eq. 3) model:

In the above equation, yijksy is the observation of the k-th 
individual of the i-th family in the j-th block at the s-th site 
and y-th age and u is the overall mean; xij is the growth traits 
of SH or SGD for i-th family in j-th block and treated as a 
fixed covariate, and β is the slope associated with covariate. 
Yy and Ss are the fixed effects of the y-th age and s-th site, 
respectively. Bj, B(S)js and B(Y)jy are the random effects of 
the j-th block, and that within the s-th site and within y-th 
age, respectively. Fi, FBij, F(S)is and F(Y)iy are the random 
effects of the i-th family, interaction of i-th family and j-th 
block, i-th family within s-th site, and i-th family within s-th 
age, respectively. eijk is the random residual effect of the k-th 
individual from the i-th family in the j-th block (eijks, at the 
s-th site or eijky, at the y-th age).

In Eq. (1), we assume that the error effect of e and ran-
dom effect of F and FB had normal distribution with zero 

(1)yijk = u + �xij + Bj + Fi + FBij + eijk

(2)yijks = u + �xijs + Ss + B(S)js + F(S)is + eijks

(3)yijky = u + �xijy + Y + B(Y)jy + F(Y)iy + eijky

mean and identical and independent variance—NID (0, R) 
and NID (0, G)—where R = �2

e
In ; G = 𝜎2

F
Ii ⊕ 𝜎2

FB
Iij ; �2

e
 is 

the error variance, I is the identity matrix and n, i and ij are 
the number of observed individuals, families, and blocks 
times families in each single-site-single-age trial, respec-
tively; and ⊕ is the direct sum. Given the differences in ran-
dom effects such as genotype and error effect in different 
sites or ages, that is, variance heterogeneity, it is necessary 
to decompose them; thus, in Eq. (2), the variance of families 
at different sites is assumed to be heterogeneous and to 
exhibit covariance with each other, while the covariances of 
block and residual across sites are assumed to be zero, 
although also with the heterogeneous variance, namely 

GF(S) =

⎡
⎢⎢⎢⎣

𝜎2

F(s1)
𝜎F(s1)F(s2) 𝜎F(s1)F(s3)

𝜎F(s1)F(s2) 𝜎2

F(s2)
𝜎F(s2)F(s3)

𝜎F(s1)F(s3) 𝜎F(s2)F(s3) 𝜎2

F(s3)

⎤
⎥⎥⎥⎦
⊗ Ii   , 

GB(S) = 𝜎2

B(s1)
Is1 ⊕ 𝜎2

B(s2)
Is2 ⊕ 𝜎2

B(s3)
Is3   ,  a n d 

R = 𝜎2

e1
Is1 ⊕ 𝜎2

e2
Is2 ⊕ 𝜎2

e3
Is3 , where s1, s2 and s3 are the 

number of individuals at three different sites and ⊗ is the 
direct product. In Eq. (3), we assume that the family effect 
variances are heterogeneous at different ages but with the 
same identical correlation between each pair of ages, and the 
block and error effect at different ages is also assumed to be 
heterogeneous and with covariance of zero. The variance of 
R and G are as follows:

 GB(Y) = 𝜎2
B(y1)

Iy1 ⊕ 𝜎2
B(y2)

Iy2 ⊕ 𝜎2
B(y3)

Iy3 ⊕ 𝜎2
B(y4)

Iy4 ⊕ 𝜎2
B(y5)

Iy5 ,  and 
R = 𝜎2

e(y1)
Iy1 ⊕ 𝜎2

e(y2)
Iy2 ⊕ 𝜎2

e(y3)
Iy3 ⊕ 𝜎2

e(y4)
Iy4 ⊕ 𝜎2

e(y5)
Iy5   , 

where y1, y2, y3, y4 and y5 are the number of individuals at 
each age and � is the correlation between each pair of ages.

For multisite-single-age analysis, the heritability was esti-
mated with reference to Isik et al. (2017) using the following 
formula, and its standard errors were estimated using the 
delta method (Holland et al. 2010; Isik et al. 2017):

where h2
i
 and h2

f
 are the narrow-sense heritability and herit-

ability of family mean, respectively. �2

F(s)
 , �

F(ss�)
 , and �2

e(s)
 are 

GF(Y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝜎2

F(y1)
𝜌 𝜌 𝜌 𝜌

𝜌 𝜎2

F(y2)
𝜌 𝜌 𝜌

𝜌 𝜌 𝜎2

F(y3)
𝜌 𝜌

𝜌 𝜌 𝜌 𝜎2

F(y4)
𝜌

𝜌 𝜌 𝜌 𝜌 𝜎2

F(y5)

⎤
⎥⎥⎥⎥⎥⎥⎦

⊗ Ii,

(4)h2
i
= 4�F(ss�)∕(�

2

F(s)
+ �2

e(s)
)

(5)

h2
f
=

�F(ss�)

1

i

�
i∑

f=1

1

S2
f

Sf∑
s=1

�2

F(s)
+

i∑
f=1

1

S2
f

Sf∑
s=1

Sf∑
s�≠s

�
F(ss�)

�
+

1

S2

s∑
s=1

�2

e(s)

rhs
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the variance components of the family within site s, the 
covariance between sites s and s’, and the residual error vari-
ance within site s, respectively. �

F(ss�)
 and �2

e(s)
 are the aver-

age values of their corresponding variance. The rhs is the 
repeated harmonic mean of each family at each site, S2

f
 is the 

number of sites for tested family f, and other parameters are 
the same as described above. The significance of the vari-
ance component was inferred from the estimated standard 
error (Isik et al. 2017).

HMRPGV and additive genetic correlation

The HMRPGV method, which can simultaneously account 
for adaptability, stability, and productivity, was used to eval-
uate the genetic stability of the different genotypes at the 
various sites. The applied formula was as follows (Resende 
2007; Colombari et al. 2013; Olivoto et al. 2020):

where RPGVi = 1∕S(
∑S

s=1
GVis∕mus) and GVis = mus + gis , 

GVis is the genetic value of genotype i at site s (estimated 
from multisite-single-age model), mus is the overall mean 
value of the trait at site s, and gis is the genotypic value or 
EBV value of the i-th genotype at the s-th site, and S is the 
number of sites. We used the additive genetic correlation 
(rA) to express the size of the G × E interaction effects for 
each of the two sites at the same age. Generally, when this 
value is lower, suggesting there is higher G × E interaction 
effect. The rA was calculated with the following expression 
(Burdon 1977; Isik et al. 2017):

where �2

F(s)
 and �2

F(s�)
 are the genotype variance within site s 

and s’, respectively, and �
F(ss�)

 is the additive genetic covari-
ance of the same trait between the sites s and s’. The Pearson 
correlations between rA and the absolute value of the differ-
ence in monthly and annual climatic indicators were 
obtained using the cor function; then, the stepwise regres-
sion was used to screen the important and significant vari-
ables predicting rA, and their explained variation was 
obtained with multivariate regression.

GGE biplot analysis

A GGE biplot was constructed based on the average EBV 
value (according to Eq. (3)) for each family at each site using 
the following model (Yan et al. 2007; Zhang et al. 2018):

(6)HMRPGVi = S

/(
S∑

s=1

1

RPGVis

)

(7)rA = �F(ss�)∕
√

(�2

F(s)
+ �2

F(s�)
)

(8)yis = �s + �1�i1�s1 + �2�i2�s2 + �is

where yis is the adjusted mean EBV value for the i-th family 
at the s-th site, βs is the mean EBV value for all families at 
the s-th site, λ1 and λ2 are the singular values for the first 
two principal components, γi1 and γi2 are the scores for fam-
ily i for these two principal components, δs1 and δs2 are the 
corresponding scores at site s, and �is is the residual error. 
The GGE biplot was generated using the GGEBiplotGUI 
package (Frutos et al. 2014) in R, with the parameters being 
set at 0 (nonstandardized) for scaling, G + GE for center, 
and symmetric for singular-value partitioning (SVP) (Zhang 
et al. 2018), resulting to three specific plot types. In “Which 
Won Where/What”, the genotype located at the vertex of the 
polygon was the one with the best performance in the site of 
the region; in “Discriminativeness vs. representativeness”, 
the length of the dotted line from the origin represented 
the discrimination of each site; in “Mean vs. Stability”, the 
length of the dotted line represented stability, and the shorter 
the line, the more stable it was.

Results

Growth trait performance and climatic indicators

There was an approximately 74.7% average survival rate 
across the different ages and sites (Table 1), and the box 
plot (Fig. 1a, b) showed that, except for the difference in 
H between the JX and XS sites at age 7, which was not 
significant, there were significant differences (P < 0.05) 
among the three sites at other ages. The descriptive statis-
tics table (Table 2) shows that across sites and ages, the total 
average H, DBH and VI ranged from 0.78 to 10.45 m, 1.40 
to 14.66 cm and 0.002 to 0.2300 m3, respectively, and the 
PCVs ranged from 20.01 to 43.95% for H, 27.68 to 56.85% 
for DBH, and 29.90 to 54.90%. The detailed monthly aver-
age climatic indicators (from ages 5 to 8) at the three sites 
are shown in Table S1. The changing patterns in average 
growth traits at the three sites were different from those of 
the various annual average climatic indicators (Fig. 1c) and 
were the opposite of those of the T, Tm and RH. Taken 
together, these results indicate that these three climatic indi-
cators may be important correlative factors affecting tree 
growth traits.

EBV values varied with ages and sites 
through single‑site‑single‑age analysis

Based on single-site-single-age model, the EBV ranking of 
the H and DBH in each family differentially changed at dif-
ferent ages and sites (Fig. 2). For example, regardless of 
whether the trait was H or DBH, the Lt4 family performed 
well at sites JDZ and XS but performed poorly at site JX. 
Family Lt20 performed well at site JX, but its performance 
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at sites JDZ and XS was moderate. In addition, even if the 
same family was located at the same site, there were also 
differences during different ages. For instance, the family 
Lt7 performed well in H at the age of 4 at site XS, but it per-
formed moderately well at other ages. Of course, the extent 
of this difference varied among different traits. This obser-
vation showed that the age and site should be considered 
within the family selection.

Age trends of variance components, rA 
and heritability with multisite‑single‑age analysis

Various genetic parameters were estimated using a multi-
site-single-age model to display the age trend of them. As 
shown in Table 3, except for the age of 6 for trait H, the fixed 
site effects were significant (P < 0.05) or highly significant 
(P < 0.01) in H and DBH at all other ages, and those of SH 
and SGD were all highly significant. The family variance 
within sites JDZ, JX and XS for trait H ranged from 0.048 
to 0.550, 0.056 to 1.623, and 0.043 to 0.688, respectively, 

while that for the trait DBH ranged from 0.097 to 0.908, 
0.136 to 3.125, and 0.202 to 3.158, respectively. With age, 
the family effect variance all increased at all sites; however, 
the age trend of additive covariance differed among locations 
and was different, showing that the covariance fluctuated 
with age and even displayed negative correlations among 
sites at some age. The additive genetic covariance among 
sites ranged from -0182 to 0.312 in H and -0.069 to 0.567 
in DBH, respectively; both traits had the maximum value 
between sites JDZ and JX, and minimum value between site 
JX and XS. Moreover, the covariance values were all nega-
tive between sites JX and XS across ages.

For H, the rA ranged from 0.063 to 0.212, −0.084 to 
0.054, and −0.125 to −0.024 between sites JDZ and JX, 
sites JDZ and XS, and sites JX and XS, respectively. For 
DBH, the rA of these three pairs of sites ranged from 0.086 
to 0.279, 0.053 to 0.241, and −0.119 to 0.213, respectively. 
The age trend of rA showed different patterns of temporality 
(Fig. 3). The rA of the three pairs of sites generally increased 
with age for DBH; while for H, only the age trend of rA 

Fig. 1   Variations in growth traits and climatic factors in differ-
ent locations and ages. a and b: Box plots showing the differences 
between the three sites with pairwise comparisons by Wilcox test 
in the H (a) and DBH (b) groups. The whiskers mean 1.5 times the 
interquartile range above the upper quartile and below the lower quar-
tile, but when there is no maximum or minimum value exceeding 
the upper and lower beard lines, the whiskers are the location of the 
maximum or minimum value. At each age, the same lowercase let-

ter above the box plot means that there is no difference between two 
sites; otherwise, there is a difference at the 0.05 level. JDZ, JX and 
XS are the three tested sites in the text and are the same below. c: 
The heatmaps of different climatic indicators varied by age and site, 
and they included the annual average temperature (T), annual average 
daily maximum temperature (TM), average annual daily minimum 
temperature (Tm), average annual relative humidity (RH) and total 
annual rain precipitation (PP)
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between JDZ and XS showed an increase, whereas the rA in 
the other two pairs of sites fluctuated with age but showed 
a decreasing trend overall. Additionally, all estimated rA 
values were below 0.4, relatively small, or even negative 
at some ages.

The hi
2 and hf

2 of the H ranged from 0.008 to 0.055 and 
0.030 to 0.211, respectively; those for the DBH were 0.006 
to 0.124 and 0.030 to 0.405, respectively (also shown in 
Table 3). The maximum value of both heritabilities was at 
age 6 for H and the minimum was at age 7 for DBH. The 
heritability of the H and DBH all fluctuated with age, show-
ing an increasing trend and then declining with age. These 
heritability values are all relatively low, and the heritability 
of the DBH was greater than that of the H aside from that 
at age 4.

Correlation analysis between rA and the differences 
in climatic indicators

To explore the possible environmental factors that may affect 
G × E, we used a correlation analysis between the rA and 
various climate factors at two sites of the same age. The 
results (Table 4) showed that the differences in the annual 
average T, TM, TM, RH and PP (DT, DTM, DTm, DRH 
and DPP) between the sites were not significantly correlated 
with the rA (−0.57 to 0.15 for H; −0.50 to 0.29 for DBH), 
but a further correlation analysis using the monthly average 
climatic indicator showed that the rA of H was significantly 
negatively correlated with the differences in the monthly 
average RH in January (DRH.Jan) and February (DRH.Feb) 
(P < 0.05), and the average T in July (DT.July) (P < 0.01) 
while that of DBH was significantly negatively correlated 
with the differences in the monthly average TM in April 
(DTM.Apr) and Tm in October (DTm.Oct) (P < 0.05). Thus, 
the greater the difference between these climatic indicators 
was, the lower the rA and the more significant the inter-
action between the genotype and the environment. What’s 
more, multivariate regression showed that (Table 5) DRH.
Feb, DTM.Apr, and DT.July had a significant effect on rA of 
H, with a total of 74.21% explained variation, while that of 
DBH was only DTm.Oct found significantly with 30.66%.

Family selection for fast and stable growth based 
on HMRPGV

Given the interaction between genotype and site, we esti-
mated the HMRPGV value of each family based on the 
multisite-single-age analysis, of which results showed that 
the HMRPGV ranking varied among families, and the 
detailed ranking information for the different ages is shown 
in Table S2. Under a selection rate of 30%, we used the 
HMRPGV ranking to select the H and DBH at the same 
time. However, some families were selected only at a certain Ta
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age or only for H or DBH traits. For example, the Lt27 fam-
ily was selected only at the age of 7 for the H, and family Lt6 
was simultaneously selected at the ages of 5, 6 and 8 of DBH 
but not for H at any one age. The results (Fig. 4) showed that 
families Lt3, Lt4, Lt5, Lt7 and Lt20 were selected accord-
ing to H and DBH concurrently for at least three ages, and 
their phenotypes were stable and excellent in terms of the 
traits and time scale, especially for the Lt3, Lt5 Lt7 and Lt20 
families, which were selected for H and DBH at all five ages. 
Thus, these families could be used as elite genotypes for 
extensive planting.

GGE biplot analysis

The GGE biplots were conducted based on EBV value that 
estimated by multiage-single-site analysis, and of which 
results (Fig. 5) showed that the sum of the variance expla-
nation percentages of the first and second principal com-
ponents (also named AXIS1 and AXIS2) were 82.23% and 
89.13% in the H and DBH, respectively, indicating that the 
analysis was reliable.

In the “which won where/what” analysis for the H and 
DBH, the family Lt4 performed best at the site XS for 
both traits, and the families Lt5 and Lt20 performed the 
best for the H at the sites JDZ and JX, respectively. In the 

“discriminativeness vs. representativeness” assessment, site 
JDZ had higher representativeness than the other two sites 
in terms of both H and DBH, but site JDZ had the worst 
performance, and the site JX performed best in terms of dis-
criminativeness. In the “mean vs. stability” assessment, the 
Lt5 family had the highest mean values of H across different 
sites, followed by the Lt3 family, which had the strongest 
stability; for DBH, the Lt3 family had the highest produc-
tivity and stability, followed by the Lt5 and Lt7 families, 
but Lt7 had higher stability than Lt5. These results can be 
corroborated with the above HMRPGV analysis to screen 
excellent and reliable genotypes.

Discussion

Variations in growth traits across ages and sites

Genetic variation is the basis for genotype selection (White 
et al. 2007). In this study, the average PCVs of growth traits 
across different sites and ages were relatively high, which 
was conducive to selection (Lin et al. 2013). However, the 
PCV of V was the greatest at the overall level, followed by 
DBH that was greater than that of H, indicating that the vari-
ation in DBH is more abundant, which was different from 

Fig. 2   EBV ranking of families 
(left side for H, right side for 
DBH) at different ages (4, 5, 
6, 7 and 8) and sites (JDZ, XS 
and JX). The small square in 
red indicates that its EBV value 
ranks high, and a darker shade 
indicates a higher or lower 
ranking
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the findings of Yuan et al. (2021) on Masson pine. Addi-
tionally, the differences in growth traits between any two 
sites were significant for almost all age groups, which indi-
cated that the site effect was significant; these results were 
consistent with the subsequent Wald test for site effects. A 
similar highly significant site effect for H and DBH was also 
found on C. lanceolata by Bian et al. (2014) and the same 
substantial differences were also observed in the crown size 
and bark thickness among sites. Zhang et al. (2021) also 
found that the DBH, survival rate, and stand volume signifi-
cantly differed among sites. These findings suggested that 
the site effect was significant and important. Moreover, the 
EBV values of families displayed a diverse change trend 
across age and site, suggesting that interactions might be 
present between the family and site or age. Yuan et al. (2021) 
also reported a significant effect of the site and interaction 
on families of P. massoniana. Even the performance of 
the same family during different years or ages is different; 
that is, the stability is different among sites or ages. These 
observed growth trait variations by site and age indicate that 
age and site effects should be taken into consideration in 
G × E interaction effects.

Age trends of G × E and heritability of growth traits

To date, G × E interaction effects have been reported in many 
tree species (Bian et al. 2014; Zhao et al. 2015; Lauer et al. 
2021; Rweyongeza 2011; Yuan et al. 2021). For example, 
de Souza et al. (2020) reported that the variance of the 
G × E interaction effect was significantly correlated with 
the survival rate of C. citriodora according to a likelihood 
ratio test. Lauer et al. (2021) also observed the occurrence 
of G × E on the height and diameter revealed by rA among 
sites in loblolly pine, with genetic correlations among test 
sites. Yuan et al. (2021) also found, through a joint analy-
sis of variance, that G × E interaction effects on the growth 
traits of Masson pine were significant. However, these G × E 
interaction effects were reported only at a certain age. In a 
study using multiyear breeding data for performance pre-
diction, Arief et al. (2019) pointed out the presence of bias 
in genetic evaluations of single-year data and demonstrated 
the advantages of multiyear data. Rweyongeza (2011) also 
found a pattern of G × E interaction effects on different 
traits with age in P. glauca. Genetic correlations between 
trials are commonly used to assessment the amount of G × E 
interaction (Berlin et al. 2014; Chen et al. 2017). In this 
study, through a multisite test using a mixed model for many 
years of analysis, we found that the rA displayed different 
age trends in the growth traits, and the estimated rA in this 
study was relatively small, indicating that there was a certain 
large G × E effect, and the correlation between site XS and 
JX was negative, that is, the difference between these two 
sites was greater, with a more obvious G × E interaction. Ta
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Similarly, large negative correlations were observed in P. 
contorta by Haleh et al. (2018), indicating significant dif-
ferences between sites. The age trends of rA varied among 
different sites. For the trait DBH, the rA among these three 
site pairs showed an increasing trend overall, revealing a 
gradually decreasing G × E effect. However, for the trait H, 
except for sites JDZ and JX, this increasing trend was not 
obvious; on the contrary, it tended to decrease in general, 
indicating that trait H may be more vulnerable to the interac-
tion effect between the genotype and environment. This fact 
was in agreement with the above-described trend of greater 
DBH heritability than H heritability, but in Picea glauca, 

Rweyongeza (2011) found that although the G × E interac-
tion effects fluctuated with age, the type-B correlations of 
H were almost always higher than those of DBH, revealing 
the different G × E patterns in different traits.

Moreover, as many reports have pointed out, G × E will 
not only affect the family ranking but can also interfere with 
the accurate evaluation of genetic parameters, including her-
itability (Li et al. 2017; Zhang et al. 2021; Zhou et al. 2021). 
Heritability will be overestimated when the G × E interaction 
effect is not considered (Sierra-Lucero et al. 2003). Here, 
both hi

2 and hf
2 were estimated to be relatively low, and 

with a higher standard error, which might be related to the 
serious imbalance of data although we considered this in the 
calculation of heritability. de Souza et al. (2020) observed 
a similar result in C. citriodora; they inferred that it might 
have been related to the lower diversity of seed sources, the 
occurrence of natural selection processes, or the high envi-
ronmental variability. Low cross-site heritability is caused 
mainly by high environmental residual variance or the loss 
of additive genetic variance (Stackpole et al. 2010; Isik 
et al. 2017). In this study, artificial or natural missing data 
might lead to imbalances in the data and affect the genetic 
parameter estimates. Bian et al. (2014) and Wu et al. (2007) 

Fig. 3   The additive genetic cor-
relation (rA) between each pair 
of sites for the H (a) and DBH 
(b) varied with age

Table 4   The Pearson correlation 
between the difference in 
climatic indicators and rA

DT, DTM, DTm, DRH, and DPP represent the absolute difference in annual average T, TM, Tm, RH, and 
PP. DRH.Jan and DRH.Feb are the differences in monthly average RH in January and February, respec-
tively. DTM.Apr, DT.July and DTm.Oct denote the difference in monthly average TM in April, T in July 
and Tm in October, respectively. **P < 0.01; *P < 0.05, and the same as below

Trait Difference in annually average climatic 
indicators

Difference in monthly average climatic indicators

DT DTM DTm DRH DPP DRH.Jan DRH.Feb DTM.Apr DT.July DTm.Oct

H −0.23 0.13 −0.57 −0.55 0.15 −0.61* −0.71** 0.15 −0.66* 0.24
DBH −0.15 0.21 0.004 −0.50 0.29 0.0032 0.26 −0.59* 0.33 −0.61*

Table 5   The multivariate regression using rA of H and DBH as 
response variable and climatic indicators as predictors

R2 is adjusted and represents the explained variation

Trait Climatic indicators Coefficients R2 (%)

H DRH.Feb −0.016** 74.21
DTM.Apr −0.019*
DT.July −0.074*

DBH DTm.Oct −0.019* 30.66
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also reported that heritability changes with age in radiata 
pine, which might be related to the impact of early planting, 
different sampling and measurement methods, and greater 
environmental impacts. With age, the heritability of both 
H and DBH fluctuated, but the DBH showed a larger value 
at both the individual and family levels at almost all ages, 
indicating that DBH was more strongly controlled by genet-
ics, and similar results were also observed in many other tree 
species (Dieters et al. 1995; Hiraoka et al. 2019; Kusnandar 
et al. 1998).

Monthly average climate indicators correlated 
with G × E

Previous studies of many tree species have shown that the 
latitude, altitude, rainfall, precipitation, temperature, and 
other factors might be the driving factors underlying the 
G × E interaction effects that influence accurate selection, 
some of which have confirmed the importance of G × E 
interaction effects (Raymond 2011; Rweyongeza 2011; 
Cullis et al. 2014; Chen et al. 2017; Wu et al. 2021). In this 
study, due to the limitation in the number of tested sites, 
we conducted a correlation analysis on the differences in 
the rA and its corresponding climate factors between two 
sites in multiple years to make full use of the environ-
mental information during different years. Although the rA 
correlation with the difference in annual average climate 

factors was not significant, it was surprising that the DTM 
between any two sites positively correlated with their rA, 
suggesting little impact of genotype and environment 
interactions, although Liriodendron is reportedly sensitive 
to low temperatures (Lu et al. 2015). This finding might 
be related to the fewer tested sites, large standard error of 
the rA estimation at some ages, and etc. Furthermore, the 
rA was significantly correlated with some monthly aver-
age climate factors, in which the DRH.Jan, DRH.Feb and 
DT.July were significantly negatively correlated with the 
rA of H, indicating that these three climatic factors were 
closely related to the G × E interaction effect on H. Other-
wise, for DBH, the monthly average DTM in April( DTM.
Apr) and DTm in October had a highly negative significant 
correlation with rA, which was different from that of trait 
H, suggesting that growth traits might respond distinctly 
to different environments, resulting in differences in their 
correlations with rA. Lauer et al. (2021) adopted multivari-
ate regression to analyze the linear relationships between 
genetic correlations and differences in environmental 
factors in P. taeda; they also showed that H and DBH 
responded differently to the linear relationships between 
environmental factors at the test sites, and the difference in 
altitude could explain additional environmental factors that 
influence G × E interaction effects aside from temperature. 
Chen et al. (2017) also found that spring and autumn cold 
indices, annual average temperature, and altitude were all 

Fig. 4   Scatter plots of HMRPGV of DBH vs. HMRPGV of H across 
ages. H4, H5, H6, H7 and H8 represent the H at ages 4, 5, 6, 7 and 8, 
respectively. DBH4, DBH5, DBH6, DBH7 and DBH8 also represent 
the DBH at ages 4, 5, 6, 7 and 8, respectively. The two dashed lines, 

which are separately perpendicular to the X and Y axes, represent the 
selection intensity of 30%. The red points located in the upper right 
part of the intersection of the two lines represent the families selected 
on both H and DBH by the value of the HMRPGV
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significantly Pearson correlated with genetic correlation 
between sites, but further stepwise regression showed that 
only the first two had significant effects, indicating that 
they were the main driving factors of G × E for H in Nor-
way spruce. In our study, multivariate regression analysis 
showed that DRH.Feb, DTM.Apr and DT.July had a sig-
nificant effect on rA in H, with explaining a greater total 
variation (74.21%); while in DBH, only DTm.Oct made 
the main contribution to rA, and the explained variation 
was 30.16%, which was all greater than 27.8% that in the 
study of Chen et al. (2017). Therefore, these significant 
variables with large variation might make the responses 
of different traits various, which further contributed to the 
understanding of G × E interaction effects on Liriodendron 
and should be given more attention in forestry promotion 
and planting efforts in the future.

Comprehensive selection for elite genotypes

In addition to the influence of climatic factors mentioned 
above, trees with diverse genotypes also respond differently 
to environmental conditions, resulting in differences in geno-
type performance and even changes in genotype ranking; 
these factors compromise breeding selection (Raymond 
2011; Zhao et al. 2015). There are two main breeding strat-
egies to address these factors: one is to select a genotype that 
is suitable for a specific location, and the other is to select a 
genotype with a wide range of adaptability.

GGE biplots and HMRPGV analysis have been applied 
in many studies investigating G × E interaction effects 
(Yan et al. 2007; Zhang et al. 2018; de Souza et al. 2020; 
Evangelista et al. 2021). HMRPGV considers adaptability, 
stability, and productivity simultaneously (Resende 2007), 
while GGE biplots provide a visual advantage but are lim-
ited by model requirements for balanced data (Yan et al. 

Fig. 5   GGE biplots of growth traits. The GGE biplots were created 
based on the adjusted phenotypic means by multiage-single-site anal-
ysis. AXIS1 and AXIS2 represent the first and second principal com-
ponents (PCA 1 and PCA 2), respectively, and also indicate the varia-
tion explaining the proportion on each axis. The blue letters represent 
different sites, and the green letters represent the different families in 

each biplot. The blue and green lines with a small circle are average 
environmental vectors. a and d: “Which Won Where/What” biplots 
for H (a) and DBH (d). b and e: “Discriminativeness vs. representa-
tiveness” biplots for H (b) and DBH (e). c and f: “Mean vs. Stability” 
biplots for H (c) and DBH (f)
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2007). Forest tree test sites are relatively complicated, 
the environmental conditions are heterogeneous, and 
data imbalances are common in data collected from these 
sites. In view of these limitations to forestry applications, 
Zhang et al. (2018) proposed combining a spatial BLUP 
model with a GGE one to avoid the above constraints; 
they demonstrated that this approach was more reliable 
than direct GGE analysis. Thus, in this study, we referred 
to their method. This approach allowed us to consider age 
effects comprehensively and was more convenient and reli-
able than analyzing the average values from single-age or 
multiage trees (Arief et al. 2019).

In this study, the “which won where/what” assessment 
of the biplots showed that the most suitable genotypes for 
H and DBH, namely Lt4 families, were found at the XS 
site. This result suggested that genotype Lt4 was more spe-
cifically adapted to the environment at site XS than at sites 
JDZ and JX. However, at the JDZ site, the best-performing 
genotypes for the H and DBH were different, indicating 
that the traits had different adaptive responses to differ-
ent environments and reflecting the necessity of compre-
hensive selection for multiple traits (Olivoto and Nardino 
2020). Additionally, to the extent possible, an ideal test 
site should have strong discriminativeness and representa-
tiveness (Yan 2001). Among the three sites tested in this 
study, the JX site was more conducive to distinguishing 
the different genotypes by H and DBH, respectively, and 
the angle between site XS and JX in H was larger than 90°, 
indicating that they were strongly negatively correlated, 
which was also in agreement with their rA. Site JDZ was 
closer to the average environmental vector for both the 
H and DBH, and could therefore be used as test sites for 
selecting a genotype to adapt to a specific environment.

When selecting for productivity and stability simultane-
ously, we found that the GGE biplots of both the H and the 
DBH showed that, among all genotypes, those of the Lt3, 
Lt5, Lt7 and Lt20 families performed better. This result 
was similar to those from the HMRPGV ranking. Although 
the HMRPGV ranking of the families varied by different 
traits and ages, these four families were always selected as 
superior genotypes during the comprehensive considera-
tion of these variations. Thus, the four common families 
(Lt3, Lt5, Lt7 and Lt20) were finally selected as the elite 
families. Similarly, de Souza et al. (2020) in C. citriodora, 
Evangelista et al. (2021) in soybean, and Yuan et al. (2021) 
in P. massoniana successfully identified superior stable 
genotypes through HMRPGV analysis. The excellent and 
stable L. tulipifera genotypes identified in this study can 
help increase the productivity of L. tulipifera plantations 
and these trees can be planted and popularized in regions 
similar to the test site in the future.

Notably, the number of sites tested in this study was 
limited; more quantitative and diverse genotypes should be 

included in future trials. Moreover, considering that G × E 
interactions can help to not only accurately evaluate geno-
types in conventional breeding but also improve the accu-
racy of prediction through genome selection (Bajgain et al. 
2020), which can in turn help to determine G × E interaction 
effects (Li et al. 2017), G × E interactions are highly impor-
tant to accelerating the breeding process.

Conclusions

There were found substantial variations in growth traits at 
different sites and ages, resulting in differing EBV ranking. 
The rA among sites reflected the existence of G × E effects 
and displayed different age trends in different site pairs and 
traits; thus, the effects of these factors should not be ignored 
during genotype selection. Notably, the absolute difference 
in some monthly average climatic indicators correlated 
with rA and might affect the G × E interaction on growth 
traits; therefore, these indicators should be more carefully 
considered when considering the deployment of new varie-
ties in the future. Based on a comprehensive evaluation, we 
identified four families (Lt3, Lt5, Lt7 and Lt20) that exhib-
ited excellent performance in growth and adaptation. These 
four families could be used as elite genotypes for future 
deployment.
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