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Abstract
Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from 
Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using 
different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were 
evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on 
the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather 
all these questions in the same document, so that they serve as support for the planning of forest management. This study 
analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine 
stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, 
but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations 
than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud 
produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density 
did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sam-
pling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the 
variance of the stand structure variable.

Keywords  Structure from motion (SfM) · Airborne laser scanning (ALS) · Return density · Sampling intensity · Data 
source · DTM normalization · Forest structure · Remote sensing

Introduction

The sustainable management and conservation of forest 
resources require a deep knowledge of the stand character-
istics, as well as their distribution and organization, neces-
sary to define the forest structure (Spies and Franklin 1991; 
Smith et al. 1997; Zimble et al. 2003). From a static point of 
view, the most relevant features are the diametric classifica-
tion, the size of the tree crown and their specific composi-
tion, considering their spatial distribution both vertical and 
horizontal (del Río et al. 2003).

Classic forest inventories play a key role in the For-
est Management Plans (FMP), which are based on in situ 
measurements over a disperse sample of field plots all 
over the stand (Fankhauser et  al. 2018). Then, these 
measurements are translated into stand variables, such 
as stand density, dominant height, basal area, volume or 
above-ground biomass. Finally, the population values are 
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estimated throughout statistical operations. This tradi-
tional technique is effective, but it is not always efficient 
(Pascual et al. 2008), especially in those stands with irreg-
ular topography and adverse meteorology, where the field 
work is more demanding. In addition, the variability of 
the stand is not always correctly represented by the initial 
sampling (Meyer et al. 2013), which involves the neces-
sity of alternative techniques to the traditional inventories.

Remote sensing offers ex-situ high-resolution informa-
tion, more extensive both spatially and temporally than 
conventional inventories (Fankhauser et al. 2018). Ini-
tially, aerial images were used to complement the field 
measurements (Franklin 2001). Despite the subjectivity of 
this approach (Skidmore 1989; Franklin 2001; in Pascual 
et al. 2008), the field sampling design and the subsequent 
estimations improved (Magnussen et al. 2006). However, 
this 2D remote sensing technology (orthophotographs or 
satellite images) is not able to detect the complexity of 
forest stands. Therefore, other remote sensing techniques 
were required. Active sensors such as LiDAR (Light 
Detection and Ranging) or passive sensors such as pho-
togrammetry are capable to generate 3D models of the 
forest, which increases the stand information (Fankhauser 
et al. 2018).

LiDAR is based on the emission of laser beam pulses 
and their return intervals, which together with an accurate 
geolocation and orientation of the sensor, allows to produce 
faithful representations of the reality in a point cloud form. 
The use of Aerial Laser Scanning (ALS) is common since 
the beginning of the twenty-first century, although it has 
some limitations associated with its high cost of acquisi-
tion and processing (Hummel et al. 2011), which makes 
these data sources cost-effective only on a relatively large 
scale (Koch 2013). However, some countries such as the 
United States of America (Veneziano et al. 2002; Cunning-
ham et al.; 2004; in Jakubowski et al. 2013), or those within 
the framework established by the INSPIRE Directive of the 
European Union, have free access to large-scale ALS data, 
although with low-density (Jakubowski et al. 2013) and 
scarce periodicity (Iglhaut et al. 2019).

On the other hand, Digital Aerial Photogrammetry (DAP) 
techniques, such as Structure from Motion (SfM), are also 
able to create three-dimensional scenes, but more affordable 
(White et al. 2013), especially because of the improvements 
of the processing software (Probst et al. 2018) and the versa-
tility of the measurement technology (Colomina and Molina 
2014). SfM is based on overlapping photographs, so that the 
same scene is perceived from at least two points of view. 
These sensors could be equipped either in manned aircrafts 
to cover high range extensions or in compact Unmanned 
Aerial Systems (UAS) for small forest stands, which make 
them suitable to evaluate the dynamics of the forest fre-
quently (Malambo et al. 2018). In contrast, the quality of 

the Digital Terrain Model (DTM) is their main limitation, 
especially in high density stands (Iglhaut et al. 2019).

In the last 20 years, an extensive bibliography has shown 
the potential of ALS for the evaluation of forest structure, 
either for individual tree parameters (Persson et al. 2002) or 
for stand properties (Means et al. 2000, Naesset 2002). In 
addition, it could be used in a wide range of forest ecosys-
tems, such as boreal forests (Maltamo et al. 2006; Næsset 
2007; Hyyppä et al. 2008), central Europe temperate forests 
(Hollaus et al. 2009; Latifi et al. 2010; Breidenbach et al. 
2010), or even in tropical forest (Drake et al. 2002; Razak 
et al. 2013; Magdon et al. 2018) despite the inaccuracy of 
DTM (Salleh et al. 2015) and the rapid dynamics of the 
tropical stands (Razak et al. 2013) in the latter. Therefore, 
ALS is currently the most extended technology in terms 
of forest evaluation. Recently, small differences have been 
shown when estimating some stand structure variables, such 
as timber volume, canopy height and basal area, using either 
ALS or DAP (Nurminen et al. 2013; Straub et al. 2013; Pitt 
et al. 2014; Gobakken et al. 2015) even at large-scale areas 
(Rahlf et al. 2017). Those authors coincide in the normali-
zation of the DAP point clouds using a DTM from ALS 
data. However, there are other possibilities, for example, to 
extract a DTM using the own DAP point cloud, since the 
latter could have similar accuracy than the former depending 
on the stand density (Wallace et al. 2016).

Return density is a relevant feature, regardless of its 
source. The acquisition cost for ALS data is directly related 
to the pulse density, especially for large areas of interest 
(Jakubowski et al. 2013). The effect that this parameter 
has on the evaluation of the stand structure variables has 
been widely studied (e.g. Treitz et al. 2012; Jakubowski 
et al. 2013; Singh et al. 2015). Furthermore, ALS data are 
in some countries free access, low-density return clouds 
intended mainly for the extraction of the DTM (Veneciano 
et al. 2002, Cunningham et al. 2004, IGN 2019). In general, 
there were no significant differences on the estimation of 
the stand structure variables when reducing the point cloud 
density (Goodwin et al. 2006; Takahashi et al. 2010; Tes-
famichael et al. 2010), apart from those cases with a paltry 
number of points (0.004 points m−2), in which the errors 
increased exponentially (Magnusson et al. 2007).

On the other hand, the sampling intensity (sampled area 
in relation with the total area of the stand) has also an eco-
nomic impact on the FMP. In Spain, for instance, every 
administrative region develops its own FMP based on the 
common guidelines established by the National Forest Plan 
(NFP), which is revised every 10 years. Some other coun-
tries also implement their own legal forest management 
documents (Lisańczuk et al. 2020), in which a maximum 
sampling error (es) is established to statistically evaluate 
the forest resources. That parameter is the first step of the 
sample size design, since it allows to calculate the minimum 
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number of sampling plots needed as a function of both the 
stand variance and the level of confidence. A higher number 
of plots would be set up in terms of other characteristics, 
such as the objective of the sampling design or the avail-
ability of auxiliary information.

Usually, the sample size is evaluated in absolute terms 
rather than in relative values (sampling intensity). For 
instance, Gobakken et al. (2013) established a minimum 
sample size of 40 plots of 250 m2 in a mixed Norway spruce 
(Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris 
L.) forest of 1000 ha. Bouvier et al. (2019) agreed with the 
number of plots but differed in size (530 m2) to estimate 
the above-ground biomass in Maritime pine (Pinus pinaster 
Aiton) stands of 6000 and 8000 ha. Finally, Stereńczak et al. 
(2018) did not find significant differences in sample sizes 
higher than 100 plots of 500 m2 in 8500 ha of mixed forest 
dominated by Scots pine. The main problem of consider-
ing the absolute value of sample size is that the results are 
difficult to apply in other areas of interest, since the design 
depends on the extent of the stand. Therefore, it is more suit-
able to use relative results, for comparison among studies.

The objective of this study is to compare ALS and SfM 
data sources for the estimation of the main stand structure 
variables: above-ground biomass (AGB), volume over bark 
(V), stand density (N), quadratic mean diameter (QMD), 
Hart’s dominant height (Ho), and stand basal area (G) to 
establish a basis for the decision making and design of 
remote sensing-assisted field inventories. Moreover, the 
normalization of the point clouds with different DTM 
typologies was analysed: private high-density ALS, public 
low-density ALS and SfM. Finally, the effect of the return 
density and sampling intensity, as well as the associated 
errors were evaluated.

Materials and methods

Study area

The study area, with an extension of 141.91 ha, was located 
in the western hillside of the Fuenfria Valley (40°45ʹN, 
4°5ʹW), in the northwest of Madrid, Spain (Fig. 1). Eleva-
tion ranged between 1300 and 1820 m above sea level, with 
an average slope of 42%. The mean annual temperature was 
9.4 °C and mean precipitation was 1180 mm/year. Scots pine 
(Pinus sylvestris L.) was the dominant species throughout 
the study area, which was accompanied by Pyrenean oak 
(Quercus pyrenaica Willd.), especially in the lower part of 
the hillside. As the elevation increases, the forest was less 
dense and rocky outcrops with Cytisus scoparius (L.) Link., 
C. oromediterraneus Rivas Mart. et al. and Genista florida 
L. shrubs appear. Most of the area faced east.

Data

Field inventory

A systematic sampling was carried out to measure 60 circu-
lar sample plots (r = 18 m), covering the study area (Fig. 1). 
The first plot was randomly located, while the others were 
set up according to a regular grid with 150 m of separation 
between contiguous plots. The total sampling area amounted 
to 6.11 ha, which represented a sampling intensity of 4.34%. 
Field measurements were conducted between October 2013 
and January 2014. On each sample plot, slope, orientation, 
shrub cover, and regeneration were recorded, and the diame-
ter at breast high (DBH) of all trees over 1.3 m in height was 
calipered. In addition, both the total height and the height 
to the first live branch of four trees (three dominant and one 
co-dominant trees) were measured with a Häglof Vertex III 
hypsometer. Finally, the species and the phytosanitary status 
for each tree were recorded. The coordinates of each plot 
were first accurately obtained with a differential GPS (Top-
con HiperPro) and then processed and corrected. With all 
this information, six typical stand structure variables were 
identified for each plot. The above-ground biomass (AGB) 
was computed based on the formulas described in Montero 
et al. (2005). On the other hand, the volume over bark (V) 
required the design of some regression models to relate that 
variable to the DBH. The computes were performed accord-
ing to Tordesillas (2014; Eq. 1 for pine and Eq. 2 for oak). 
The four remaining variables were stand density (N), quad-
ratic mean diameter (QMD), Hart’s dominant height (Ho), 
and stand basal area (G). A general description of the stand 
structure variables is presented in Table 1.

where V  is the volume over bark in dm3 and DBH is the 
Diameter at Breast Height in cm.

Remote sensing data

ALS data were collected in July 2011 using a Leica ALS70-
HP laser scanning system with a 200 kHz pulse rate and a 
21 Hz scan frequency. The flight was composed of 7 passes 
at an elevation range between 625 and 1200  m above-
ground, with a scan angle (FOV) of 14°. Every pass cov-
ered an average width of 400 m. All these configurations 
resulted in a total covered area of 220.3 ha with an aver-
age scan density of 24.88 returns m−2. On the other hand, 
the SfM point cloud was generated by processing 17 free-
access and high-quality pictures using Agisoft Photoscan 
software. These pictures were published by the National 

(1)Vpine = 1.044 ⋅ e−2.91498+2.63738 ⋅ ln(DBH)

(2)Voak = 1.048 ⋅ e−2.7762+2.58453 ⋅ ln(DBH)
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Geographic Institute of Spain (IGN) in 2011 along with the 
National Aerial Orthography Plan (PNOA). The number 
of control points used for image referencing over the study 

area, according to the Agisoft photoscan software proce-
dure, was six. This procedure provided a root-mean-square 
error (RMSE) of 0.16 m (RMSE in Z = 0.15 m), which were 

Fig. 1   Study area with the location of the 60 field sampling plots measured in 2013. Fuenfría Valley, Cercedilla, Madrid (Spain)
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considered sufficient. SfM point cloud had an average den-
sity of 8.13 returns m−2 (Table 2).

Digital terrain models

Both ALS and SfM data were normalized with three differ-
ent types of DTM. Two of them were generated from ALS 
data, our private ALS flight (DTMALS) and the free-access 
PNOA ALS (DTMPNOA), while the third one was derived 
from the SfM point cloud (DTMSfM). The DTMALS was gen-
erated with the highest point cloud density (Table 2) with a 
spatial resolution of 1 m, while the DTMPNOA, which came 
from a 0.5 returns m−2 cloud, had a spatial resolution of 
5 m. The DTMSfM was compared with the public DTMPNOA, 
by means of height difference (Z) in each of the cells. The 
average (± standard deviation) height difference between 
DTMSfM and DTMPNOA was 0.53 ± 1.77 m, which was con-
sidered acceptable, taking into account the low resolution 
of the DTMPNOA and the high slope of the study area (42%). 
The spatial resolution of the DTMSfM was 0.37 m (Table 2).

Data processing

Reduction in point cloud density

Since ALS and SfM files had different scan densities, 
both were decimated to a homogeneous density of 6.5 

returns m−2. From this start return density, both datasets 
were recursively decimated by thinning them a 50% at 
each step until they reached a scan density of 0.5 returns 
m−2. In this way, five density files were derived for each 
point cloud (6.5, 4, 2, 1 and 0.5 returns m−2), to study the 
effects of scan densities on the stand properties. A mini-
mum density of 0.5 returns m−2 was established in this 
analysis to make it coincident with the PNOA public data. 
The decimation process was automatized using RStudio (R 
core team 2019) with “lasfilterdecimate” function of the 
“lidR” package. At each step of decimation, the highest 
scan density file (6.5 returns m−2) was used to derive the 
subsequent ones, in order to minimize the errors in future 
stages. A maximum error of 0.01 returns m−2 in the aver-
age density was established to obtain each file.

Calculation of return metrics

For the calculation of return metrics, two successive stages 
were developed in Fusion 3.80. First, the sample plots 
were extracted for each data file using “clipdata” func-
tion. Once this was completed, all metrics were obtained 
with “cloudmetrics” function. A height break of 3.5 m was 
set up to exclude trees with DBH lower than 7.5 cm. This 
process was repeated and automatized for each data and 
density file with RStudio. As a result, 93 return, height and 
intensity metrics were obtained.

Model analysis

Elimination of atypical field plots

Those sampling plots out of range for each stand structure 
variables were considered as an outlier and were previ-
ously removed from the model analysis. The range limits 
were established by 1.5 times the interquartile range (IQR) 
below and above the first and third quartiles, respectively, 
according to the Tukey’s method (Tukey 1977), since the 
data sets were normally distributed (Seo 2006).

Table 1   Descriptive statistics 
of the stand structure variables 
based on data from the study 
area field inventory (60 sample 
plots)

Statistic N (trees ha−1) G(m2 ha−1) V (m3 ha−1) QMD (cm) Ho (m) AGB (t ha−1)

Minimum 19.60 0.84 3.31 19.21 8.45 3.30
Q1 270.18 24.66 183.72 27.94 15.19 121.83
Q2 383.15 34.24 236.58 31.21 17.04 163.64
Q3 569.83 40.60 302.89 39.59 19.98 201.93
Maximum 1237.90 56.12 542.40 57.34 24.01 306.30
Mean 422.45 32.89 252.70 33.58 17.35 165.23
SD% 56.61 37.30 46.97 22.94 19.03 38.96

Table 2   Descriptive statistics of the point cloud density and DTM 
resolution. Return density was evaluated in a 5  m × 5  m pixel grid. 
Numbers in table refers to return density data (returns m-2)

Statistic ALS SfM PNOA

Minimum 0.04 0.04 –
Q1 10.64 7.20 –
Q2 19.00 8.20 –
Q3 33.08 9.32 –
Maximum 543.16 26.10 –
Mean 24.88 8.13 0.5
DTM resolution (m) 1.00 0.37 5.00
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Selection of explanatory variables

Intensity return metrics were not considered as predictor 
variables (PV) in this analysis, since they need calibration 
before use (García, et al. 2010). The PV selection was real-
ized according to two criteria: i) the highest Pearson’s corre-
lation with the response variable; (ii) non-collinearity among 
predictors. The process was automatized in RStudio in a 
loop form. First, the program evaluated the Pearson’s corre-
lation of all PV with the response variable and selected that 
with the highest coefficient. Then, the correlations among 
the selected predictor and the other ones were performed. 
The selection threshold of noncollinear PV was set at a 
Pearson’s correlation coefficient of ≤ 0.7. All the predictor 
candidates are presented in Table 3.

Design of regression models

The best multiple linear regression model (MLRM) was 
searched for every stand structure variable on each combi-
nation of data source and DTM. For that, the metrics from 
the maximum return density file (6.5 returns m−2) of all 
sample plots, excluding the outliers, were used in RStudio. 

MLRM were carried out according to a stepwise ordinary 
least squares (OLS) regression (“ols_step_both_p” function 
of the “olsrr” package), removing from the models any PV 
with a partial F statistic with a significance level greater than 
0.05 (Gobakken and Naesset 2008). In addition, both the 
original explanatory variable and its logarithmic transfor-
mation were considered as different scenarios of the model 
design, correcting in this last case the bias of predictions 
(Strimbu et al. 2018). Finally, the normality, heteroscedas-
ticity and independence test of residuals were, respectively, 
analysed according to Kolmogorov–Smirnov (KS test; “ks.
test” function; “stats” package), Breusch–Pagan (BP test; 
“bptest” function; “lmtest” package) and Durbin–Watson 
(DW test; “dwtest” function; “lmtest” package) at 0.05 sig-
nificance level.

Bootstrap

Every MLRM was validated in a 1000 repetitions bootstrap 
analysis for each return density in different sampling inten-
sity scenarios (0.3, 0.7 1 1.4 2 2.7 and 3.4%), obtaining in 
each repetition the adjusted coefficient of determination (r2) 
and RMSE. A simple random sample of plots (training plots) 

Table 3   Code and description of predictor candidates for the design of the Multiple Linear Regression Models (MLRM)

Code Description Code Description

TRC​ Total Return Count H_Lcv Height L-moment CV
TRC_3.5 TCR above 3.5 m H_Lskew Height L-moment skewness
Ri_3.5 Return 1 2 and 3 count above 3.5 m H_Lkur Height L-moment kurtosis
H_min Height minimum CRR​ Canopy Relief Ratio
H_max Height maximum H_SQRT Elev_SQRT_mean_SQ
H_mean Height mean H_CURT​ Elev_CURT_mean_CUBE
H_mode Height mode FR_3.5 First returns above 3.5 m
H_SD Height standard deviation AR_3.5 All returns above 3.5 m
H_var Height variance PFR_3.5 First returns above 3.5 m (%)
H_CV Height coefficient of variation PAR_3.5 All returns above 3.5 m (%)
H_IQ Height interquartile range FR_mean First returns above mean
H_skew Height skewness FR_mode First returns above mode
H_kur Height kurtosis AR_mean All returns above mean
H_AAD Height average absolute deviation AR_mode All returns above mode
H_MADmed Median of the absolute deviations from overall median PFR_mean First returns above mean (%)

PFR_mode First returns above mode (%)
H_MADmod Median of the absolute deviations from overall mode PAR_mean All returns above mean (%)

PAR_mode All returns above mode (%)
H_Li Height L-moments (L1, L2, L3, L4) TFR Total first returns

TAR​ Total all returns
H_Pi Height percentile values (1st, 5th 10th 20th 25th, 30th, 

40th, 50th (median), 60th, 70th, 75th, 80th 90th, 
95th, 99th)

AR_3.5_TFR All returns above 3.5 m relative to the total first returns 
(%)

ARmean_TFR All returns above mean relative to the total first returns 
(%)

ARmode_TFR All returns above mode relative to the total first returns 
(%)
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referring to the required sampling intensity was taken for each 
repetition of the model re-calculation, which was validated 
using the remaining plots (testing plots) based on a cross-val-
idation analysis. Previously, it was verified that the sample of 
training plots had the same distribution as the plots used dur-
ing the model design, by means of the Kolmogorov–Smirnov 
test. Given that the re-calculated model was only applicable in 
the same range of values of training plots, those testing plots 
out of that range were not considered for the validation pro-
cess. Apart from assessing the factor effect, two relative error 
parameters were calculated: i) simple random sampling error, 
eSRS (Eq. 3); (ii) regression sampling error, er (Eq. 4).

where Sy was the sampling standard deviation of variable 
y; n was the sample size; f  was the proportion between 
the sample size and the population; t

�;n−1 was the Student 
t-distribution parameter with � = 0.05 significance level and 
n − 1 degrees of freedom; r was the Pearson’s correlation 
coefficient, and mean is the average sample value of each 
variable. In this analysis, f  was disregarded, while just the 
Pearson’s correlation between the explanatory forest struc-
ture variable and the first predictor was considered.

Analysis of variance

To assess the effects of the different factors on the estima-
tion of each stand structure variable, two types of analysis 
of variance (ANOVA) tests were performed. Firstly, a simple 
ANOVA test was carried out to evaluate significant differences 
(95% level of confidence) between eSRS and er (for both ALS 
and SfM regression models). Secondly, that same test was used 
to assess the influence of return density on the estimation of 
the stand structure variables. Finally, a multiple ANOVA test 
was developed to evaluate the influence of sampling intensity, 
data source and DTM, as well as their interactions. ANOVA 
used the F statistic to assess the significance of the parameters, 
while the Fisher’s Least Significant Difference test (LSD) was 
used to establish the confidence interval and to evaluate the 
differences between each parameter level. These computations 
were carried out in Statgraphics Centurion 18 (v. 18.1.13).

(3)eSRS(%) =
tα;n−1 ⋅ Sy ⋅

√

1−f

n

mean
⋅ 100

(4)er(%) =
eSRS ⋅

√

1 − r2

mean
⋅ 100

Results

Base models

Regardless of the combination of data source and DTM 
normalization, the models of both N and QMD showed 
the poorest fits (Table 4). The former presented a r2 range 
from 0.50 to 0.56, while the latter ranged between 0.45 
and 0.57. In addition, the DW p values were lower than 
0.05 in all the N and in half of the QMD models, meaning 
collinearity at a 95% confidence level. The BP p value 
of the QMD model with ALS predictors normalized with 
DTMPNOA (ALSPNOA) was also lower than the significance 
threshold (Table 4). Therefore, both stand structure vari-
ables were not considered in this study.

On the other hand, the remaining stand structure vari-
ables produced suitable MLRM. They did not present 
problems either in normality, in heteroscedasticity or 
in collinearity of their residuals, since the KS, BP and 
DW p values were higher than 0.05 (Table 4). In general, 
the ALS predictors produced significantly better estima-
tions than the SfM ones. The MLRM for V carried out 
the best fits, with r2 in the range of 0.85–0.87 with ALS 
and 0.81–0.83 with SfM predictors, closely followed by 
Ho, which produced the best MLRM with ALS predic-
tors normalized with both the DTMALS and the DTMPNOA 
(r2 = 0.81; Table 4). However, the alternative exponential 
model (logarithmic transformation of the response vari-
able) was used in three of the six study cases (ALSSfM, 
SfMALS and SfMPNOA), to solve the collinearity (DW p val-
ues < 0.05) of the residuals produced after the regression 
with the non-transformed Ho variable. Finally, both the G 
and the AGB models also showed better estimations using 
the ALS rather than the SfM metrics (Table 4). Basal area 
produced MLRM with the same r2 values for all the ALS 
study cases (r2 = 0.80), which was subsequently trans-
lated into small differences in RMSE (15.49%-15.67%), 
while the SfM models showed r2 in the range of 0.72–0.75 
(Table 4). Similarly, the AGB regression models were 
better for ALS (r2 = 0.78–0.79; RMSE = 16.42–16.77%) 
than for SfM point cloud metrics as predictor variables 
(r2 = 0.74–0.78; RMSE = 16.68–17.92%; Table 4).

Regarding the point cloud normalization, no signifi-
cant differences in the LSD test were found between the 
DTMALS and the DTMPNOA, which had similar r2 for most 
of the MLRM, but higher than the SfM models (Table 4). 
The greatest differences between the point cloud normali-
zation with a LiDAR-based instead of the DTMSfM were 
found in the Ho models, with r2 = 0.81 in the ALSALS and 
the ALSPNOA models, clearly higher than the ALSSfM 
model (r2 = 0.67). The RMSE% values were inversely pro-
portional to the r2 results in all the study cases, being the 
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Ho the variable that produced the lowest errors (Table 4). 
However, a remarkable effect was found when using the 
DTMSfM: ALSSfM models were less accurate than the 
ALSALS and ALSPNOA regressions, while normalizing the 
SfM point cloud with its own DTM produced better esti-
mations than normalizing it with a LiDAR-based DTM. 
For instance, r2 values of 0.75 and 0.83 were found for 
the SfMSfM models of G and V, respectively, higher than 
0.72 and 0.81 shown by the SfMALS and SfMPNOA models 
(Table 4).

Sampling errors

Both eSRS and er were inversely proportional to the sam-
pling intensity (Fig. 2). However, the former was signifi-
cantly higher than the latter in every variable of interest (F 
statistic p value < 0.05). Therefore, the auxiliary information 
from both SfM and ALS let to reduce the sampling error as 
compared to that of the field inventory alone. Considering 
ALS regression, er was 51% for G (Fig. 2A), 58% for V and 
Ho (Fig. 2B and C, respectively) and 44% for AGB (Fig. 2D) 

Table 4   Predictors and 
results of the Multiple Linear 
Regression Models (MLRM) for 
every stand structure variable 
and for each combination of 
data source (ALS and SfM) 
and DTM normalization (ALS, 
PNOA and SfM). PNOA: DTM 
provided by the National Aerial 
Orthography Plan. F statistic 
p values for Kolmogorov-
Smirnov (KS), Breusch-Pagan 
(BP) and Durbin-Watson (DW) 
tests lower than 0.05 are in 
bold. (1): RMSE relative to 
the logarithmic transformed 
variable

Variable Data source
DTM Predictors r2 RMSE (%) KS BP DW

N ALSALS PFR_3.5; H_P30; H_Lkur 0.55 31.95 0.96 0.75 0.00
ALSPNOA PFR_3.5; H_P30; H_Lkur 0.56 31.74 0.98 0.68 0.01
ALSSfM PFR_3.5; H_mode 0.55 31.95 0.64 0.57 0.00
SfMALS PFR_3.5; H_P20 0.51 33.31 0.55 0.17 0.01
SfMPNOA PFR_3.5; H_P20 0.52 33.08 0.69 0.17 0.01
SfMSfM PFR_3.5; H_P10; H_P01 0.55 32.11 0.78 0.31 0.00

G ALSALS FR_mean; H_mean; H_MADmod 0.80 15.49 0.73 0.09 0.58
ALSPNOA FR_mean; H_SQRT; H_MADmed 0.80 15.63 0.68 0.15 0.61
ALSSfM AR_mean; H_P75 0.80 15.67 0.97 0.32 0.59
SfMALS PFR_mean; H_P05 0.72 18.53 0.56 0.09 0.75
SfMPNOA PFR_mean; H_P05 0.72 18.44 0.61 0.10 0.75
SfMSfM PFR_mean; H_P60 0.75 17.36 0.79 0.22 0.50

V ALSALS H_P30; PAR_3.5 0.87 15.18 0.88 0.26 0.19
ALSPNOA H_P25; PAR_3.5 0.87 15.23 0.82 0.23 0.20
ALSSfM H_P50; PAR_3.5; TRC​ 0.85 16.33 0.77 0.84 0.23
SfMALS H_P20; FR_mean; H_Lkur 0.81 18.54 0.63 0.20 0.11
SfMPNOA H_P20; FR_mean; H_Lkur 0.81 18.19 0.56 0.21 0.11
SfMSfM H_P40; FR_mean 0.83 17.27 0.95 0.53 0.15

QMD ALSALS H_P95; R1_3.5; H_mode; H_L4; H_P01 0.54 15.43 0.83 0.08 0.12
ALSPNOA H_P95; R1_3.5; CRR​ 0.51 15.81 0.94 0.02 0.01
ALSSfM H_P75; PFR_3.5 0.49 16.21 0.93 0.09 0.06
SfMALS H_P90; PFR_3.5; CRR​ 0.58 14.71 0.53 0.69 0.00
SfMPNOA H_P90; PFR_mode; CRR​ 0.47 16.52 0.91 0.75 0.04
SfMSfM H_P90; PFR_mode 0.45 16.80 0.41 0.60 0.15

Ho ALSALS H_P30; PAR_3.5 0.81 7.83 0.92 0.99 0.09
ALSPNOA H_P30; PFR_mode 0.81 7.71 0.91 0.61 0.17

ln(Ho) ALSSfM H_mean 0.67 3.69(1) 0.36 0.21 0.11
SfMALS H_P30; PFR_mean 0.76 3.14(1) 0.57 0.30 0.06
SfMPNOA H_P25; FR_mean 0.75 3.21(1) 0.88 0.13 0.07

Ho SfMSfM H_P60; PFR_mean 0.76 8.72 0.91 0.66 0.05
AGB ALSALS H_P30; PAR_3.5 0.78 16.52 0.88 0.16 0.62

ALSPNOA H_P30; PAR_3.5 0.79 16.42 0.95 0.19 0.58
ALSSfM H_P40; TRC_3.5 0.78 16.77 0.92 0.32 0.61
SfMALS H_P25; FR_mean; H_Lkur 0.74 17.92 0.88 0.49 0.65
SfMPNOA H_P25; FR_mean; H_Lkur 0.75 17.76 0.72 0.57 0.67
SfMSfM H_P40; FR_mean; H_L4 0.78 16.68 0.86 0.73 0.71
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lower than the eSRS. On the other hand, those differences 
were smaller when SfM was considered, specifically 44% 
for G, 46% for V, 50% for Ho and 37% for AGB. On the 
other hand, the er for ALS were 12% lower for G 22% for V 
15% for Ho and 11% for AGB in comparison with the SfM 
(Fig. 2). However, no significant differences in the LSD test 
were found between ALS and SfM.

Effect of the parameters of interest

No significant differences on the estimation of the stand 
structure variables regarding the return density were 
found, since all the F statistic p values were higher than 
0.05 (Table 5). The average value for both the coefficient 

of determination and the RMSE narrowly ranged (Table 5). 
The maximum differences in r2 were 0.02 for G and AGB, 
being them even more insignificant for V and Ho (r2 = 0.01). 
Finally, the relative RMSE amplitude was less than 1% for 
all the variables of interest, considering a return density 
reduction from 6.5 to 0.5 returns·m−2, or from 100 to 7.7% 
in relative values (Table 5).

On the other hand, the sampling intensity, the data 
source and the DTM normalization, as well as their inter-
actions, had a significant influence on the estimation of the 
stand structure variables. First, the decrease in accuracy 
when reducing the sampling intensity was evident (Figs. 3 
and 4). This factor produced significant differences for 
every stand structure variable (p value < 0.05). Thus, the 
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Fig. 2   Relative simple random sampling error (Classic inventory) and sampling regression error (ALS and SfM) vs. sampling intensity for each 
stand structure variable of interest
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Table 5   Coefficients of 
determination (r2) and relative 
Root-Mean-Square Errors 
(RMSE%) vs. point density 
(0.5–6.5 returns∙m−2) and 
relative sampling intensity 
(0.3–3.4%). F statistic p values 
lower than 0.05 are in bold

Factor Parameter Statistic G V Ho AGB

Return density r2 Range 0.72–0.74 0.82–0.83 0.71–0.76 0.66–0.77
p value 0.50 0.81 0.76 0.30

RMSE % Range 19.47–20.06 19.30–20.11 8.77–9.03 20.08–20.71
p value 0.99 0.98 0.83 0.99

Sampling intensity r2 Range 0.67–0.76 0.76–0.84 0.71–0.76 0.66–0.77
p value 0.00 0.00 0.00 0.00

RMSE % Range 16.89–29.99 16.65–31.13 8.10–10.85 17.17–32.53
p value 0.00 0.00 0.00 0.00
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Fig. 3   Coefficients of determination (r2), with 95% confidence intervals, vs. sampling intensity (%) for each combination of data source (ALS 
and SfM) and DTM normalization (ALS, PNOA and SfM). PNOA: DTM provided by the National Aerial Orthography Plan
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lower the sampling intensity, the worse the estimation of 
the variables. The MLRM were equally explanatory from 
certain values of sampling intensities depending on the 
stand structure variable, which was reflected in their coef-
ficients of determination (Fig. 3). For instance, the average 
r2 was 0.76 for the Ho models designed by sampling inten-
sities higher than 1%, and 0.84 when the sampling inten-
sity was higher than 2% for volume estimation. On the 
other hand, no significant r2 values for G (0.75–0.76) and 
AGB (0.76–0.77) were found, when the sampling intensity 
exceeded 1.4%. In addition, the RMSE were both signifi-
cantly and exponentially higher when sampling intensity 
was reduced. However, certain stabilization of them was 
observed when sampling intensity reached 1% (Fig. 4).

The data source and the DTM showed significant differ-
ences between the considered alternatives (p value < 0.05). 
First, the ALS metrics fitted better to the stand structure 
variables, producing higher r2 in these MLRM than those 
designed with the SfM variables (Table 6; Fig. 3). Conse-
quently, the former produced estimations with lower RMSE 
than the latter (Table 6; Figs. 4 and 5). More disparate results 
in the DTM normalization were found, depending on the 
variable of interest. Firstly, the MLRM for V and Ho fitted 
better when the point cloud was normalized using DTMALS 
or DTMPNOA, whereas G and AGB showed the opposite 
response, since their regressions were better when the 
DTMSfM was used for the normalization process (Table 6; 
Fig. 3). Finally, there were no significant differences between 
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Fig. 4   Relative Root-Mean-Square Error (RMSE%), with 95% confidence intervals, vs. sampling intensity (%) for each combination of data 
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Table 6   Coefficients of 
determination (r2) and relative 
Root-Mean-Square Errors 
(RMSE%) vs. data source 
(ALS and SfM) and DTM 
normalization (ALS, PNOA 
and SfM). PNOA: DTM 
provided by the National Aerial 
Orthography Plan. Significant 
differences (p value < 0.05) 
in the LSD test within each 
variable (column), factor (data 
source and DTM) and parameter 
(r2 and RMSE%) were marked 
with a different letter (a, b or c). 

Factor Parameter Type G V Ho AGB

Data source r2 ALS 0.77a 0.85a 0.76a 0.76a

SfM 0.70b 0.80b 0.74b 0.73b

RMSE% ALS 19.55a 17.83a 8.57a 18.21a

SfM 19.90b 21.62b 9.22b 22.50b

DTM r2 ALS 0.73a 0.83a 0.78a 0.74a

PNOA 0.73a 0.83a 0.77b 0.74a

SfM 0.75b 0.82b 0.71c 0.75b

RMSE% ALS 20.17a 19.59a 8.55a 20.51a

PNOA 20.57b 19.41a 8.63b 20.42a

SfM 18.43c 20.19b 9.50c 20.14b
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the point cloud normalization with DTMALS and DTMPNOA 
for G, V and AGB, while the Ho regressions were better when 
the point cloud was normalized with DTMALS (Table 6). 

In addition, both the pairwise and the triple factor inter-
action were evaluated in the multiple ANOVA test. The 
interaction between the data source and the DTM was sig-
nificant in all study variables both in the evaluation of r2 and 
RMSE (p value < 0.05; Fig. 5). The LSD test showed that 
the relative RMSE for V (Fig. 5B), Ho (Fig. 5C) and AGB 
(Fig. 5D) were equally lower in the ALSALS and ALSPNOA 
than in the ALSSfM combinations. In contrast, the G models 
with the ALS metrics were equally explanatory, regardless 
of the DTM (Fig. 3A) and the relative RMSE were signifi-
cantly lower when the ALS cloud was normalized with the 
DTMSfM (Fig. 5A). On the other hand, the SfM metrics pro-
duce better regressions when the point cloud was normal-
ized with its own ground file (DTMSfM) rather than with 
the LiDAR-based DTMs (Fig. 3). Therefore, the relative 
RMSE were lower in those cases (Fig. 5A, B and C). Only 
in the case of the dominant height, no significant differences 
in the LSD test were found between the combinations of 
the SfM models, which produced lower relative RMSE in 
the SfMALS and SfMPNOA than in the SfMSfM combinations 
(Fig. 5C). In addition, the Ho models using ALSSfM pre-
sented worse fits than those designed with the SfM metrics 
(Fig. 3C), while the worst ALS model was always better that 
the best SfM for the remaining variables (Figs. 3A, B and 
C). Finally, an irregular response was found for some of the 
variables of interest when the sampling intensity decreased. 
The estimation of the basal area was better both for ALSALS 
and ALSPNOA combinations at higher sampling intensities. 
However, when these were lower than 0.5%, both produced 
higher RMSE than the remaining combinations (Fig. 4A).

Discussion

Base models

The MLRM for G, V, Ho and AGB showed high precision 
in the fit, as reflected in their r2 (Table 4). However, N and 

QMD produced models with poor fits, in accordance with 
previous studies (Table 7), not only because of their low r2 
values, but also because they did not meet the basic assump-
tions of the correlation of residuals in many cases (Table 4). 
One possible reason for this phenomenon lies in smaller 
trees, which come to represent a high percentage in some 
sampling plots. These trees, being dominated by other indi-
viduals, would be unnoticed in the point cloud, especially 
with SfM. On the other hand, the smaller trees had a low 
influence on G, V, AGB and Ho calculation. That may be 
why the other models did have a good fit (Tordesillas 2014).

Our r2 values were similar to those obtained in other 
studies (Table 7), although some of them have been carried 
out under very homogeneous and even-aged forest stands 
(Næsset 2002 and 2004). In contrast, our study area was an 
uneven-aged stand, with heterogeneity conditions (Pascual 
2008). Treitz et al. (2012) obtained the best r2 values for 
each stand structure variable considering all the study areas 
of their research study, which translated into high-precise 
model fits because the stands were classified and differenti-
ated according to its type and characteristics. However, N 
and QMD also showed worse fits than the remaining stand 
structure variables. In contrast, Gonzalez-Ferreiro et al. 
(2012) did not consider these variables, even though the 
forest was a Pinus radiata plantation.

The best predictions were for V and Ho, while N and 
QMD showed the worst results (Table 7). There are two 
main reasons which could affect the regression model 
adjustments: i) the forest field work and the ALS flight 
were two years apart, considering the stand growth of the 
stand between 2011 and 2013 negligible as other authors 
did (Andersen et al. 2005; Næsset and Gobakken 2008; 
Breidenbach and Astrup 2012); (ii) the tree height was just 
measured for three dominant and co-dominant trees, while 
estimating the height of the remaining trees by regression. 
These conditions explained the differences between the r2 
values in Cercedilla forest with the other authors, especially 
for the Ho regression models, since Treitz et al. (2012) and 
Gonzalez-Ferreiro et al. (2012) measured all the tree heights 
within the field plots at the same time as the ALS data was 
taken.

Table 7   Comparison of the 
coefficients of determination 
(r2) obtained in different 
studies on the estimation of 
stand structure variables using 
ALS (*: SfM was used in this 
case). The highest value is 
showed for this study, regardless 
the data source and the DTM 
normalization.

Variable Naesset (2002) Naesset (2004) Treitz (2012) Gozález-Fer-
reiro (2012)

This study

N 0.84 0.86 0.56
G 0.86 0.90 0.93 0.69 0.80
V 0.91 0.91 0.94 0.79 0.87
QMD 0.85 0.58*
Ho 0.98 0.86 0.81
AGB 0.93 0.80 0.79
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Sampling errors

The sampling intensity could be reduced by incorporating 
auxiliary information from both SfM and ALS. The stand 
structure variables considered in this study showed disparate 
response to the use of auxiliary information, being the V and 
the Ho the variables that improved more with this technique, 
due to their correlation with the point cloud metrics. This 
supports the good fits of the regression models for these 
variables (Table 7). In practice, considering a 10% sample 
error, the required sampling intensity is approximately 0.7% 
for Ho, 5% for G and AGB, 3.5% for V in a classical forest 
inventory (Fig. 2). However, in ALS-assisted forest invento-
ries, the sampling intensity could be reduced up to 0.7% for 
G and V 1% for AGB and less than 0.3% for Ho, significantly 
increasing the efficiency of field work (Fig. 2).

On the other hand, the sampling errors would be reduced 
considering auxiliary information in a fixed sample size. 
For example, with a sampling intensity of 1% the relative 
error decreased from 15.8 to 7.8% for G, from 19.1 to 8.0% 
for V, from 8.1 to 3.4% for Ho and from 16.1 to 9.1% for 
AGB using ALS auxiliary information (Fig. 2). These results 
are in accordance with Philip and Lam (1997), who showed 
the improvement of sampling error when the correlation 
between X and Y was higher than 0.4.

Regarding the supplementary data source, SfM metrics 
were less correlated with the forest variables than the ALS, 
which means that a higher sampling intensity is required to 
get the same sampling error (Fig. 2). However, these differ-
ences were not significant and each of them could be used to 
improve the field work in the same dimension.

ALS density

According to González-Ferreiro et  al. (2012), various 
LiDAR flight configuration, especially different flight height 
and scan angles, would be ideal to assess the real influence 
of the point cloud density reduction on the estimation of the 
stand structure variables. However, this could be substituted 
by randomly decreasing the return density. In this sense, this 
study supports the good estimations of stand structure varia-
bles in a wide range of ALS densities, from 0.5 to 6.5 returns 
m−2, being similar to those historically reported (Table 8).

Relative RMSE obtained in the G models were slightly 
lower than those obtained by González-Ferreiro et al. (2012) 
in stands of Pinus radiata in Galicia (Table 8), but consider-
ably higher than those in Treitz et al. (2012). Nevertheless, 
the differences were lower than 1%, similarly to González-
Ferreiro et al. (2012), for ALS densities from 0.5 to 8 pulses 
m−2, and Treitz et al. (2012) in intolerant hardwood stands of 
Romeo Mallette Forest, using ALS densities from 0.5 to 3.2 
pules·m−2. This supports the idea of Stephens et al. (2007), 
who did not find significant differences in G estimation for 
densities above 0.1 pulses m−2.

The estimations for V produced relative RMSE values 
from 19.30 to 20.11%, which were similar to those reported 
by Valbuena et al. (2018) in a study area close to the one 
analysed in this study. On the other hand, González-Ferreiro 
et al. (2012) reported a relative RMSE higher than those 
obtained in this study improving in 5% the estimations by 
increasing the density from 0.5 to 8 pulses·m−2, while the 
estimations of Treitz et al. (2012) were again better, with a 
maximum relative RMSE difference of 2.2% in black spruce 
stands (Treitz et al. 2012).

Table 8   Ranges of coefficients 
of determination (r2) and 
relative Root-Mean-Square 
Errors (RMSE%) obtained 
by different authors on the 
estimation of stand structure 
variables, using different ALS 
return densities. a: Black 
spruce plots in Romeo Mallette 
Forest. b: Intolerant hardwood 
plots in Romeo Mallette Forest. 
*: Data source (ALS and SfM) 
and DTM normalization (ALS, 
PNOA and SfM) were averaged. 
PNOA: DTM provided by the 
National Aerial Orthography 
Plan*: Data source (ALS and 
SfM) and DTM normalization 
(ALS, PNOA and SfM) were 
averaged. PNOA: DTM 
provided by the National Aerial.

Variable Parameter Treitz et al. (2012)a Treitz et al. (2012)b González-Fer-
reiro (2012)

This study*

G r2 0.90–0.93 0.82–0.83 0.68–0.69 0.72–0.74
RMSE% 10.33–12.22 14.12–14.68 22.07–22.61 19.47–20.06

V r2 0.92–0.94 0.86–0.87 0.69–0.79 0.82–0.83
RMSE% 11.04–13.23 15.76–17.01 24.97–30.55 19.30–20.11

Ho r2 0.90–0.92 0.94–0.94 0.85–0.86 0.75–0.76
RMSE% 3.98–4.58 3.87–4.01 8.21–8.67 8.77–9.03

AGB r2 0.90–0.93 0.77–0.78 0.75–0.80 0.73–0.75
RMSE% 11.05–13.09 19.68–20.27 23.74–31.02 20.08–20.71
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Ho was the variable with the best estimations. This 
could be understandable since the information in the point 
cloud is height above the DTM. In this sense, the relative 
RMSE values were similar to those obtained by González-
Ferreiro et al. (2012) with approximate values of 8%. In 
contrast, the estimations of Treitz et al. (2012) were highly 
precise, with relative RMSE around 2–3%. However, the 
differences between ALS densities were almost negligible, 
being less than 1% in all studies, in agreement with Ste-
phens et al. (2007), who demonstrated the insignificance 
of LiDAR density for dominant height estimation up to 0.1 
pulses m−2 and significant loses only for lower densities.

Finally, the relative RMSE obtained in AGB models 
were similar in all studies, except for black spruce stands 
(Treitz et al. 2012; Table 8). In this study, the relative 
RMSE was slightly higher than those obtained by Her-
nando et al. (2019), who reported a relative RMSE of 
16.72% in Scots pine-dominated forest in Valsaín (Spain). 
The differences between the ALS densities were lower 
than 1% in this study, similarly to intolerant hardwood 
stands (Treitz et al. 2012). On the other hand, the dif-
ferences were higher than 2% in the black spruce stand 
(Treitz et al. 2012) and higher than 7% in Pinus radiata 
in Galicia (González-Ferreiro et al. 2012). This is related 
with the differences in the coefficients of determination of 
their models (Table 8).

Sampling intensity

The sampling intensity is a crucial factor in forest inven-
tory planning, since it will determine the minimum area 
needed to be measured in the field. This is related not only 
with the variability of the stand and the total error expected 
(González et al. 1993), but also with the availability of aux-
iliary information such as ALS or SfM as previously dis-
cussed in 4.2.

There were significant differences between all the sam-
pling intensities considered in relation with the estimation 
error, which means that the higher the sampling intensity, 
the lower the RMSE obtained. In contrast, the coefficients of 
determination of the regression models were not significant, 
while reaching a specific sampling intensity value depend-
ing on the stand structure variable. This proves the above-
mentioned relationship between the variability of stand and 
the sampling intensity. Ho showed the lowest variability 
(SD = 19.03%), followed by the G (SD = 37.30%), AGB 
(SD = 38.96%) and, finally V (SD = 46.97%). This increas-
ing trend-line is also present when analysing the significa-
tion threshold for the sampling intensity. In this sense, no 
significant differences were found for values higher than 1% 
in sampling intensity for the estimation of Ho 1.4% for both 
G and AGB, and 2% for V. Therefore, the higher the variance 

of the target variable, the higher the sampling intensity to get 
a good regression for its estimation.

Data source and DTM normalization

The estimation of the stand structure variables was signifi-
cantly more accurate using ALS information rather than SfM 
(Table 6; Figs. 3, 4 and 5). One of the reasons is that LiDAR 
can penetrate through the canopy, reaching the lower veg-
etation and the ground, which means more representativity 
of the understorey. In contrast, the trees which are not vis-
ible in the aerial pictures, are not represented by the SfM 
point cloud. Therefore, V and AGB showed higher RMSE 
differences between ALS and SfM than Ho and G, due to 
the non-detection of the smaller trees (Table 6). In some 
plots, this type of vegetation represents a high percentage, 
with greater influence over V and AGB. On the other hand, 
those smaller trees do not have so much influence on the G 
calculation, because they usually have low DBH values. In 
addition, when calculating the Ho, just the 100 tallest trees 
per hectare are considered, i.e. the 10 tallest trees per plot 
(area = 0.1 ha). Therefore, the undetected trees usually have 
small influence, and the differences are related to the accu-
racy of the return’s height.

The point cloud normalization produced more discrepan-
cies between the DTM considered. First, both the DTMALS 
and the DTMPNOA did not produce significant differences 
in the normalization of the point clouds (Table 6). This 
reinforces the no-influence of LiDAR density within the 
range considered here, this time for the DTM processing. 
However, the DTMALS had 5-times more resolution than 
the DTMPNOA (Table 2), which means much more accuracy, 
although superfluous even considering such a great slope. 
As an exception, the dominant height was more sensible to 
the DTM typology, being the DTMALS the best option to 
normalize the point cloud (Table 6).

The main limitation of SfM is the reconstruction of the 
ground surface, being this only well-defined where large 
vegetation gaps exist (Iglhaut et al. 2019). Nevertheless, the 
ground return density was sufficient to get a good DTMSfM 
in this study. In addition, it had a resolution of 0.37 cm, 
much higher than the DTMALS and DTMPNOA (Table 2). 
That resulted in not so notorious differences but significantly 
better estimations for G and AGB using SfM, instead of ALS 
(Table 6). However, these results were affected not only by 
the individual effect of DTM, but also by its combination 
with the data source. Attending the graphics in Fig. 5, two 
results are necessary to highlight.

Firstly, the improvement of the G estimations using 
the ALS metrics was remarkable when normalizing with 
DTMSfM as compared with DTMALS or DTMPNOA (Fig. 5A), 
since the remaining variables of interest showed the opposite 
effect (Fig. 5A, B and C). The explanatory variables in the G 
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regression models are mostly related with the first returns, 
both in absolute and relative values, while the remaining var-
iables used height percentiles as the main independent vari-
able in their regression relationships. Therefore, the basal 
area seems to be more affected by the crown size than by tree 
height (Manzanera et al. 2016). This is also shown by the 
low relative RMSE differences between the ALS and SfM 
data sources (Table 6). Although ALS metrics were clearly 
better estimators than SfM metrics in general, an exception 
was observed in the G estimation (Table 6, Fig. 4A), since 
the SfM can provide great accuracy on the visible tree tops 
and crowns, even higher than the ALS (Iglhaut et al. 2019). 
However, the point cloud normalization with an ALS-based 
DTM provided higher accuracy in the canopy height (Wal-
lace et al. 2016), which was useful on the estimation of V, 
Ho and AGB.

Secondly, despite the high precision of the DTMALS and 
DTMPNOA, the SfM metrics produced better results if they 
were normalized with the DTMSfM, that is, with their own-
generated DTM for most of the variables of interest, except 
for the dominant height (Fig. 5). In fact, normalization of 
the ALS point cloud with the DTMSfM was worse than esti-
mating the Ho using the SfM metrics for each case of DTM 
normalization (Figs. 3C and 4C). This showed the sensibility 
of Ho to the accurate normalization of the point cloud.

The significance of the triple interaction

The irregular response of G estimations when reducing the 
sampling intensity is explained by the characteristics of their 
MLRM. The explanatory variables were related with first 
returns in absolute value for ALSALS and ALSPNOA, while 
they were related to relative first returns for the SfM com-
binations (Table 4). The regressions were designed with the 
maximum sampling intensity, which better represents the 
stand variety. However, low sampling intensity values are 
less representative, even worse in absolute than in relative 
metrics, since the latter are more homogeneous in the whole 
stand. Therefore, the G estimation with the SfM (relative 
explanatory metrics) showed a more consistent response 
than the ALSALS and ALSPNOA (absolute explanatory met-
rics). On the other hand, the estimation of Ho using the 
ALSSfM produced the same results in all the sampling inten-
sities tested. These considerations explain the significance 
of the triple interaction for Ho.

Conclusions

This study reveals that both Airborne Laser Scanning (ALS) 
and Structure from Motion (SfM) have similar capabilities 
for the evaluation of forest structure. Both are equally able to 
decrease the sampling intensity in field work inventories or 

to decrease the sampling error while maintaining the sample 
size. However, ALS produced significantly better subsequent 
estimations for most of the common stand structure vari-
ables. As an exception, the basal area was more affected by 
the crown size than by the height of the trees. Therefore, the 
SfM was able to accurately estimate that variable. In con-
trast, the point cloud normalization with ALS-based DTM 
was significantly better than with the SfM-based DTM, 
although the latter produced better results when normaliz-
ing its own point cloud. On the other hand, the lowest return 
density (0.5 returns m−2) was equally explanatory than the 
maximum return density (6.5 returns m−2). Therefore, low 
density public ALS data would be satisfactory to evaluate 
the most common stand structure variables, although the 
main limitation is the temporal resolution. Thus, the SfM 
is a good alternative to the ALS technology. Finally, the 
sampling intensity should be carefully designed to obtain 
the admissible estimation error. However, no significant dif-
ferences were found if the sampling intensity was higher 
than 1% for the dominant height 1.4% for the total basal 
area and the above-ground biomass and 2% for the stand 
volume, depending on the variance of the respective stand 
structure variables.
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