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Abstract
Protection and appropriate management of forests is one of the key instruments for climate change adaptation. Soil amend-
ments with biochar have shown to be promising in achieving this goal; however, the evaluation of its long-term effects on 
forest soils has largely been neglected. To assess the advantages and drawbacks of biochar in forest soils, data from relict 
charcoal hearths (RCH) can be a potent tool as they show changes in soil properties after up to several hundred years. RCHs 
can be found in places of former metallurgical hot spots and their presence leaves characteristic formations identifiable on a 
large scale using laser detection technologies. Forest soils with biochar amendment show an increase in base cations, shift 
towards more alkaline pH, smaller bulk density and seem to be especially beneficial to hostile environments. Sites with 
favourable conditions may show little to no improvement or may even be adversely affected. Still, with proper investigation, 
areas with affordable feedstock materials and poor forest soils—such as spruce monocultures of Central Europe—may benefit 
from biochar amendments and continue to do so in the long term.
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Introduction

When it comes to the development and rise of human soci-
ety, there are only a few areas of the environment that can 
compete in terms of importance with forests. Forests have 
played a role as a crucial resource, providing pasture for ani-
mals, building materials, energy, food but also as places of 
recreational opportunities (Mayer et al. 2006; Hillring 2006). 
Europe has experienced both deforestation and reforestation 
throughout its history and compared to the Americas, where 
the first major deforestation event occurred in the nineteenth 
century (Flinn and Vellend 2005), a significant exploitation 
of European forests that dates several centuries before the 

industrial era (Kaplan et al. 2009). At current point, almost 
all of European forests have been to some extent affected by 
human activities (European Environmental Agency 2016).

To counter the degradation and decline of forests and 
their soils, many different approaches have been explored—
afforestation, watershed management, continuous pest con-
trol and soil amendments (Fanta 1997; Wenhua 2004; Mezei 
et al. 2017). In the last twenty years, biochar application 
has gained spotlight among soil treatments, as it appears to 
be an affordable and relatively simple option for improv-
ing soil quality and facilitating carbon sequestration (Ennis 
et al. 2012). Using the definition of the International biochar 
initiative (IBI), biochar can be described as “a solid material 
obtained from the thermochemical conversion of biomass in 
an oxygen-limited environment” (IBI 2013). Materials used 
specifically for the purpose of soil application will therefore 
be referred to as biochars in this paper. Other materials with 
similar characteristics, which were not originally intended as 
soil amendments, will be referred to as charcoal or charcoal 
remains.

Rapid changes in the environment and the rise of global 
temperatures (Mann et al. 2016) are calling for action in 
reducing the carbon footprint but also in mitigating the 
changes already in place. Biochar is currently considered 
an inexpensive, safe and effective instrument for carbon 
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sequestration (Roobroeck et al. 2019), reduction of green-
house gases (GHG) (Senbayram et al. 2019) and improve-
ment of soil properties (Yu et al. 2019). The longevity of 
biochar, however, makes it difficult for the evaluation of 
long-term effects on soils and natural environment, since 
they can remain in soils for thousands of years (Grossman 
et al. 2010). While many studies have been published on the 
topic of biochar amendments in agricultural soils, the effects 
on forest are much less explored. The purpose of this review 
is to summarize and evaluate current knowledge about the 
effects of biochar application on forest soils and vegetation 
from experiments as well as from relict charcoal hearths 
(RCH) and other sites historically affected by charcoal.

Charcoal hearths: past, present and future

Soils heavily influenced by human activity are by no means a 
modern-day phenomenon, and anthropogenic soils have even 
been suggested to act as markers for anthropocene (Certini 
and Scalenghe 2011). While contamination and degradation 
of soils are more prevalent and easier to identify (e.g. metal 
pollution from Roman times (De Vleeschouwer et al. 2007), 
saline water irrigation in Mesopotamia (Jacobsen & Adams 
1958), etc.), positive effects on soil characteristics have also 
been observed. Slash and burn agriculture has been practised 
since early Holocene (Gerlach et al. 2012), the preservation 
of chernozems in Germany has been attributed to human 
activity (Lorz & Saile 2011) and unique plant communi-
ties have been found on soils originating from human-made 
aquatic shell middens (Erlandson 2013).

Still, the most prominent example of soil improvement 
by humans is the South American terra pretas, where rela-
tively infertile ferralsols have been converted into nutrient 
and stable organic matter-rich soils suitable for agriculture. 
The creation of such soils is mainly attributed to the deliber-
ate introduction of charcoal from household hearths, manure 
and animal remains (Sombroek et al. 2002). While terra pre-
tas offer an important insight into the properties and effects 
of biochar in the long term, data obtained from them may 
not correlate with biochar effects on soils in other regions 
and climatic zones. Nevertheless, similarly promising study 
areas can be found on relict charcoal hearths.

Among trades connected with forests, charcoal burn-
ing holds a prominent position. In the past, charcoal was 
a crucial resource needed for the production of iron and it 
still serves as fuel in households, particularly in developing 
countries (Harris 1999; Bolognesi et al. 2015). Numerous 
historical charcoal kilns have been studied in the northeast 
of New England (Raab et al. 2017; Witharana et al. 2018) 
and other areas of the USA (Hart et al. 2008; Carter 2019). 
In Europe, charcoal was burned especially in the eighteenth-
century metallurgical hot spots (Ludemann et al. 2004; 

Groenewoudt 2007) in structures known as hearths and 
their remains may provide information on biochar applica-
tion in European conditions. Several types of hearths are 
known to be used, such as pits (Church et al. 2007; Deforce 
et al. 2018), brick or stone kilns (Straka 2017) or mounds of 
various size (Schindler 1872; Dragoun et al. 2006). Historic 
charcoal burning has been recorded throughout Europe in 
Italy (Carrari et al. 2016), UK (Hayman 2008), Norway (Ris-
bøl et al. 2013), Czech Republic (Dragoun et al. 2006) and 
many others (Deforce et al. 2013; Hardy et al. 2016). Loca-
tions of specific interest for the study of charcoal hearths 
include Germany with several well-studied areas with high 
density of hearths in mountain areas (Knapp et al. 2015) and 
the Mała Panew area in Poland, where the incidence could 
be as high as 184 hearths per kilometre square (Rutkiewicz 
et al. 2019). A comprehensive study on the location and 
structures of charcoal hearths in central Europe has been 
published by Hirsch et al. (2020).

Hearths can be found as solitary landscape features or 
aggregated together. Permanent hearths were set up on 
a large, cleared area of land where several hearths could 
be maintained at once and which had to be easily acces-
sible by horse carts. Temporary hearths on the other hand 
were smaller, located deeper in the forests and used smaller 
amounts of wood that was being brought from their immedi-
ate vicinity (Krištuf 2007; Raab et al. 2017). Relict charcoal 
hearths can be easily detected on a large scale with LiDAR 
(light detection and ranging) (Schmidt et al. 2016), as they 
form a distinctive platform with raised edges that mark the 
substrate used to cover the mound. Macroscopic charcoal 
fragments can also be observed both in the spoil material 
and in the soil (Carrari et al., 2016; Hirsch et al. 2017). 
Soils on these sites are characterized by a black layer with 
accumulated charcoal (see Fig. 1) which is usually distinctly 
separated from the lower positioned mineral horizons. The 
charcoal layer can range in thickness, from 10 up to almost 
50 cm (Carrari et al. 2016; Mastrolonardo et al. 2018).

Chemistry of biochars

Biochar has many characteristic chemical properties which 
allow it to interact with soil components and which play a 
role in soil improvement. These characteristics are not uni-
form—they change based on properties of the feedstock, 
burning temperature, production method, time and environ-
mental conditions (Zhao et al. 2013; Ahmed et al. 2016). 
One of the most important properties of biochar is its high 
organic carbon content, primarily concentrated in highly sta-
ble aromatic compounds resistant to microbial decay (Xu 
et al. 2012). This property serves as a base for proposing 
biochar as a suitable carbon sequestration medium. Soils 
on charcoal hearths have been observed to have increased 
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concentrations of black carbon, and larger quantities of con-
densed aromatic structures were also present in soils with 
charcoal remnants compared to reference soils which dis-
played long, unsaturated aliphatic chains, signalling greater 
ratio of fresh plant material (Abdelrahman et al. 2018).

Primary factors influencing the properties of biochar are 
the temperature and feedstock. Higher production tempera-
ture generally results in higher product pH, increased electri-
cal conductivity (EC) and greater specific surface across a 
variety of feedstocks. Elemental composition varies greatly 
by individual elements—higher-temperature biochars con-
tain higher percentage of C while O and H decrease with 
increasing temperature (Pariyar et al. 2020; Sun et al. 2014). 
N, K and P contents also vary with temperature. Data com-
pilation by Ippolito et al. (2015) shows rise in contents of 
these elements up to around 500 °C before their subsequent 
decline at higher temperatures. Biochar characteristics are 
closely tied to the initial properties of the parent material and 
often influence the same aspects as temperature (EC, cation 
exchange capacity—CEC, pH, etc.). Wood biochars tend to 
be more stable with high C contents but low on nutrients, 
while biochars from manure display a reverse trend (Singh 
et al. 2010). The choice of material and production method 
are crucial for creating the right product for the desired effect 
during application (Weber & Quicker 2018).

Biochar’s ability to positively influence soil pH is 
among the reasons for employing it as a soil amendment—
biochar has already been shown to have strong liming 
properties (Van Zwieten et al. 2010). Changes in soil pH 
depend strongly on the pH of used biochar, which in turn 

depends on the type of feedstock and to some extent also 
on the production temperature. While biochars are mostly 
pH neutral or alkaline, some types of biochar (hardwood) 
can be acidic, reaching values down to pH 4 (Enders et al. 
2012; Mukome et al. 2013). Both active and exchange-
able pH have been higher in hearth soils than control plots 
(Hardy et al. 2016), with the pH difference on hearth and 
control soils generally being more pronounced in more 
acidic environment (Faghih et al. 2019).

pH is inseparably linked to another crucial aspect of 
biochar—its CEC. High CEC of biochars is part of the 
motivation to use this material for experimental soil 
amendments (Liang et al. 2006; Chintala et al. 2014). The 
CEC of biochar largely depends on production methods, 
feedstock or temperature. Fast pyrolysis produces bio-
chars with greater CEC than biochars created through 
gasification (Lee et al. 2010), and different values of CEC 
have also been obtained not only from biochars produced 
from different materials, but also from different parts of 
the same plant, such as with the bark and wood of Doug-
las fir (Pseudotsuga menziesii) (Suliman et  al. 2016). 
Applying biochar to forest soils has a beneficial effect 
and increases the soil CEC significantly (Robertson et al. 
2012), with relict hearth soils demonstrating it having a 
long-term effect (Hesson 2016; Mastrolonardo et al. 2019). 
In terms of pyrolysis conditions, CEC usually decreases 
with increasing temperature as carbonylic and carboxylic 
functional groups on the surface of the biochar are reduced 
during the pyrolysis process (Song & Guo 2012; Kloss 
et al. 2012).

Cation exchange capacity tends to be low freshly after 
burning, but increases with age (150 + years) to the point 
where it exceeds the CEC of non-hearth soils. On the other 
hand, exchangeable  K+ and available P are depleted from 
hearth soils and may be a limitation for the establishment 
of plant life. This depletion is, however, only visible in the 
topsoil and disappears in deeper layers of the soil (Hardy 
et al. 2016). Criscuoli (2014) shows that these changes in 
P and  K+ are time dependent, as fresh charcoal fragments 
contain significantly more P and  K+ than old fragments. 
Mastrolonardo et al. (2019) reported a doubling in soil 
nitrogen contents in topsoils on relict hearths compared 
to reference soils as well as a significant increase in the 
concentration of bases in both topsoil and subsoil. CEC 
was higher in RCH soils. Mg concentrations were greater 
in the subsoil of RCHs. In a study conducted by Faghih 
et al. (2019), charcoal hearths had 75% increase in  Ca2+ 
and 65% increase in Mg compared to controls.  Na+ and 
 K+ also displayed an increase, though not to the extent of 
Mg and  Ca2+. We have observed base cation increase on 
RCHs in Czech Republic as shown in Fig. 2.

Fig. 1  Comparison of RCH soil and control soil from Upper Palati-
nate forest in the Czech Republic with their respective horizons. The 
sampling site at the RCH and the control were 25  m apart. L—lit-
ter, F—fragmented, H—humus, A—organic horizon, U—anthropic 
(charcoal) layer, RED—compact, heat-affected layer, Bvs AND 
B/C—mineral horizons
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Hazardous compounds in biochar

While the beneficial effects and qualities of biochar are often 
discussed in the literature, concerns about ecotoxic charac-
teristics of this intriguing material have not received as much 
spotlight. Nevertheless, biochar may aggravate the state of 
contamination in soils or may itself be a source of a wide 
range of pollutants which must be taken into account in both 
short- and long-term applications.

The rise of inorganic pollutants in soils—such as 
As, Cd, Cu, Pb and Zn—are considered a major effect 
of human activity on the environment. Polluted feed-
stock material may result in biochar unsuitable for soil 

application as the production process leads to increased 
concentration of risk elements in the final product (Hilber 
et al. 2017a). This can be particularly problematic with 
biochars originating from sewage sludges, which can con-
tain high levels of these elements and may thus prove toxic 
to plants (Jamali et al. 2009). Still, despite increased total 
concentration of risk elements, the bioavailable fraction 
does not always increase and even biochar from contami-
nated feedstocks can still be used for application to soils 
(Liu et al. 2014; Figueiredo et al. 2019). As a matter of 
fact, biochars are commonly used for remediation of pol-
luted soils precisely for their ability to immobilize toxic 
elements (Herath et al. 2015; Shen et al. 2016; Venegas 

Fig. 2  Exchangeable cations 
from ten locations in the Upper 
Palatinate forest in the Czech 
Republic with their respec-
tive horizons. a RCH soil, b 
control soil, FH—mixture of 
fragmented and humus organic 
horizons, A—organic horizon, 
U—anthropic (charcoal) layer, 
B—mineral horizons
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et al. 2016). To ensure safety of used materials, IBI (2013) 
has proposed limits for risk elements in biochars.

Polycyclic aromatic hydrocarbons (PAH) are common 
compounds originating from the production of biochars. Just 
like many other biochar characteristics, the concentration 
of PAHs depends on feedstock and pyrolysis temperature 
but also on pyrolysis rate—slow pyrolysis produces bio-
char with lower PAH contents than fast pyrolysis (Quilliam 
et al. 2013). Biochars produced in controlled environments 
have also shown more favourable PAH concentrations than 
charcoal produced by more unstable methods (such as tra-
ditional kilns) (Hale et al. 2012). Hilber et al. (2017b) ana-
lysed PAH contents in various types of biochar, finding that 
the majority of them had very small bioavailable fraction 
of PAHs. Nevertheless, Schellekens et al. (2017) reported 
a significant increase in PAH contents in terra pretas com-
pared to reference soils and similar findings were found in 
other charcoal-rich soils (Kaal et al. 2008; Marques et al. 
2015). Since many biochar characteristics have been shown 
to change over time—sometimes quite significantly—it is 
safe to assume such changes might affect even biochar’s 
potential toxicity and contaminant retention ability, putting 
even greater pressure on proper choice of feedstock material 
and production processes.

Another hazard stemming from biochar is the presence 
of volatile organic compounds (VOC). In a fashion similar 
to PAHs, VOCs often condense on biochar surface or in the 
pores and are associated with specific production methods 
(Buss et al. 2015). Unlike PAHs, the effect of feedstock on 
the generation of VOCs is very variable and may not show 
consistent results even within the same material under the 
same conditions (Spokas et al. 2011). The proportions of 
VOCs, however, depend significantly on production temper-
ature and are generally considered labile—this may provide 
an explanation as to why biochars often display negative 
initial effects on soils and plant life, but improve in the long 
term (Spokas et al. 2011; Buss et al. 2015).

Biochars with low concentrations of PAHs (conform-
ing to biochar standards set by IBI) pose low risks to soil 
as the bioavailable fraction released into the environment 
was not statistically significant during a four-year field test. 
However, elevated contents of PAHs in applied biochar may 
result in increased concentrations in soil and pose danger to 
soil health (Sigmund et al. 2017). As for VOCs, low-temper-
ature pyrolysis may result in biochar high in VOCs and may 
inhibit the germination of plants in amended soils (Buss and 
Mašek 2014). Biochar presence may also stimulate forma-
tion of VOCs through microbial decomposition of organic 
matter as seen in a seven-year experiment on vineyard soils 
(Giagnoni et al. 2019). There is considerable literature on 
the topic of biochar toxicity in the short term; however, long-
term experiments on biochar contaminants in forests or data 
from RCHs are still largely absent.

Physical characteristics

While chemistry of soil tends to be the primary studied 
objective of soils on relict charcoal hearths, their presence 
also affects important physical properties. Biochar is char-
acterized by a large amount of both micropores (< 2 nm) 
and macropores (> 2 nm) which are defined as the per-
centage of biochar volume not filled up by solids (Brewer 
et al. 2014). The high porosity of biochar is caused by the 
decomposition of lignin in the production process and by 
a quick release of gases, namely  CH4 and  H2 (Zhao et al. 
2017). Biochars made from wood with lower densities tend 
to have greater water holding capacity and provide more 
available water to plants—their high-porosity stems from 
thinner cell walls, which upon pyrolysis create space for 
water intake (Werdin et al. 2020).

Many of biochar’s favourable properties come from its 
specific surface area (SSA), which has a direct effect on 
the sorption and water holding capacity in soils. Biochar 
applications to sandy soils have positively influenced the 
water regime in sandy and loam soils (Laird et al. 2010; 
Baiamonte et al. 2019). While fresh biochars tend to have 
high SSA, it is expected to be lower in naturally aged bio-
chars due to blocking of pores with soil particles and the 
breakdown of natural structures (Mia et al. 2017).

Soils on RCH have an altered temperature regime com-
pared to unaffected soils in the same conditions—in warm 
months, RCH soils warm up faster and reach higher tem-
peratures in upper layers of the soil profile; however, lower 
layers are generally colder than their control counterparts. 
In cold months, this trend is reversed, with RCH soils 
reaching lower temperatures in upper layers and higher 
ones with increasing depth (Schneider et al. 2019).

The charcoal soil layers on RCHs tend to have low bulk 
densities; however, in contrast to control plots, deeper lay-
ers of soil may be more compacted, likely due to human 
activity at the site (Borchard et al. 2014; Schneider et al. 
2018). Charcoal layers tend to be very heterogeneous and 
impact the water regimes in soil, showing preferential 
infiltration patterns and low infiltration rates after periods 
of drought, leaving some areas of soil with insufficient 
moisture to support proper plant growth (Schneider et al. 
2018).

Plant growth and biological diversity

Carrari et al. (2018) observed that soils from Italian relict 
hearths affected survival and prosperity of tree seedlings, 
with higher seedling mortality on charred soils, but higher 
growth rate in older trees, probably due to greater nutrient 



218 European Journal of Forest Research (2022) 141:213–224

1 3

(nitrogen especially) content. Tree and overstory diversity 
is reported to be lower at hearth sites while understory 
does not show significant differences after sixty years 
since the hearth platform was abandoned—this may be 
caused by slow growth and maturation of species present. 
Cleared areas may be welcoming for fast-growing, pioneer 
species (Young et al. 1996). In an analysis of tree growth 
by Mastrolonardo et al. (2019), two species of trees (silver 
birch (Betula pendula), European beech (Fagus sylvatica)) 
have shown smaller width of tree rings in trees growing 
on charcoal hearths, indicating their slower growth despite 
greater availability of nutrients.

According to our original findings in Upper Palatinate 
forest, we declare significantly greater long-term resilience 
of spruces from historical hearths (150 + years) towards cli-
matic influence compared to the trees from control plots 
which experienced more uneven annual growth (Fig. 3). At 
the same time, no effect on the overall life span growth was 
found indicating stabilizing effect of charcoal remains on 
tree growth.

Buras et al. (2020) measured the diameter at breast height 
and total height of Scot’s pine (Pinus sylvestris) on charcoal 
hearths in Germany, which were significantly smaller than 
those of trees of the same age growing on unaffected con-
trol soils. Hearth-grown trees also displayed lower tree ring 
density and smaller basal area increment than their unaf-
fected counterparts. Element counts on the other hand were 
reported to be significantly higher in hearth trees, namely Fe, 
Ca, K and Mn. The lower increase in aboveground biomass 

is thus mostly attributed to the aforementioned changes in 
water regimes in RCH soils. Unfortunately, there have been 
very few studies done on tree growth on RCHs.

The application of biochar in boreal areas on the other 
hand had a significant positive effect on Scot’s pine growth. 
Palviainen et al. (2020) conducted a study on nutrient poor 
soils in Finland, concluding that trees growing on biochar 
amended soils had up to 25% greater diameter increase 
annually compared to control soils. Similar results were 
achieved in a seven-year experiment at a Monterey pine 
(Pinus radiata) stand in Spain (Omil et al. 2013), where 
biochar amendments resulted in an increased tree growth in 
both height and diameter, with more pronounced improve-
ments in stands with poor soil quality.

Hearths as indicators of past species 
composition

Human influence on the state of forests is often also reflected 
in species composition in a given location. Changes in 
tree species have already been successfully reconstructed 
through palynological research (Carter et al. 2017; Szabó 
et al. 2017), but charcoal hearths can also offer an insight 
into the state of vegetation in the recent past through anthra-
cological analyses (Ludemann et al. 2004). Charcoal remains 
in remote areas or areas with otherwise limited wood supply 
represent the state of vegetation in the times of charcoal pro-
duction quite accurately as the entire production depends on 
wood availability—with scarce resources, any wood is good 
enough (Ludemann 2010).

Problems may arise in areas where certain wood type is 
preferred over others—comparison with pollen analysis at 
hearths and tar pits from Białowieża primeval forest showed 
clear preference for the use of pine in tar production and 
avoidance of spruce in charcoal burning (Samojlik et al. 
2013). Preference of certain tree species may result in an 
initial overexploitation of the favoured (usually hardwood) 
species and subsequent shift towards species which grow 
faster and are more sustainable for charcoal production (Rut-
kiewicz and Malik 2019). In this manner, whole landscapes 
can be transformed, as is the case of the Harz mountains, 
where what was assumed to be a primal spruce forest was 
originally likely a mixed forest altered by intense iron indus-
try (Knapp et al. 2015).

Biochar and microbial activity

Biochar provides a new environment for colonization by 
bacteria and other soil biota. Soil microbial respiration is a 
factor that may aid in evaluation of biochar addition to for-
est soils, as it has been frequently used to assess microbial 

Fig. 3  Standard growth chronology of spruces from Upper Palati-
nate forest showing significantly lower growth variability of trees at 
RCHs (blue) compared to controls (red). Sample depth represents the 
amount of tree cores analysed in the respective year
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activity. Studies such as those conducted by Sackett et al. 
(2015) or Noyce et al. (2015) have shown that the rate 
of microbial respiration may not be significantly changed 
after biochar application in the short term, but may be 
more dependent on soil pH. Other studies have recorded 
increase in soil respiration, connected to the increase of 
soil water and soil temperature as a result of biochar addi-
tion (Lu et al. 2014; Zhang et al. 2019). In a meta-analysis 
of Chinese soils by Zhou et al. (2017), microbial respira-
tion was significantly greater for biochar-treated temper-
ate forests, but forests in the subtropical zone were not 
significantly affected. Experiments on soil respiration on 
relict charcoal hearths in Iran have shown no significant 
difference between control and hearth soils (Faghih et al. 
2019), and Hardy et al. (2019) on the other hand did not 
dispute aged charcoal influence of soil respiration, but did 
not find evidence for major effect on RCH soils.

Lasota et al. (2021) investigated the effect of RCHs on 
microbial diversity under a Scot’s pine cover in Poland. 
Their research showed increase in both bacterial and fun-
gal diversity on RCHs compared to control soils, with spe-
cies richness calculated at 238 and 218 in RCHs and 150 
in controls. The activity of enzymes contributing to the 
processing of P, C and N was also higher in RCHs. Similar 
results were reported by Zhou et al. (2020) in experimen-
tal application of biochar from the wood and leaves of 
Chinese fir (C. lanceolata) to soil collected from a planta-
tion of trees of the same species. Soil microbial diversity 
was higher in soils with added biochar, and the increase 
in abundance of P-solubilizing species of bacteria was 
observed as well. Mitchell et al. (2015) further showed the 
change towards gram-positive dominated communities in 
biochar amended forest soils compared to more gram-neg-
ative communities in controls. The authors suggest a shift 
in microbial communities towards species with greater 
potential in the decomposition of labile organic matter.

In a study by Gießelmann et al. (2019), a significantly 
lower amount of nematodes was observed in the litter of 
RCH plots compared to controls; however, RCHs had a 
greater number of fungivorous nematodes which implies 
greater promotion of fungal growth on charcoal. Similar 
shift towards fungi-dominated communities has also been 
observed in the short term on grassland soils amended by 
biochar (Gao and DeLuca 2020). Forest soils on RCHs 
examined by Hardy et al. (2019) have displayed signifi-
cantly altered communities of gram-positive bacteria, gen-
eral bacteria and actinomycetes, attributing this change 
mostly to biochar-related pH changes, nutrient availability 
and colonization of biochar pore space. Microbial carbon 
use efficiency was observed to be significantly higher in 
soils amended by biochar than in soils without its appli-
cation. This, however, has only been true for artificially 

aged (15%  H2O2) biochar which also decreased the bio-
mass turnover time (Pei et al. 2020).

The activity and microbial communities of biochar 
amended soils are a complicated issue which shows great 
variability with treatment, age and geographical location and 
would ideally require a proper study of its own.

Future for European forests

Maintaining healthy, diverse forests can be an arduous task, 
especially since many natural European forests have been 
replaced with spruce monocultures (Klimo et al. 2000; Fel-
ton et al. 2010). Longevity of European forest capitalization 
put a large proportion of continental forests into an uncertain 
position when coping with current climate–environmental 
change (Lindner et al. 2008). Internally caused factors such as 
preference of fast growing species has led into the significant 
decrease in the forest diversity and resilience which in turn 
leads to carbon source scenario (DeSoto et al. 2020). Although 
the ultimate goal of European forest management is defined as 
sustainable use of resources, accomplishment of this paradigm 
has failed in the context of large-scale waste of trees. On the 
other hand, knowledge gained within centuries of managing 
European forests, extensive European forest landcover as well 
as increasing public support for forest cultivation may facilitate 
the effective, relatively inexpensive and safe transition into the 
future where forests are part of the solution.

In order to achieve such transformation, both adaptation 
and mitigation potential must be well understood and incen-
tivized. Among the means which have the potential to tackle 
both, the application of biochar into forest soils stands out 
(Stavi 2013). Historical motivations for biochar production 
mostly disappeared; nonetheless, there is still a vast amount 
of forest residue biomass which can be converted into bio-
char without significantly compromising traditional forest 
production functions (Lehmann et al. 2006). Moreover, in 
the current context when the logistic costs of harvesting are 
close to timber market price, the resources of European feed-
stock become immense. Carbon capture initiatives are a part 
of green policies globally, many of the studied technologies 
still facing the industrial, legislative, societal or ethical bar-
riers (Bäckstrand et al. 2011). This is not the case for biochar 
production and application which is believed to be an inex-
pensive and safe way to capture carbon and promote future 
resilient forest growth, water retention and biodiversity at 
the same time (Thomas and Gale 2015).

Conclusion

The provided evidence suggests that while biochar amend-
ment is not always a universal solution for a healthy forest, 
it is undoubtedly beneficial to trees growing on poor soils 
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and in harsh environments. This can be especially valuable 
for production forests where biochar application could not 
only stabilize plots with unfavourable conditions but also 
protect them from environmental changes in the future. 
Selecting the right material and production method for bio-
char should also be taken into account from the perspective 
of both economy and safety to ensure optimal solution for 
every target region.

Despite the growing amount of information gathered 
from biochar experiments, our knowledge about application 
of biochar to forest soils has barely scratched the surface. 
Current data suggests that biochar effects depend on many 
variables, stemming both from the properties of the biochar 
and from the soil conditions in studied areas. While RCHs 
provide a valuable insight into the long-term effects of this 
amendment, there are not many studies to allow for defi-
nite conclusions and proper comparison between sites. An 
in-depth exploration into this topic could lead to healthier 
practices in forest management and help create a stable envi-
ronment despite the ever-present threat of global climatic 
change.
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