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Abstract
Global climate change impacts the functioning and productivity of forest ecosystems at various spatiotemporal scales across 
a wide range of biomes. Although summer temperatures are considered the main driver of boreal tree growth, the importance 
of soil moisture availability is likely to rise with decreasing latitude and increasing warming. Here, we combine dendro-
chronological measurements with evidence from tree growth modeling and remote sensing to quantify the effect of climate 
on phenology and productivity of Scots pines (Pinus sylvestris L.) in southern Siberia. Between 1960 and 2017, pine ring 
widths along a latitudinal transect from 53° to 56°N were mainly controlled by the availability of summer soil moisture. 
This finding challenges the common belief that summer temperatures are the predominant growth control in boreal forests. 
Moreover, we show that earlier growing season onsets can compensate for warming-induced drought stress. Despite the 
phenotypic plasticity of Scots pines to adapt to warmer and drier conditions, we speculate that predicted climate change will 
likely exceed the species’ physiological tolerance in much of Eurasia’s forest-steppe by the end of the twenty-first century.
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Introduction

The Russian boreal forest represents the world’s largest con-
tinuous forest biome, accounting for circa 50% of all boreal 
forests (Krankina et al. 1997) and storing an estimated 46–67 
petagrams of carbon in its living biomass (Houghton et al. 
2007; Krankina et al. 1996). However, predicted climate 
change would probably affect these forest ecosystems (Allen 
et al. 2015, 2010; Choat et al. 2012; Kharuk et al. 2017) by 
modifying the phenology and productivity of trees, com-
promising the forests’ capacity to sequester carbon from the 
atmosphere (Bradley et al. 1999; Trumbore et al. 2015), and 
thus affecting the global carbon cycle negatively (Bradshaw 
and Warkentin 2015; Giradin et al. 2016).

The significant warming trend documented across Sibe-
ria during the last decades (Groisman et al. 2012) affects 
different forest types’ geographical distribution and growth 
(Tchebakova et al. 2016). For example, the risk of climate 
change impacts on forest ecosystems is considerable in 
southern Siberia, where tree growth during the short but 
hot summers tends to be more constrained by soil moisture 
availability (Arzac et al. 2018, 2021; Tabakova et al. 2020). 
Therefore, the predicted warming and temperature-induced 
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drought (Anisimov et al. 2008; Shvidenko et al. 2012) will 
influence the phenology and physiology of trees, affecting 
forest health (Frank et al. 2015; Tchebakova et al. 2016).

Plant phenological patterns are sensitive to climate 
variability (Menzel et al. 2020; Piao et al. 2019). Current 
warming trends will likely result in earlier starts and delayed 
ends of the growing seasons (Jeong et al. 2011; Zhang et al. 
2004). An extensive  literature body reports increasing grow-
ing season length of boreal forests in recent time (Fu et al. 
2015; He et al. 2018a, 2018b; Menzel et al. 2006; Spinoni 
et al. 2015; Yang et al. 2017; Zhou et al. 2003). Hence, geo-
graphical regions experiencing above-average warming, as 
Russian boreal forests and forest-steppe, are of high interest 
for understanding the response of main forest tree species to 
changing climate conditions.

Long-term xylem phenology studies are time-consuming 
and usually restricted in space and temporal scale. There-
fore, process-based models and remote sensing tools might 
facilitate plant phenology research (He et al. 2018a; Yang 
et al. 2017). For example, tree radial growth (wood forma-
tion) models, such as the Vaganov–Shashkin model (VS-
model; Vaganov et  al. 2006), can simulate tree growth 
and phenology in response to daily variability in both air 
temperature and soil moisture (Anchukaitis et al. 2020; 
He et al. 2018a; Shishov et al. 2016; Tychkov et al. 2019; 
Vaganov et al. 2006). At the same time, vegetation indices 
like the EVI (Enhanced Vegetation Index; Huete et al. 1999), 
based on photosynthetic activity changes, leaf biomass and 
canopy structure (Duchemin et al. 1999; Reed et al. 1994) 
are used to estimate intra-annual changes in canopy green-
ness and annual forest productivity and phenology at high 

spatiotemporal resolution. Nevertheless, remote sensing 
datasets (e.g., EVI) are constrained to temporal series no 
earlier than the year 2000, whereas tree growth simulations 
could be extended over longer time periods.

We combined evidence from dendrochronological meas-
urements, tree growth modeling and remote sensing at three 
sites with different water balance levels to increase our 
understanding of Scots pine xylem phenology and growth 
variability in southern Siberia. More specifically, this study 
aims to: (i) compare VS-model phenological simulations 
against MODIS (Moderate Resolution Imaging Spectrora-
diometer) satellite observations, (ii) evaluate inter-annual 
changes in pine secondary growth (xylem phenology) via the 
VS-model over the 1960–2017 period, and (iii) link the tim-
ing of phenological phases with spring temperatures as the 
trigger of the growing season onset. We hypothesized that 
(i) water availability will be the predominant climatic factor 
constraining pine growth even in the wettest site, and (ii) 
warmer springs conditions and the plastic responses of pine 
cambial activity will compensate the expected ring width 
reductions due to summer drought stress by shifting pine 
phenology to earlier onsets after snowmelt at the driest site.

Materials and methods

Study area

Three Scots pine (Pinus sylvestris L.) sites with differ-
ent water balance levels were sampled along a latitudinal 
transect (56–53°N) in southern Siberia (Krasnoyarsk Krai, 

Fig. 1  Study area. Stars represent the location of the sampling sites. M, moderate (Pogorelsky bor); W, wet (Stolby); D, dry (Shushensky bor)
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Russia; Fig. 1). The northern site was located in the experi-
mental plot “Pogorelsky bor” within the northern forest-
steppe (hereafter moderate site; 56° 22′ N, 92° 57′ E). The 
central site in the National Park “Krasnoyarsk Stolby” in 
the mid-mountain taiga (hereafter wet site; 55° 54′ N, 92° 
43′ E). The southern site in the National Park “Shushen-
sky bor” in the transition from the southern taiga into the 
forest-steppe (hereafter dry site; 53° 18′ N, 91° 58′ E). The 
moderate and dry sites are mono-specific P. sylvestris forest 
stands. In contrast, pine trees co-occur with Larix sibirica 
Ledeb., Betula pendula Roth, and Abies sibirica Ledeb at 
the wet site.

The transect is characterized by a cold continental climate 
(Kottek et al. 2006), with mean annual temperatures ranging 
from 0.1 °C at the wet site to 1.5 °C at the dry site, and the 
total annual precipitation ranging from 308 mm at the dry 
site to 668 mm at the wet site (Table 1). Daily climate data 
(1960–2017) were obtained from the nearest meteorologi-
cal station to the moderate and dry sites (www. meteo. ru) 
and from a local station in the National Park “Krasnoyarsk 
Stolby” at the wet site. During the studied period, mean 

Table 1  Sites characterization (climate data 1960–2017) and sum-
mary of statistics calculated for the period 1960–2017 for Pinus syl-
vestris residual ring width chronologies

msx, mean sensitivity, rbt, mean correlation between trees, EPS 
expressed population signal, AC1 first order autocorrelation

Wet Moderate Dry

Altitude (m asl) 538 164 266
Mean annual T (°C) 0.1 1.3 1.5
T mean spring 0.4 1.9 3.1
T mean summer 15.3 16.8 18.1
Total annual P (mm) 668 537 308
Total spring P 136 106 43
Total summer P 246 215 183
Meteo station Stolby Krasnoyarsk Abakan
No. trees 20 17 20
Age ± SD 116 ± 15 101 ± 13 85 ± 13
RW (mm) ± SD 1.00 ± 0.18 1.80 ± 0.44 2.02 ± 0.75
msx 0.133 0.108 0.165
rbt 0.382 0.383 0.461
EPS 0.921 0.909 0.945
AC1 0.250 0.575 0.614

Fig. 2  Climate conditions 
(temperature (a), precipita-
tion (b) and water balance (c)) 
during April-September over 
the period 1960 − 2017. Water 
balance (WB) was calculated 
as WB = P-PET, where P repre-
sents the precipitation and PET 
the potential evapotranspiration. 
Trends are shown for the full 
period (ful., solid lines) and the 
early (ear., short-dashed lines) 
and recent (rec., long-dashed 
lines) periods. Regression coef-
ficients (b1) in bold type are 
significant at P < 0.001, coeffi-
cients underlined are significant 
at P < 0.01 and coefficients in 
italic are significant at P < 0.05 
(non-significant coefficients 
are not shown). W, wet site; M, 
moderate site; D, dry site

http://www.meteo.ru
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annual temperature has increased at an average rate of 0.3 
ºC per decade (R2 = 0.25; P < 0.001), warming faster at the 
moderate and wet sites in recent time (Fig. 2a). In recent 
times, the total annual precipitation has decreased at the 
wet site without significant trends at the moderate and wet 
sites (Fig. 2b). Water balance (WB = P – PET), where P 
is the precipitation, and PET is the potential evapotranspi-
ration calculated by the Thornthwaite equation (Thornth-
waite 1948), was estimated for the 1960–2017 period. Lower 
WB values correspond to the dry site, but only significant 
decreasing trends were found at the wet site (Fig. 2c).

Sampling design and tree‑ring measurements

Twenty mature dominant or co-dominant trees were sampled 
at each site during autumn 2018. Two wood cores per tree 
were taken at breast height using a 5-mm diameter increment 
borer. Cores were polished using a belt sanding machine 
with successive sandpaper (up to 600 grit) until a smooth 
and flat surface was obtained.

Wood cores were scanned at 3200 dpi with an Epson Per-
fection V800 scanner (Epson, Japan). Tree-ring width (RW) 
was measured on the scanned cores using CooRecorder 
version 9.3 (Cybis Elektronik & Data AB, Sweden). The 
accuracy of cross-dating was verified using COFECHA 
(Grissino-Mayer 2001), and each raw RW series was stand-
ardized using ARSTAN (Cook and Holmes 1996). Spline 
functions with a 50% frequency cut-off at 32 years were 
fitted individually to the raw series. Residual chronologies 
were computed using the bi-weight robust average. The 
approach is flexible enough to reduce any of the non-climatic 
lower frequency variances while at the same time preserving 
the high-frequency, inter-annual climate information (Cook 
and Peters 1981), which we consider relevant for the further 
assessment of the past five decades.

Simulations of tree growth and phenological 
dynamics

Tree growth and phenological key dates were simulated 
by the VS-Oscilloscope (VS-O) Ver. 1.32 (Shishov et al. 
2016; Tychkov et al. 2019), the visual parametrization inter-
face of the environmental block of tree-ring growth of the 
Vaganov–Shashkin model available at http:// vs- genn. ru/. 
The model simulates daily tree growth rates (Gr) based on 
two pre-defined growth-limiting functions, given the tem-
perature and soil moisture conditions occurring every day 
of the year. Thus, daily tree growth is defined by the limita-
tion of the growth rates dependent on temperature or soil 
moisture and weighted by the photoperiod determined by 
the site’s latitude (Tychkov et al 2019; Vaganov et al. 2006). 
Consequently, the Gr = min  (GrW,  GrT) ·  GrE, where  GrW, 
 GrT and  GrE are the daily partial growth rates based on soil 

moisture, temperature and solar irradiation, respectively. The 
 GrE depends on the latitude (Gates, 2012), whereas  GrW and 
 GrT are nonlinear functions scaled between 0 and 1 (Fig. 
A1).

To assess the effect of local conditions on growth, the 
model requires a calibrated parametrization by fitting the 
simulated RW chronology against the observed one. There-
fore, the evaluation of the VS-model is based on the values 
of Pearson’s correlation coefficient (r) and the Gleichläu-
figkeit synchrony (glk) between the simulated and actual 
RW chronologies (Shishov et al. 2016). As the output of 
the model, values of daily growth rates (GrW, GrT and Gr), 
simulated RW indices and annual estimations of the date for 
the start (SoS), end (EoS) and length (LoS) of the growing 
season are provided. By definition, the SoS occurs when 
the daily temperature is greater than or equal to the value of 
the minimum temperature required for tree growth (Tmin), 
and the temperature sum for the previous ten days reaches 
some critical level (Tbeg). The EoS is defined as the last day 
within a year when the growth rate's value is greater than 
the critical growth rate (Vcr) and the temperature sum is no 
longer higher or equal Tbeg (Vaganov et al. 2006). Finally, 
the LoS is estimated as the number of days between SoS 
and EoS.

In this study, the VS-model was parameterized for each 
site over the 1960–2017 period. Residual RW chronologies 
and daily climate data were used as input data. The calibra-
tion against the residual RW chronologies was performed 
from 1960 to 1988 and verification from 1989 to 2017.

Validation of phenology simulations against remote 
sensing

Simulated phenological series were compared to derived 
data from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) for a 14-year period (2001–2014) at each 
site. Annual estimations of vegetation phenology were 
obtained from the MODIS Land Cover Dynamics data 
product MCD12Q2 (Ver. 005; Ganguly et al. 2010). The 
data set includes the timing for the onset of four phenologi-
cal phases (greenup, maturity, senescence and dormancy) 
with 500 m-ground resolution. The phenophase transition 
dates were based on logistic models (Zhang et al. 2006), by 
the estimation of the curvature-change rate of the Enhanced 
Vegetation Index (EVI), computed from composed eight-day 
MODIS Nadir Bidirectional Reflectance Distribution Func-
tion (BRDF; Schaaf et al. 2002) and the Adjusted Land Sur-
face Reflectance (NBAR-EVI) data fitted with a sigmoidal 
function. The seasonal onset of continuous EVI increment 
corresponds to annual vegetation greenup and the seasonal 
onset of EVI minima corresponds to vegetation dormancy 
dates, associated with SoS and EoS, respectively (Zhang 
et al. 2006).

http://vs-genn.ru/.
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To test differences in mean simulated phenological dates 
(SoS, EoS and LoS) compared to derived MODIS datasets 
(and due to gaps in the MODIS dataset), we applied a one-
way ANOVA (data source as a fixed factor). In addition, to 
compare inter-annual patterns, Pearson’s correlations and 
linear regressions were performed.

Pine growth and phenology response to climate

Pine growth response to climate was assessed using Pear-
son's correlations between monthly climatic data (tempera-
ture, precipitation and water balance) and RW residual chro-
nologies for the 1960–2017 period. Correlation coefficients 
were calculated with a temporal window comprising from 
the previous year July to September of the current growing 
season. In addition, we grouped the climatic variables in cli-
matic seasons for the current growing year: winter (Decem-
ber-February), spring (March–May), summer (June–August) 
and autumn (September–November), as well during critical 
months for growth (May–July). Finally, climate correla-
tions were re-assessed by splitting the study period into two 
equally long 29-year intervals, 1960–1988 and 1989–2017.

Linear regression functions were applied to analyze the 
link between phenological dynamics and spring tempera-
tures over the 1960–2017 period. Linear regressions were 
also used to evaluate trends in the simulated pine pheno-
logical series (SoS and EoS) over the full and the early/late 
periods. Finally, since the SoS is defined by temperature in 
the model, we evaluated how spring temperature increments 
might affect the start of the growing season in the future. We 
forecasted potential changes in SoS by extrapolating current 
temperature to possible increments of 4 to 5 ºC as predicted 
by the end of the century in southern Siberia (Groisman 
et al. 2012).

Results

Climate response of radial growth

Pine climate sensitivity was consistent at all the sites dur-
ing the growing season (Fig. 3a). Secondary growth was 
favored by late spring and early summer precipitation, with 
earlier signal (May, r = 0.47; P < 0.001) at the dry site and 
later signals (June) at the moderate and wet sites (r = 0.32; 
P < 0.01 and r = 0.26; P < 0.05, moderate and wet sites, 
respectively). The aggregated effect of spring (March–May) 
precipitation showed a significant positive impact on growth 
at the dry site. Precipitation from previous growing season 
(August and November) also favored tree growth at the 
dry site (r = 0.33; P < 0.01 and r = 0.25; P < 0.05, respec-
tively). Whereas winter precipitation (previous December) 
showed a negative effect at the wet site (r = − 0.36; P < 0.01). 

Warm April and previous October temperatures enhanced 
tree growth at the moderate and wet sites (r = 0.32 and 
r = 0.36; P < 0.01, respectively). On the other hand, May 
and June temperatures exerted a negative effect at the dry 
site (r = − 0.35; P < 0.01 and r = − 0.23; P < 0.05), with the 
aggregated effect of May–July temperatures amplifying the 
negative effect (r = − 0.41; P < 0.001).

Pearson’s correlations between RW residual chronolo-
gies and water balance (P-PET) suggested a dependence on 
water availability at different temporal windows among the 
studied sites. Thus, the moderate and wet sites responded to 
a shorter water availability window (May, r = 0.34; P < 0.01 
and r = 0.22; P < 0.05, respectively). Whereas the dry 
site responded for a longer temporal window (late spring 
and mid-late summer), with the highest signal in August 
(r = 0.37; P < 0.01). Previous December signals mimic the 
response to precipitation at the moderate and wet sites.

Pine climate sensitivity decreased in the recent period 
(1989–2017) compared to the early period (1960–1988). 
As a result, temperature and precipitation signals from late 
spring and summer declined and became not significant, 
except at the dry site where the negative effect of May–July 
and summer temperatures remained (Fig. 3b & c). Interest-
ingly, the impact of water availability negatively increased, 
with the response to water balance becoming significant dur-
ing July–August at the dry site. Moreover, the aggregated 
effect of water balance consecutive months showed a shift 
from the spring to the summer (and extended to the autumn) 
from the early to the recent period, with a maximal signal 
reached during the summer (0.52; P < 0.01).

Tree growth model simulations

Tree growth simulations were significantly correlated 
(P < 0.05) with the residual RW chronologies at all the sites 
for both the calibration and the verification period (Fig. A2, 
see also Table A1 for model parameters). However, at the 
wet site, the performance of the model was suboptimal. Cor-
relation coefficients for the calibration period (1960–1988) 
ranged from r = 0.31 at the wet site (suboptimal performance 
of the model) to r = 0.66 at the moderate site, and the syn-
chrony (glk, Gleichläufigkeit) between series from 66% at 
the wet site to 69% at the moderate and dry sites. Correla-
tions for the verification period (1989–2017) ranged from 
r = 0.37 at the wet site to r = 0.51 at the moderate site, and a 
glk between 64% at the wet site to 75% at the dry site.

According to VS-model simulations, the growing sea-
son length averaged from 132 ± 14 (mean ± SD) at the wet 
site to 155 ± 12 days at the dry site over the 1960–2017 
period (Table 2). The SoS was earlier at the dry site (DOY 
121 ± 9) and later at the wet site (DOY 142 ± 12). The 
model highlighted a growth limitation by soil moisture 
from early summer (DOY 152 ± 9) to early autumn (DOY 
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Fig. 3  Correlations (Pearson’s coefficient) between ring width (RW) 
residual chronologies of Pinus sylvestris with total monthly precipita-
tion (P), mean monthly temperature (T) and water balance (WB) for 
the 1960–2017 period (a), early time 1960–1988 (b) and recent time 
1989–2017 (c). Correlations were calculated from July of previous 

year (uppercase letters) to September of current growth year (lower-
case letters), and by climatic seasons. W, wet site; M, moderate site; 
D, dry site; mjj, (May–July); win (winter); spr (spring); sum (sum-
mer); aut (autumn). Vertical-dashed lines separate monthly and sea-
sonal responses
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254 ± 11), whereas the importance of temperature goes 
from autumn to mid-spring (Fig. A3).

Validation of phenology simulations against remote 
sensing

MODIS-derived phenological dataset showed a longer grow-
ing season length at the dry site (161 ± 5; mean ± SD) and 
shorter at the moderate site (136 ± 12) for the 2001–2014 
period (Table 3). During the same period, the VS-model 
simulated a longer growing season length at the dry site 
(162 ± 11) and shorter at the wet site (118 ± 22). One-way 
ANOVA did not reveal significant differences in mean SoS 
at any site (P > 0.05). However, mean EoS was significantly 
different at the moderate and wet sites (F = 25.9; P < 0.05 
and F = 5.3; P < 0.05, respectively) and LoS at the moder-
ate site (F = 1.9; P < 0.05). Pearson’s correlations between 
simulated and MODIS-derived SoS were positive at all the 
sites but only significant at the wet site (r = 0.46; P < 0.05). 
Whereas EoS correlations coefficient were significant only 
at the dry site (r = − 0.75; P < 0.001; Fig. A4).

Table 2  Modeled phenology of P. sylvestris by VS-model for the 
period 1960–2017

SoS starting of growing season, EoS ending of growing season, LoS 
length of the growing season, W wet site, M moderate site, D dry site

SoS DOY 
(mean ± SD)

EoS DOY 
(mean ± SD)

LoS DOY 
(mean ± SD)

W 142 ± 12 273 ± 8 132 ± 14
M 133 ± 16 277 ± 8 144 ± 17
D 121 ± 9 276 ± 7 155 ± 12

Table 3  Vegetation phenology estimated from MODIS (MCD12Q2) 
dataset for the sampling sites during the common period 2001–2014 
and modeled phenology of P. sylvestris by VS-model for the same 
period

SoS starting of growing season, EoS ending of growing season, LoS 
length of the growing season, W wet site, M moderate site, D dry site

Site SoS DOY 
(mean ± SD)

EoS DOY 
(mean ± SD)

LoS DOY 
(mean ± SD)

MODIS W 130 ± 10 268 ± 9 137 ± 15
M 128 ± 10 263 ± 12 136 ± 12
D 117 ± 6 277 ± 5 161 ± 5

Modeled W 144 ± 12 262 ± 25 118 ± 22
M 123 ± 11 283 ± 7 161 ± 10
D 118 ± 11 280 ± 7 162 ± 11

Fig. 4  Phenological trends simulated by the VS-model for the start-
ing of the growing season (circles) and ending of the growing sea-
son (squares) and linear regressions for the full period (1960–2017, 
black-dashed lines), early period (1960–1988, blue-dashed lines) and 
recent period (1989–2017, red-dashed lines). Regression coefficients 
(b1) and significance are shown in the figures. Wet site (a), moderate 
site (b), dry site (c)
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Pinus sylvestris phenological dynamics and response 
to climate

Tree growth simulations revealed a trend of earlier SoS at all 
the sites over the 1960–2017 period (Fig. 4). Linear regres-
sions suggested the advance of SoS at a rate from 2.3 days/
decade at the dry site (R2 = 0.18; P < 0.01) to 2.6 days/dec-
ade at the moderate site (R2 = 0.15; P < 0.05). The dry site 
is the only showing a significant delay of EoS (R2 = 0.10; 
P < 0.05) at a rate of 1.4 days/decade. No significant trends 
were found at the wet site. When phenological trends were 
evaluated in the early and recent periods, the SoS advance 
increased to 5.6 days/decade from 1989 to 2017 at the dry 
site (Fig. 4).

Linear regression between simulated SoS and spring 
temperature over the full period (Fig.  5) suggested a 
strong response to April temperature at the moderate 
(R2 = 0.23; P < 0.001) and the dry (R2 = 0.49; P < 0.001) 
sites, whereas the wet site responded on May temperature 
(R2 = 0.39; P < 0.001). In this sense, a rise in spring tem-
perature supposes the advance of SoS on an average rate of 
3.1 days/ºC along the studied transect. The VS-model also 
forecasted the lengthening of P. sylvestris growing season 
linked to rising temperatures by the end of the current cen-
tury. Temperature increments between 4 and 5 ºC might sup-
pose an advance of SoS from 12 to 16 days at the moderate 
site and 16 to 17 days at the dry site.

Discussion

Pinus sylvestris growth and climate response

Contrary to the common assumption that temperature is 
the primary driver of boreal forest growth (Nemani et al. 
2003), pine secondary growth was mainly limited by water 
availability at the three sites. Precipitation and water balance 
signals echo previous findings in the region (Antonova and 
Stasova 1993; Arzac et al. 2018, 2021; Babushkina et al. 
2019; Fonti and Babushkina 2016; Shah et al. 2015; Taba-
kova et al. 2020), highlighting the relevance of water avail-
ability for tree growth even at the coldest and wettest site. 
The shift in the timing and strength of climate sensitivity 
among the sites reflects an alleviation of drought stress with 
increasing latitude. In contrast, the positive response to water 
balance and precipitation (linked to a negative response to 
temperature) at the dry site suggests a strong limitation by 
temperature-induced drought (Arzac et al. 2021), being an 
adequate soil moisture level necessary for cambial reacti-
vation and tree growth in drought-prone areas (Zeng et al. 
2020). Our results also showed a decrease in the climate 
sensitivity to temperature and precipitation during recent 
years (1989–2017), in agreement with previous observations 
in the region (Arzac et al. 2018). However, the response to 
water balance increased at the dry site during the summer 
months in recent times, suggesting favorable conditions at 
the beginning of the growing season (spring) but harshened 
later due to summer drought. This condition may be exacer-
bated in future due to climate change, limiting tree growth. 
Differences among the sites might also be influenced by pho-
toperiod (Körner and Basler 2010) and increasing radiation 
limitation due to cloudiness. Therefore, higher temperatures 
and lower radiation limitations (by lower cloudiness) might 
induce maximal growth at the driest site, despite the robust 
climatic control.

Pinus sylvestris phenology and climate

The advance of SoS during the last five decades is in line 
with previous observations and simulations in northern 
latitudes (Jeong et al. 2011; Piao et al. 2015; Schwartz 
et al. 2006; Shen et al. 2015). Moreover, the average rate 
of 2.5 days/decade detected over the studied sites mimics 
the magnitude reported by previous studies based on model 
simulations (e.g., Yang et al. 2017) and remote sensing (e.g., 
Myneni et al. 1997) in boreal regions. In this sense, warmer 
springs induce a faster snow melting, increasing water and 
nutrients availability and promoting an earlier onset of the 
cambial activity (Dye and Tucker 2003; Kirdyanov et al. 
2003; Peng et al. 2010; Zeng et al. 2020). Despite the robust 

Fig. 5  Linear regression between the simulated starting of the grow-
ing season (SoS) with mean April (moderate and dry sites) and May 
(wet site) temperature for the period 1960–2017. Trends (gray-dashed 
lines) and regression coefficients (b1) and significance are shown in 
the figure
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climatic control at the dry site, it also showed a longer grow-
ing season and tree growth, with clear dependence of SoS 
to spring warming (April). Therefore, our results might sug-
gest that earlier growing seasons start at the dry site, due to 
warm springs, compensate for much of the expected growth 
reduction by low water availability levels later in the grow-
ing season (e.g., Shiklomanov et al. 2013).

VS-model simulations based on increasing spring temper-
atures projected earlier growing seasons start by the end of 
the century. Since the model defines the SoS based on tem-
perature, it is possible to forecast potential realistic changes 
in the SoS. However, the limitation in daily climate forecast 
for the region difficult the prediction of growth rates and 
EoS dependent on temperature and soil moisture (as well 
as increasing drought limitation). Nevertheless, phenology 
changes linked to increasing temperature might substan-
tially affect forest functioning and global carbon dynam-
ics in future (Keenan et al. 2014; Piao et al.2019). Longer 
vegetation seasons in global ecosystems (Zhu et al. 2016) 
could trigger photosynthetic activity and carbon assimila-
tion (Keenan et al. 2014; Zhang et al. 2020), increasing for-
est productivity (Nemani et al. 2003; Schwartz et al. 2006; 
Zhang et al. 2020).

Pinus sylvestris has shown high physiological adaptabil-
ity to contrasting environmental conditions. However, the 
warming-induced drought might also lead to future water 
deficits affecting forest health in the area (Arzac et al. 2018; 
Kharuk et al. 2013a, 2013b; Tabakova et al. 2020). There-
fore, if the induced drought exceeds pine tolerance, the 
Russian boreal forest structure might be affected by forest-
steppe expansion over taiga (Soja et al. 2007; Tchebakova 
et al. 2016). Thus, leading to a decrease in forest cover and 
potentially reducing the productivity and carbon assimilation 
capacity of the taiga ecosystem (Gustafson et al. 2011; Shvi-
denko et al. 2012). Therefore, precipitation and snowmelt/
snowpack will be determining factors to keep the soil mois-
ture balance for tree growth and phenology in future, as is 
evidenced by the increasing response to water balance at the 
dry site in recent time (Arzac et al. 2018, 2019; Babushkina 
et al. 2015; Grippa et al. 2005; Shen et al. 2015).

VS‑model simulations and remote sensing

Some uncertainties might arise from the use of model simu-
lations in combination with remote sensing observations. For 
example, the available MODIS dataset (2001–2014) might 
not be robust enough to evaluate temporal trends (Yang 
et al. 2017). In addition, the presence of gaps in the data set 
because of cloudiness might also induce errors when com-
paring both approaches. Observed differences in EoS at the 
moderate and the wet sites could respond to EVI's limited 
capacity to reproduce growing dynamics in the evergreen 

needleleaf forest (Wu et al. 2014). A limitation exacerbated 
in mixed forests as at the wet site where the fraction of pho-
tosynthetically active radiation from deciduous species (L. 
sibirica and B. pendula) might overlap with P. sylvestris. In 
addition, a suboptimal performance of the model at the same 
site might respond to non-climatic factors, like the impact of 
insect outbreaks in the area (Safonova et al. 2019). However, 
their impact has been detected only in the last ten years.

Although the comparison of inter-annual patterns 
between modeled and remote sensing phenological series 
by Pearson’s correlation was poor, mean SoS values were 
comparable, highlighting the model's potential to reconstruct 
phenological dynamics over long spatiotemporal scales (e.g., 
Jevšenak et al. 2020), particularly for the determination of 
the SoS (Tumajer et al. 2021). Nevertheless, the reconstruc-
tion of EoS and LoS dynamics based on the model might 
be uncertain, limiting the capacity of the model to recon-
struct phenological dynamics beyond SoS. The VS-O has 
shown limitations determining the EoS compared to direct 
phenological observations (e.g., Butto et al. 2020; Jevsenak 
et al. 2020; Tumajer et al. 2021). A potential source of the 
model’s poor performance may be the overly simple statisti-
cal approach to estimate the EoS, based on values of integral 
growth rate and a mechanistic parameter (Vcr and Tbeg) 
which are constant for every year of simulation, and not 
considering non-climatic factors as hormones concentration 
and non-structural carbohydrates dynamics (Hartmann et al. 
2017; Furze et al. 2019).

Conclusions

The combination of multiple data sources allowed us to dis-
close the effect of climate on Pinus sylvestris growth and 
fill gaps in xylem phenology (SoS dynamics) studies over 
extended spatiotemporal scales. Our findings suggest that 
P. sylvestris secondary growth is plastic enough to adapt 
to a certain threshold of harsh environmental conditions, 
adjusting its growth strategy to favorable climatic windows. 
The release of summer drought stress by earlier SoS, trig-
gered by spring warming, might compensate for tree growth 
limitation by low water levels at the dry site later in the 
growing season. However, predicted rising temperatures and 
drought events in the southern Siberian forest-steppe might 
exceed the species’ physiological tolerance, compromising 
tree growth and phenology. Altogether ultimately affecting 
the vitality, dynamics and distribution of Siberian forests, 
with critical ecological consequences on the global scale.
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