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Abstract
Mediterranean riparian ecosystems provide key ecosystem services, such as climate regulation, water quality, and flood 
protection. Forest degradation and exotic species are among the main human-mediated impacts in these ecosystems, yet little 
is known about their interacting effect on the dynamics of soil characteristics. Here, we studied the effect of species canopy 
on monthly soil characteristics during one year in a riparian ecosystem in Central Spain. Soil chemical and microbiologi-
cal properties were monthly recorded in five vegetation types: (1) forests dominated by the  N2-fixing Alnus glutinosa, (2) 
shrublands dominated by A. glutinosa, (3) poplar plantations of the exotic Populus × hybrida, (4) mixed forests dominated 
by Fraxinus angustifolia and Salix alba, and (5) grasslands. Canopy areas showed much higher soil organic C, total N, nitrate 
and ammonium contents than the grassland areas. A. glutinosa forests had the highest total N, organic C, ammonium, and 
most probable number (MPN) of aerobic and anaerobic microorganisms followed by A. glutinosa shrublands, while mixed 
forests and poplar plantations had the highest nitrate content. Poplar plantations showed the lowest soil N and C content 
likely due to the recalcitrant litter of Populus × hybrida.  N2 fixation peaked in months that differed among vegetation types. 
Temporal changes in soil characteristics were mostly driven by soil moisture, although the magnitude of these changes varied 
between canopy species. Our study highlights the importance of protecting forested areas and planting native tree species in 
afforestation programmes to keep the ecological integrity of riparian ecosystems. A. glutinosa is suggested as an appropriate 
species to improve soil fertility and stability in restoration projects.

Keywords Alnus glutinosa · Ammonium · N2 fixation · Microbial abundance · Nitrate · Organic carbon · Fraxinus 
angustifolia · Populus × hybrida

Introduction

Riparian areas are the interfaces between terrestrial and 
aquatic environments, naturally characterized by a forested 
strip along freshwater ecosystems. These areas occupy a 
small proportion of the land, but represent an important 
ecological component of the landscape providing a plethora 
of ecosystem services (Gregory et al. 1991; Hanberry et al. 
2015; Tockner et al. 2002). They naturally held high bio-
diversity levels boosted by a mosaic of habitats created by 
a high rate of natural disturbances (Décamps et al. 2009). 
Riparian vegetation may show different physiognomy, 
structure, growing phase, and composition because of local 
variability in physical conditions (e.g. flow velocity during 
floods, elevation above the water level and substrate), land-
form age, and land use (Dufour and Rodríguez-González 
2019). Besides, riparian forests play a crucial role in carbon 

Communicated by Agustín Merino.

F. Bermúdez de Castro passed away on 26 November 2019.

 * María Esther Pérez-Corona 
 epcorona@bio.ucm.es

 María del Carmen Pérez-Hernández 
 maricarper@telefonica.net

 Silvia Medina-Villar 
 medina_villar@hotmail.com

 Enrique Andivia 
 eandivia@ucm.es

1 Department of Biodiversity, Ecology and Evolution (UD 
Ecology), Faculty of Biological Sciences, Complutense 
University of Madrid, Calle Jose Antonio Novais, 12, 
28040 Madrid, Spain

2 Department of Biology, Faculty of Sciences, University 
of La Serena, Avda. Raúl Bitrán Nachary 1305, 
1700000 La Serena, Chile

http://orcid.org/0000-0002-4034-8920
http://orcid.org/0000-0002-4675-7928
http://orcid.org/0000-0002-9096-3294
http://crossmark.crossref.org/dialog/?doi=10.1007/s10342-021-01387-8&domain=pdf


1082 European Journal of Forest Research (2021) 140:1081–1093

1 3

and nutrient cycles, regulating the effects that freshwater 
processes produce in terrestrial ecosystems and vice versa. 
On the one hand, riparian forests can modify, incorporate, 
dilute, or concentrate substances in ground waters before 
they enter waterways (Décamps et al. 2009; Osborne and 
Kovacic 1993). On the other hand, they can retain water-sus-
pended sediments, uptake and sequester nutrients, and pol-
lutants, which are essential regulatory processes (Décamps 
et al. 2009; Osborne and Kovacic 1993; Roy et al. 2007). 
In fact, riparian forests are considered as biological “buff-
ers” and the interest for their preservation has become 
widespread.

Riparian forests, however, have been historically sub-
jected to high anthropogenic disturbances exacerbating the 
natural perturbation regime and compromising the resil-
ience of such as valuable ecosystems. In fact, 90% of ripar-
ian forests in Europe have disappeared and the remaining 
patches are extremely degraded due to channelling, inten-
sive agricultural exploitation, or industrial uses (Hughes 
2003). Additionally the plantation of fast-growing exotic 
and hybrid trees, and the colonization by invasive plant 
species contribute to landscape homogenization and can 
especially alter the characteristics and functioning of the 
forested freshwater ecosystems by modifying the direct input 
of nutrients, organic matter, and large wood (Décamps et al. 
2009; Hughes 2003; Valett et al. 2002; Warren et al. 2007). 
Increasing our understanding of plant–soil interactions in 
riparian forests can guide conservation and management 
priorities as well as restoration practices in these threaten 
ecosystems.

Species that characterize the tree canopy strongly influ-
ence soil physical–chemical characteristics (e.g. soil humid-
ity, acidity, organic matter, or nutrient pools) (Andivia et al. 
2015; Augusto et al. 2002; Ayres et al. 2009; López-Marcos 
et al. 2019; Medina-Villar et al. 2016; Prescott 2002; War-
ing et al. 2015), soil biological communities (Dukunde 
et al. 2019; Gutiérrez-López et al. 2014; Medina-Villar 
et al. 2016), and soil ecological processes, such as litter 
decomposition, microbial activities, or nutrient minerali-
zation rates (Castro-Díez et al. 2009; Medina-Villar et al. 
2016; Pérez-Corona et al. 2006). The involved mechanisms 
included plant interspecific differences in plant functional 
traits, such as the ability to fix nitrogen (Dawud et al. 2017; 
De Deyn et al. 2008; van Miegroet and Cole 1984), the 
uptake of exchangeable cations and anions, nutrient use 
efficiency and growth rates (Aerts and Chapin 2000; Read 
2001), as well as differences in the timing, quantity, and 
quality of the litter produced (Kamei et al. 2009; Medina-
Villar et al. 2015a; Xiong and Nilsson 1999; Xu et al. 2013). 
Furthermore, it has been largely reported that different tree 
species determine different soil properties, which in turn 
may influence the plant nutrient uptake and the species com-
position of the understory plant community (Barbier et al. 

2008; López-Marcos et al. 2019; Rhoades et al. 2001; Su 
and Zhao 2003).

Other aspects that may influence soil properties and 
microbial activities in riparian forests are the plant taxo-
nomic and functional diversity, tree density, and the structure 
of ages and heights of the dominant woody species (Bauhus 
et al. 1998; Dawud et al. 2017; Hanif et al. 2019; Lucas-
Borja et al. 2019; Su and Zhao 2003; Teixeira et al. 2020; 
Zheng et al. 2017). In this sense, soil carbon (C) and N have 
been reported to increase as tree age and height increase 
both in native and afforested forests (Su and Zhao 2003; 
Teixeira et al. 2020). Indeed, afforestation with different tree 
or shrub species in adjacent grasslands and degraded areas 
is one of the most common and efficient measures for the 
restoration of riparian forests (Sweeney and Czapka 2004). 
Revegetation of these areas can similarly modify soil prop-
erties, generally increasing soil fertility, but the intensity 
of the changes depends on the functional characteristics of 
the planted woody species (Chirino-Valle et al. 2016; Diallo 
et al. 2019; Kahle et al. 2005). Exotic tree plantations are 
also able to highly modify soil properties regarding native 
forests (Boothroyd-Roberts et al. 2013; Jeddi and Chaieb 
2012; Turner and Lambert 1988).

The strength of the idiosyncratic effect of tree species 
on soil properties also depends on the ecosystem type and 
seasonality (Borken et al. 2002; Patel et al. 2010; Rhoades 
et al. 2001 2004). Mediterranean riparian forests are exposed 
to high intra-annual variability of flooding events coupled 
with seasonal drought that strongly affect nutrient cycles and 
soil properties (Bernal et al. 2013). However, little is known 
about the seasonal influence that riparian vegetation (dif-
fering in species composition, diversity, and demographic 
structure of woody species) may have on soil characteristics 
and processes.

This study aims to evaluate the effect of canopy species 
composition on the temporal dynamics of physical–chemi-
cal and biological soil parameters in Mediterranean riparian 
forests. For this, we monthly evaluated along one-year soil 
moisture, pH, contents of total N, ammonium, nitrate and 
organic C, most probable number of aerobic and anaero-
bic microorganisms, and acetylene reduction activity (as an 
estimate to the effective  N2 fixation) in different riparian 
vegetation-type zones in a riparian ecosystem in Central 
Spain: (1) forests dominated by native alder trees [Alnus 
glutinosa (L.) Gaertn], (2) shrublands dominated by young 
native alder shrubs [Alnus glutinosa (L.) Gaertn], (3) mon-
ospecific poplar (Populus × hybrida Moench) plantations, 
(4) mixed forests formed by alder [Alnus glutinosa (L.) 
Gaertn], poplar (Populus alba L. and Populus × hybrida 
Moench), ash (Fraxinus angustifolia Vahl) and willow (Salix 
alba L.) trees, and (5) humid grasslands (open area) without 
canopy species (tree or shrub). Based on previous litera-
ture, we hypothesized: (H1) more organic C and nutrients 
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in canopy zones than in grassland due to greater leaf litter 
inputs (Kahle et al. 2005; Diallo et al. 2019); (H2) higher N 
and organic C contents in alder forests than in other zones 
due to the ability of alder to fix  N2 and the high N content 
of its litter (Chauvet 1987; Clein and Schimel 1995); and 
(H3) more ability of adult than young alder trees to increase 
soil C and N (Su and Zhao 2003; Lucas-Borja et al. 2019).

Material and methods

Study area and species

Field sampling was conducted in a riparian ecosystem along-
side Sorbe river, in the vicinity of Humanes de Mohernando 
(Central Spain, N 40°50′46.8′′, W3 °8′52.4′′). A detailed 
description of the study area can be found in Pérez-Hernán-
dez (1996). The climate of the area is characterized as mild 
Mediterranean. Mean annual rainfall is 397.4 mm, and mean 
annual temperature is 13 °C. The mean temperature of the 
coldest and hottest months is 4 and 23 °C, respectively. The 
soils are brown ferrisialitic or calcareous soils and rendzinas 
with calcareous crust (Portero et al. 1990). Terrace levels 
and quaternary alluvial deposits form the soil substrate. Soil 
texture is sandy loam (mean granulometric values: 65.80% 
of sand, 21.00% of lime, and 13.25% of clay).

Within the study area, we identified five vegetation types 
(thereby called as canopy species): (a) monospecific native 
alder forests of Alnus glutinosa (Betulaceae), where alder 
trees ranged from 8 to 20 m in height, tree density was 0.7 
trees/m2, and the understory was mainly constituted, by 
Urtica urens L., Scirpus holoschoenus L., Geranium rob-
ertianum L., Brachypodium sylvaticum (Hudson) Beauv., 
among others; (b) shrublands dominated by alder shrubs 
that ranged from 0.5 to 3 m in height with an understory 
dominated by S. holoschoenus and G. robertianum; (c) mon-
ospecific plantations of the exotic poplar species, Populus × 
hybrida (Salicaceae) clone I-214, where trees ranged from 
4 to 6 m in height, tree density was 0.87 trees/m2, and the 
understory vegetation was dominated by herbaceous species, 
such as Avena sterilis L., Trifolium spp., and Poa pratensis 
L.; (d) dense mixed forests formed by willow (Salix alba 
L.; Salicaceae), ash (Fraxinus angustifolia Vahl; Oleaceae), 
alder and poplar (Populus × hybrida and Populus alba L.) 
trees with a dense understory dominated by Rubus ulmifolius 
Schott, and (e) humid grasslands (open area) without canopy 
species (tree or shrub) and with a floristic composition simi-
lar to that of the poplar plantation plus Genista scorpius (L.) 
DC. and Hypericum perforatum L.

The tree species A. glutinosa and F. angustifolia are very 
sensitive to changes in hydrological regimes, such as extreme 
events of droughts and floods (Rodríguez-González et al. 
2014; Mikac et al. 2018). Moreover, the Habitats Directive 

of European Commission in its article 17 (2013–2018) con-
sidered Alluvial forests with A. glutinosa (91E0), as well as 
Thermophilous F. angustifolia forests (which include Salix 
spp.) (91B0) as priority habitats with unfavourable-inade-
quate status. Populus × hybrida is an exotic species, created 
by mixing the exotic Populus deltoides Bartram ex Marshall 
with the native Populus nigra L., and it has been widely 
planted in Western Europe, leading to biotic homogenization 
(Kominoski et al. 2013).

Sampling design

For each canopy species, we randomly selected five sam-
pling plots (1 × 1 m) along the study area. At each sam-
pling plot, four subplots (15 × 15 cm) were randomly settled. 
Under aseptic conditions, the upper litter layer of the soil 
was taken out with a hoe previously flamed and then the soil 
underneath till 10 cm depth was taken. The four soil subsam-
ples for each sampling plot were mixed, homogenized, and 
divided into three parts: one for physical–chemical analysis, 
one for microbiological analysis, and one for soil N fixa-
tion measurements. Samples were conserved at 2–4 °C. This 
procedure was monthly repeated from June to May of 1987.

Physical–chemical analyses

Soil moisture content was gravimetrically measured as the 
difference between the initial fresh weight and dry weight 
(110 °C until constant weight) of the soil samples. For the 
rest of the analyses, soil samples were dried out at 55 °C and 
sieved through a 2.0 mm mesh size. pH was measured using 
a mv/pH meter (CRISON digit 501) in a mixture of 20 g 
of soil with 20 mL of deionized water (Allen et al. 1974). 
Total nitrogen and ammonium contents were measured by 
Kjeldahl digestion, and the produced ammonia was quanti-
fied with a selective electrode (Orion 95–10-00) connected 
to a mv/pH meter CRISON digit 501. Nitrate was extracted 
with a solution containing  Al2(SO4)3,  H3BO3,  Ag2SO4, 
and  NH2SO3H (Milham et al. 1970) and determined with 
a nitrate selective electrode (ORION 93-07-00). Organic 
carbon was determined using the Walkey and Black method 
(1934).

Microbiological analyses

For microbiological analyses, soil samples were dried out at 
room temperature on filter papers. Then, they were sieved 
through 2.00 mm mesh size previously sterilized. Sieved 
samples were stored on glass bottles in the dark between 2 
and 4 °C until use. Most probable number (MPN) of aerobic 
and anaerobic microorganisms (Aerobic Moos and Anaero-
bic Moos, respectively) was measured using the plating dilu-
tion soil method described by Pochon and Tardieux (1962) 
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in a selective culture medium. Acetylene reduction activity 
(ARA) was used to screen the soil samples for effective  N2 
fixation by soil free-living microorganisms, i.e. nitrogen 
fixation potentiality of the soil (Hardy et al. 1973; Siczek 
and Lipiec 2011; Yong et al. 2018). In total, 50 g of soil 
sample was weighted and introduced in glass vials sealed 
with a rubber lid. Then, 15 ml of air was extracted from the 
flasks and an equal amount of acetylene was introduced in 
them. Vials were incubated at room temperature during 24 h 
under natural photoperiod (Knowles 1982). The ethylene 
produced was measured in a gas chromatograph (KONIK, 
Cromatik KNK) with flame-ionization detector (Hardy et al. 
1973). Christiansen and Graham (2002) reported that acety-
lene assay is useful to assess changes in  N2 fixation over time 
and among treatments.

Statistical analysis

We used linear mixed models (LMM) to evaluate the main 
effect of canopy species, collecting date and their interac-
tion on soil physical–chemical and microbiological param-
eters. The identity of the sampling plot was considered as 
random term to account for lack of independence resulted 
for repeated measures at the same points. We used the Bon-
ferroni post hoc test to evaluate differences between lev-
els of significant factors. To achieve homoscedasticity and 
normality assumptions, we log-transformed some response 
variables. To analyse relationships between variables, we 
performed correlograms (Pearson correlations) at different 
scales: the whole study area (time and vegetation variation) 
and each vegetation-type area (time variation). We also per-
formed a principal component analysis (PCA) with depicted 
ellipses for each canopy species. Non-overlapping ellipses 
indicate significant differences (p < 0.05) among different 
canopy species considering all soil variables along time. All 
statistical analyses were performed in R software 3.4.3 (R 
Core Team 2017). We used “lme” function (nlme package, 
Pinheiro et al. 2020) for the LMM analyses, “emmeans" 
(emmeans package, Lenth 2020) for post hoc pairwise 
comparisons, the functions “prcomp” and “autoplot” for 
the PCA plot (Tang et al. 2016), and the functions “rcorr” 
and “corrplot” (Hmisc package, Harrell and Frank 2020) 
for correlograms.

Results

Effect of canopy species on soil variables

All the studied soil parameters, except for C/N, showed sig-
nificant differences among canopy species and collection 
time, being the interaction between canopy species and col-
lection time significant in all parameters except ammonium 

and organic C (Table 1). Grasslands showed the lowest 
values of nitrate, ammonium, total N, and organic C con-
tents during the whole year (Fig. 1). From canopy areas, 
nitrate content was higher in poplar plantations and mixed 
forests than in alder areas (Bonferroni post hoc test, p < 0.05; 
Fig. 1). In some months, nitrate content was higher in mixed 
forests than in plantations (winter months) and in alder 
forests than in alder shrublands (late spring and summer 
months) (Bonferroni post hoc test, p < 0.05; Fig. 1). From 
higher to lower ammonium content, canopy species ranked 
alder forests > alder shrublands > mixed forests > poplar 
plantations > grasslands. Total N and organic C showed 
similar species ranking but with small differences (Fig. 1). 
Total N content in mixed forests was similar to that in poplar 
plantations from September to February while similar to that 
in alder areas from May to July (Bonferroni post hoc test, 
p < 0.05; Fig. 1). Alder shrublands and mixed forests showed 
similar organic C. In the case of C/N, the lowest values were 
found in grasslands during summer and in alder shrublands 
during winter with no clear differences in temporal pattern 
between canopy species (Bonferroni post hoc test, p < 0.05; 
Fig. 1). In relation to the temporal evolution of nutrient con-
tents, ammonium and nitrate had the lowest values in winter 
months in all vegetation types, whereas total nitrogen and 
organic C showed different seasonal dynamics in each veg-
etation type (Fig. 1).

Overall, pH values were lower in alder shrublands and 
grasslands compared to the other canopy species, with the 
lowest values in winter months (Bonferroni post hoc test, 
p < 0.05; Fig. 2). Soil moisture was the highest in alder for-
ests, followed by mixed forests, and the lowest in grasslands 
and poplar plantations (Bonferroni post hoc test, p < 0.05; 
Fig. 2). Intra-annual variability of soil moisture was high in 
alder and mixed forest areas, with the highest values in late 
autumn and winter and the lowest in summer (Fig. 2).

Table 1  Two-way repeated-measures ANOVA results for differ-
ent soil variables between canopy tree species, time, and interaction 
between them

Soil variables Canopy Time Interaction

Nitrate (μg/g)  < 0.0001  < 0.0001  < 0.0001
Ammonium (μg/g)  < 0.0001  < 0.0001 0.983
Total nitrogen (mg/g)  < 0.0001  < 0.0001  < 0.0001
Organic C  < 0.0001  < 0.0001 0.0935
C/N 0.2327  < 0.0001  < 0.0001
pH  < 0.0001  < 0.0001  < 0.0001
Soil moisture (%)  < 0.0001  < 0.0001  < 0.0001
Aerobic microorganisms (MPN)  < 0.0001  < 0.0001  < 0.0001
Anaerobic microorganisms 

(MPN)
 < 0.0001  < 0.0001  < 0.0001

ARA  < 0.0001  < 0.0001  < 0.0001
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Fig. 1  One-year temporal 
changes of soil ammonium, 
nitrate, total nitrogen soil 
organic carbon, and C/N in dif-
ferent riparian vegetations: alder 
forest—Alder, alder shrub-
land—Alder (shrub), mixed 
forest, poplar plantation—Pop-
lar, and grassland. Values are 
means ± standard error

Fig. 2  One-year temporal 
changes of pH and soil moisture 
in different riparian vegeta-
tions: alder forest—Alder, alder 
shrubland—Alder (shrub), 
mixed forest, poplar planta-
tion—Poplar, and grassland. 
Values are means ± standard 
error
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ARA values peaked in February and November in mixed 
forests, in January in grasslands, in October and January 
in alder forest, and slightly in October and March in alder 
shrublands (Fig. 3). The number of aerobic and anaerobic 
microorganisms in the soil showed a similar pattern along 
the year, showing both biological parameters the highest 
values in alder areas, peaking in May, June, and October 
(Fig. 3).

Relationships between soil parameters

The correlation analysis revealed that soil parameters were 
rather correlated between them (60% of the correlations were 
significant; p < 0.05; Fig. 4) although correlations values did 
not show very high r (only 11% showed r > 0.7). Significant 
correlations considering all vegetation types were mostly 
positive (85%) except for C/N that was negatively correlated 
with pH, ammonium and total N, and soil moisture that was 
negatively correlated with pH (Fig. 4). Positive and strong 
correlations were found between N compounds (ammonium, 
nitrate, and total N), organic C, and soil moisture. The cor-
relation strength between soil chemical and microbiologi-
cal variables (ARA, aerobic, and anaerobic microorganisms) 
was low (Fig. 4). All soil microbiological variables were 
positively correlated with soil moisture (Fig. 4). The MPN 
of aerobic and anaerobic microorganisms was positively cor-
related between them and with C and ammonium (Fig. 4). 
The MPN of aerobic microorganisms was also positively 
correlated with total N and ammonium (Fig. 4).

Correlation patterns were different between vegetation 
types, with the exception of alder forests and shrublands 
(Fig. 5). While soil moisture was positively correlated with 
N compounds at the study area scale, soil moisture was neg-
atively correlated with inorganic N (ammonium and nitrate) 

in all vegetation types. MPN of aerobic microorganisms 
was positively correlated with pH in all vegetation types 
except grasslands and with nitrate in alder and mixed forests. 
Some correlations between studied variables were specific 
for each vegetation type. For instance, MPN of anaerobic 

Fig. 3  One-year temporal 
changes of acetylene reductase 
activity (ARA), most probable 
number of aerobic and anaero-
bic microorganisms. alder 
forest—Alder, alder shrub-
land—Alder (shrub), mixed 
forest, poplar plantation—Pop-
lar, and grassland. Values are 
means ± standard error

Fig. 4  Correlogram showing correlations between dependent vari-
ables: pH, total N, nitrate, ammonium, soil moisture, C/N, organic 
carbon (C), ARA, and aerobic and anaerobic most probable number 
of microorganisms. Colour intensity and the size of the circle are pro-
portional to the correlation coefficients. The legend (right side of each 
correlogram) shows the correlation coefficient and the corresponding 
colour: blue circles mean positive correlations and red circles nega-
tive correlations. Blank spaces without circle are non-significant cor-
relations (p > 0.05)
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microorganisms was negatively correlated with soil moisture 
in poplar and grassland areas and positively correlated with 
nitrate in alder, poplar, and grassland areas, and with ammo-
nium in grasslands and mixed forests. ARA also showed 
vegetation-specific correlations with chemical variables: i.e. 
the correlation between ARA and soil ammonium content 
was significant and positive (p < 0.05) in poplar plantations 
while negative in grasslands and mixed forests. In alder 
areas, ARA was not correlated with any chemical variable. 
Total N was negatively correlated with pH in alder areas 
but not in other areas. Organic C was negatively correlated 
with pH in all areas except mixed forests and negatively cor-
related with mineral N in poplar plantations and grasslands.

Principal component analysis (PCA)

PCA axes explained 37.5% and 14.99% of the total variance, 
respectively (Fig. 6). There was a clear spatial ordination of 

the observations with respect to the first PCA axis. From the 
negative to the positive extreme of the axis, the observations 
are ranked in the following order: alder forests, alder shrub-
lands, mixed forests, poplar plantations, and grasslands. 
However, statistical differences regarding all soil variables 
were only significant between grassland and canopy zones 
(alder forests, alder shrublands, mixed forests, and poplar 
plantations). Grasslands showed the lowest values of soil 
nitrate, total N, ammonium, organic C, moisture, ARA, and 
MPN of aerobic and anaerobic microbes, while alder forests 
were characterized by high amounts of total N, ammonium, 
and organic C.

Discussion

Our study shows that riparian areas with tree canopy species 
had higher soil fertility (soil organic C, total N, ammonium, 
and nitrate) than grassland open areas, which support our 
hypothesis H1. This effect was more evident in the case of 
soil nitrate, which was more than 15 times higher in canopy 
areas than in grasslands. Our results are similar to those 
previously reported for alder in the study area (Pozuelo Gon-
zalez et al. 1995), for mixed forests (Rhoades et al. 2004), 
and for other riparian forests dominated by different spe-
cies, such as Alnus crispa (Rhoades et al. 2001), Populus 
and Salix spp. (Kahle et al. 2005), and other woody species 
(Diallo et al. 2019). Soil fertility, in terms of organic C and 
total N, was higher in areas dominated by the  N2-fixing spe-
cies, Alnus glutinosa, than in other canopy areas, supporting 
our H2. This result agrees with recent studies showing that 
tree identity and the functional group (e.g. the ability to fix 
 N2) seem more important factors influencing soil properties 
than forest structure and tree diversity (Dawud et al. 2017; 
Zheng et al. 2017). In addition, we also showed that the 

Fig. 5  Correlogram showing correlations for each vegetation area 
between dependent variables: pH, total N, nitrate, ammonium, soil 
moisture, C/N, organic carbon (C), ARA, and aerobic and anaerobic 
most probable number of microorganisms. Colour intensity and the 
size of the circle are proportional to the correlation coefficients. The 

legend (right side of each correlogram) shows the correlation coef-
ficient and the corresponding colour: blue circles mean positive cor-
relations and red circles negative correlations. Blank spaces without 
circle are non-significant correlations (p > 0.05)

Fig. 6  Results of the PCA for the different soil variables: total N, 
nitrate, ammonium, pH, C/N (C.N) organic C, moisture, most prob-
able number of aerobic, and anaerobic microorganisms and ARA. 
Colour ellipses represent different vegetation types
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ability of alder to increase soil organic C and total N was 
higher in areas dominated by adult trees when compared to 
younger and smaller shrubs (H3), as it was also reported in 
alder and other  N2-fixing species (Pozuelo Gonzalez et al. 
1995; Staska et al. 2014; Su and Zhao 2003).

Canopy N represents an important nutrient input to soil in 
natural and artificial systems, which may improve the nutri-
tion of under-canopy plant species (Rhoades et al. 2001) 
and promote soil biological activity, and abundance of soil 
microbes (Birkhofer et al. 2012; Wang et al. 2018; Yevdoki-
mov et al. 2005). In fact, correlations at the study area scale 
showed positive correlations between N compounds and 
the abundance of aerobic and anaerobic microorganisms. 
The highest abundance of total N and ammonium in the soil 
under alder canopies can be explained by the ability of alder 
to symbiotically fix  N2 from the atmosphere into ammonium 
in its radical nodules (Marschner and Rengel 2007), and the 
higher litter decomposition rates associated with N-rich and 
easily decomposable leaf litter that characterized these spe-
cies (Clein and Schimel 1995; Paschke 1997; Pérez-Corona 
et al. 2006). N conversion in soil organic matter is mediated 
by soil non-specific aerobic and anaerobic microorganisms, 
which transform organic N to ammonium and nitrate through 
mineralization (Marschner and Rengel 2007). The positive 
influence of alder species on soil N content and availability 
and on the abundance of soil microbes has been previously 
reported (Hart et al. 1997; Homann et al. 1994; Pozuelo 
Gonzalez et al. 1995; Rhoades et al. 2001).

On the other hand, the lowest fertility in canopy areas was 
found in poplar plantations, overall in spring and summer. 
This is in accordance with a recent meta-analysis compar-
ing soil properties between natural and planted forests (Liao 
et al. 2012) and could be explained by: (i) lower decompo-
sition rates of leaf litter from Populus spp. than those from 
A. glutinosa and F. angustifolia (Abelho 2014; Casas et al. 
2013; Horodecki et al. 2019; Martínez et al. 2013; Medina-
Villar et al. 2015b); (ii) lower net primary production, litter-
fall inputs, soil nutrient conservation, and fine root biomass 
in plantations than in natural forests (Cai et al. 2019; Liao 
et al. 2010; Pandey et al 2007; Yang et al 2005); and (iii) tree 
harvesting and other management practices in productive 
plantations (Liao et al. 2010).

Despite higher contents of total soil N and ammonium, 
alder forests showed lower nitrate content compared to 
mixed forests and poplar plantations (Pozuelo Gonzalez 
et al. 1995). Nitrate can be easily lost from the soil system by 
leaching and denitrification as soil moisture increases (Mar-
schner and Rengel 2007). The proximity of alder canopies 
to the river bank in the study area may explain their higher 
soil moisture, which could have determined higher rates of 
nitrate leaching and denitrification and thus lower soil nitrate 
contents in alder areas than in poplar plantations and mixed 
forests. Moreover, the strongly negative correlation between 

soil nitrate and soil moisture supports these results. Besides, 
some authors also pointed to the ability of  N2-fixing plant 
species to allelopathically inhibit nitrifying microorganism 
(Llinares et al. 1993; Pozuelo Gonzalez et al. 1995). Lastly, 
Schnabel et al. (1997) showed that grasslands had greater 
denitrification rates than woodlands and thus lesser reten-
tion for nitrate, which is also in accordance with our results 
showing lower nitrate content in grassland than in forested 
areas.

Contrasting correlations between abundance of soil 
microorganisms and mineral N between canopy species 
may indicate different dominance of functional groups of 
microorganisms. For instance, increases in the abundance 
of soil microorganisms with increasing nitrate in alder and 
mixed forests may indicate dominance of denitrifying bacte-
ria (Marschner and Rengel 2007). On the contrary, the abun-
dance of soil microorganism was positively correlated with 
both, nitrate and ammonium in mixed forests and grasslands, 
which might indicate dominance of microorganisms using 
both inorganic N forms (Marschner and Rengel 2007). Fur-
ther studies are needed to better understand the relationship 
between species canopy, soil fertility, and the abundance of 
different groups of microorganisms. The potential nitrogen 
fixation (ARA) peaked in different months in alder areas, 
mixed forest, and grasslands. Several factors may regulate 
soil-free nitrogen fixation activity. For instance, the abun-
dance and activity of free-living  N2-fixing microorganisms 
(diazotrophs) may increase with soil organic matter and 
water content, while decreasing with soil pH, N availability, 
and oxygen content (Chen et al. 2019; Smercina et al. 2019). 
Actually, we showed that ARA was correlated positively 
with organic C and soil moisture and negatively with inor-
ganic N in grasslands. At a study site scale, we found that 
the soil characteristic that better explained ARA was soil 
moisture, according to Maggs and Hewet (1986).

Tree species has been identified as the main factor 
explaining C/N variations in European forest soils, being 
the forests dominated by  N2-fixing species (Alnus glutinosa 
and Robinia pseudoacacia) those showing the lowest C/N 
values (Cools et al. 2014). However, in the present study, 
C/N values were very similar between canopy species, yet 
forests dominated by alder shrubs showed the lowest C/N 
values. C/N showed a low correlation with physical soils 
variables indicating a low dependence of C/N with soil or 
ecosystem variability. Values of pH ranged from 7.99 in 
alder forests and open grasslands areas to 8.13 under alder 
shrubs. These results were similar to those for alder forests 
in Rhoades et al. (2001). Soil pH is highly determined by 
soil type. In our study site, soil is sandy with calcareous 
influence; thus, cation retention is lower compared to loamy 
or clay soils (Moore et al 1998). Differences in pH between 
canopy species can be mainly attributed to vegetation char-
acteristic because soil type was rather homogeneous. For 
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instance, differences in the production of organic acids from 
decomposing litter of the different plant species may affect 
the relative quantities of exchangeable base and acid cations 
in the soils (Finzi et al. 1998). High organic acid produc-
tion and low soil pH have been noted in sites dominated 
by species whose litter is relatively recalcitrant, i.e. litter 
that decompose slowly (Konova 1966). That is not the case 
of the study tree species A. glutinosa, F. angustifolia, and 
Populus × hybrida that had elevated decomposition rates 
(Pérez-Corona et al. 2006). We showed that pH was highly 
correlated with soil moisture in all vegetation types accord-
ing to Zhang et al. (2019).

Seasonal dynamics of soil parameters highlight different 
soil activities along the year. Decreases in soil ammonium 
and nitrate content during winter months were related to 
increases in soil moisture, which can favour denitrification 
and leaching processes (Pastor et al. 1984). Besides, low 
winter temperatures decrease microbial activity, such as the 
activity of soil ammonificant bacteria (Qiu et al. 2005). The 
number of microorganisms increased in late spring and in 
autumn in alder areas probably favoured by proper envi-
ronmental conditions (mild temperatures and suitable soil 
moisture) and also due to high availability of nitrogen-rich 
autumnal litter (Facelli and Pickett 1991).

Implications for management

Riparian vegetation has been highly threatening by human 
activities, such as agriculture, road constructions, mining, 
channelling, and natural diseases and increased aridity due 
to climate change (Hughes 2003). Afforestation programmes 
using mixed native tree species, such as A. glutinosa, F. 
angustifolia, P. alba, and Salix alba are highly recom-
mended, not only to restore degraded riparian areas but also 
to improve soil fertility (in terms of organic C, nitrate, and 
total N) and to reduce opportunity windows for the coloniza-
tion by alien exotic species (Carvalho et al. 2010; Shea and 
Chesson 2002).

Exotic species are main drivers affecting native ripar-
ian plant communities (Décamps et al. 2009; Kominoski 
et al. 2013). Exotic poplar plantations have less ecological 
impacts than annual crops and high economic and social 
value, contributing to rural development (Heilman 1999; 
Neumann et al. 2007; Testa et al. 2014). Even so, mono-
specific plantations with exotic poplar hybrids with little 
or no vertical structure have largely contributed to species 
homogenization, ultimately affecting native fauna and flora 
(Godreau et al. 1999; Twedt et al. 1999). In addition, the 
replacement of native alder forests by Populus × hybrida 
plantations implies the introduction of low-quality litter that 
in turn can affect detritivore activity and thus the incorpora-
tion of soil nutrients from litter to soil through the decompo-
sition process (Cai et al. 2019; Casas et al. 2013; González 

and Graça 2003). As we stressed, poplar plantations contrib-
uted to decrease soil fertility, being unlikely the recovery to 
values found in natural forest, which emphasizes that the 
replacement of native riparian forests by plantations should 
be avoided (Liao et al. 2012). Plantations could be placed 
in abandoned agricultural fields or no forested lands instead 
in order to preserve the socio-economic benefits. Besides, 
planting native species, such as A. glutinosa, among the 
poplar trees, would help to improve species diversity, soil 
fertility, and tree productivity (Sayyad et al. 2006). In fact, 
litter decomposition is accelerated in mixed forests regard-
ing monoculture stands, leading to higher soil development 
(Horodecki et al. 2019). Management practices for poplar 
plantations should prioritize those minimizing harmful 
effects on biodiversity (Archaux et al. 2010). Finally, the 
presence of poplar plantations should not be at the expense 
of replacing native riparian forests and specific regulations 
should ensure poplar plantations for socio-economic devel-
opment but also preserve native riparian forests by promot-
ing conservation practices, such as afforestation programmes 
with native trees.

Conclusions

Overall, our study shows the ecological significance of 
forested riparian zones (especially, alder forests and shrub-
lands) to improve soil fertility (N and C). From forested 
areas, plantations with the exotic Populus × hybrida showed 
the lowest soil fertility. Alder mature forests (i.e. higher tree 
age and size) show higher capacity to improve soil condi-
tions than young alder forests. The highest soil ammonium 
values were found under alder canopies likely due to the 
ability of alder to symbiotically fix atmospheric  N2 into 
ammonium. Conversely, nitrate was the lowest in alder areas 
probably due to high soil moisture and thus high rates of 
denitrification and leaching. The highest abundance of aero-
bic and anaerobic microorganisms in alder areas matched 
the highest levels of soil N. Soil moisture highly influences 
seasonal differences in soil characteristics in riparian for-
ested zones, especially soil nitrate, pH and abundance of 
microorganisms. Our results support planting native trees, 
e.g. A. glutinosa and F. angustifolia as restoration measures 
to improve soil fertility, ecological integrity, and productiv-
ity of riparian areas and poplar plantations.
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