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Abstract
Although stand age affects biomass partitioning and allometric equations, the size of these effects and whether it is worth 
incorporating stand age into allometric equations, requires further attention. We sampled a total of 90 trees for 10 Chinese 
fir (Cunninghamia lanceolata) plantations at seven stand age classes to obtain the data of tree component biomass using 
destructive harvesting. A multilevel modeling approach was applied to examine how stand age effects differ among tree com-
ponents and predictor variables (diameter at breast height, DBH and tree height, H). Age class-specific allometric equations 
and the best fitting generalized equation that included stand age as a complementary variable were developed for each tree 
component. Large differences in both the intercept and slope for different stand age classes indicated that stand age affected 
allometric models. Branch and leaves were more sensitive to the environment and were the tree components most affected 
by stand age. Age class-specific allometric equations fitted well (R2 > 0.65, p < 0.001) using DBH and the combined form 
DBH2H as predictor variables. Including stand age as a complementary variable improved the fit of generalized allometric 
equations. Stem, aboveground and total tree biomass predicted by the multilevel model and generalized equation were 
comparable to the observed data. However, the multilevel model and generalized equations had a relatively low predictive 
capacity for branch, leaf and root biomass. These results could improve our capacity to evaluate carbon sequestration and 
other ecosystem functions in plantations.

Keywords  Multilevel modeling · Shoot:root ratio · Stand age · Tree component biomass · Total tree height · Young planted 
seedlings

Introduction

Afforestation and reforestation are valuable approaches to 
enhance carbon (C) sequestration for mitigating the effects 
of climate change and to improve other ecosystem ser-
vices. As a result, the area of planted forests worldwide has 
increased by over 105 million ha since 1990 and accounted 
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for 291 million ha in 2015 (FAO 2016). These planted for-
ests are not only the main source of timber, firewood, fiber 
and other raw materials, but also help to alleviate the huge 
timber demand pressure on natural forests (Borges et al. 
2014). In addition, planted forests offer functions relating 
to clean water provision, hydrological process regulation, 
soil conservation and erosion control, and landscape con-
nection (Bauhus et al. 2010). Accurate estimates of tree and 
stand biomass are critical to evaluate ecosystem functions 
(i.e. production and nutrient cycling) (Fatemi et al. 2011; 
Ishihara et al. 2015), the roles of forests in the global C cycle 
(MacFarlane 2015), and ecosystem services (i.e. bioenergy 
and biomass products) (de-Miguel et al. 2014), as well as 
environmental improvement for local residents (MacFarlane 
2015).

Allometric equations are the common method used to 
convert forest plot inventory data into tree and stand biomass 
(Peichl and Arain 2007; Xiang et al. 2016) and provide pre-
dictions for validating biomass estimates from models and 
remote sensing (Forrester et al. 2017b; Dutcä et al. 2018). 
However, previous studies have indicated that allometric 
relationships differ by tree species (Xiang et al. 2016), site 
conditions such as climate and soil nutrients (Dutcä et al. 
2018), and stand structure in terms of stand density or spe-
cies composition that influences the interactions (competi-
tion vs. facilitation) among individual trees or tree species 
within complex forests (Forrester et al. 2017a). Developing 
allometric equations with high accuracy and precision for 
biomass estimates is still a challenge (Dutcä et al. 2018).

Allometric equations usually relate a tree biomass com-
ponent (foliage, branch, stem and root) to easily measured 
dimensional variables, such as diameter at breast height 
(DBH), tree height (H) and crown width (Zianis et al. 2011; 
Hounzandji et al. 2015). Most equations are fitted using a 
power function such that the tree biomass component is 
estimated by using DBH as a predictor variable (Pilli et al. 
2006). A review of biomass equations for Sub-Saharan Afri-
can forests reported that only 24% of equations contained 
more than one explanatory variable, the majority using only 
DBH (Henry et al. 2011). Since the height–diameter ratio 
reflects tree shape and is partially affected by environmental 
conditions (Mensah et al. 2018), it is believed that includ-
ing H as an additional predictor variable may explain site 
effects and may improve prediction accuracy (Dutcä et al. 
2018), and precision by 55–65% compared with equations 
based on DBH alone (Picard et al. 2015). Meanwhile, wood 
density has also been suggested as a variable for allometric 
equations because it is highly heritable and not only explains 
some of the inter-specific variability in allometry but also 
biomass partitioning (Rozenberg et al. 2001; Poorter et al. 
2012, 2015). Moreover, wood density is the parameter link-
ing volume with tree biomass (Pilli et al. 2006). Given that 
allometric relationships are non-static, even within tree 

species (MacFarlane 2015), simple dimensional measure-
ments may not be sufficient for accurate estimation of tree 
biomass (Chave et al. 2005). The choice of allometric equa-
tions and predictor variables that should be included in the 
equation are key sources of uncertainty when estimating tree 
component biomass (Mavouroulou et al. 2014).

Stand age affects tree size, shape, biomass allocation, 
and consequently allometric relationships (Peichl and Arain 
2007). As stands develop, there are considerable changes 
in micro-site conditions (e.g. such as light and soil nutri-
ents) and the interactions among individual trees to acquire 
available resources. For example, young trees allocate more 
biomass to stem for height growth and to branches and 
leaves for canopy expansion in order to increase competitive 
advantages for light resources over their neighbors (Beaudet 
and Messier 1998; Messier and Nikinmaa 2000; Porté et al. 
2002). Biomass accumulation in stems and branch generally 
increases because of the increasing amount of heartwood at 
the expense of foliage as stand ages. To balance the alloca-
tion of resources among tree components, roots grow and 
their biomass increases. Accordingly, tree shape (taper), 
crown structure and root systems vary with stand age so 
that allometric relationships between tree biomass compo-
nents and dimensional variables differ greatly (Peichl et al. 
2007; Fatemi et al. 2011). In addition, stem wood density 
may also increase with stand maturation (Saint-André et al. 
2005). Therefore, when developing allometric equations for 
tree biomass components, the effects of stand age should be 
taken into account to minimize the bias. Several studies have 
examined the effects of stand age on allometric equations 
and developed age- or age class-specific allometric equations 
for Eucalyptus (Saint-André et al. 2005), Pinus strobus L. 
(Peichl et al. 2007), Pinus rigida (Seo et al. 2013), Crypto-
meria japonica (Lim et al. 2013) and Pinus bungeana (Li 
et al. 2014). The degree of stand age effects on tree biomass 
partitioning and allometric equations can also vary with 
ecological niche and shade tolerance (Fatemi et al. 2011). 
It is still unclear under which conditions stand age-specific 
equations are important and which tree component and pre-
dictors in allometric equations are sensitive to the change 
in stand age.

Chinese fir (Cunninghamia lanceolata) is the principal 
native tree species extensively planted for the economic 
purpose of timber production as well as for environmen-
tal considerations such as C sequestration and soil erosion 
control in subtropical areas of southern China (Chen 1998; 
Chen et al. 2013). Owing to its high wood quality and ter-
mite resistance, Chinese fir has been cultivated for more 
than a thousand years to provide local materials for building 
construction, furniture and decoration, handcraft and infra-
structure (Wu 1984; Wu et al. 2020). The data of the eighth 
national forest inventory (2009–2013) of China showed that 
the total area of Chinese fir plantations had reached 8.95 
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million hectares and covered the largest (about 12.9%) plan-
tation area in China. Many local allometric equations have 
been developed for Chinese fir plantations in different areas, 
including Hunan (Chen 1998), Fujian (Chen et al. 2013), 
Guangxi (Xue 1996), Jiangxi and Anhui (Xie et al. 2016). 
However, stand age effects on allometric equations are often 
not examined, so it remains unclear which tree components 
are significantly affected by stand age. Furthermore, no allo-
metric equations are available to estimate biomass for young 
small trees (i.e. planted seedlings) and this constrains the 
estimates of their production and C sequestration potentials 
in reforestation projects. Therefore, the objectives of this 
study were to: (1) investigate the effects of stand age on bio-
mass partitioning among tree components, including young 
planted seedlings; (2) determine how stand age effects on 
allometric equations vary with tree components and pre-
dictor variables; and (3) examine if the predictive capacity 
of the generalized allometric equations for the whole age 
sequence is improved when stand age is included as a predic-
tor variable compared to the equations for stand age classes 
of Chinese fir plantations.

Materials and methods

Study site description

This study was carried out in the Huitong National Forest 
Ecosystem Research Station (lat 27° 50′ N, long 109° 45′ 
E) in southwestern Hunan Province, China. The study site 
is within one of the major production areas of Chinese fir. A 
large area of Chinese fir plantations was established at this 
site in the 1960s due to the huge timber demand for eco-
nomic growth. Since the 1980s, plantations have matured, 
been harvested and subsequently reforested. As a result, the 
study area has a chronosequence of Chinese fir plantations 

at different stand ages and allows us to obtain biomass data 
over the entire life cycle of the forests.

The study area has a humid mid-subtropical monsoon 
climate with an annual mean temperature 15–17 °C, rang-
ing from an average of 4.3 °C during the coolest month 
(January) to 29.4  °C during the warmest month (July). 
Mean annual precipitation is from 1270 mm to 1650 mm, 
occurring mostly between April and August (meteorological 
data obtained from the Huitong National Forest Ecosystem 
Research Station). The soil type is a well-drained clay loam 
red soil developed on slate and shale parent rock classified as 
Alliti-Udic Ferrosols corresponding to Acrisol in the World 
Reference Base for Soil Resources (Institute of Soil Sci-
ence, CAS 2001). The elevation ranges from 290 m to 410 m 
above sea level.

Biomass measurement

Tree biomass measurement was conducted in October 
(autumn) 2017, after the growing season had ended. We 
established seventeen 20 m × 20 m quadrate sample plots, 
including one plot in plantations aged 7, 10, 31, 38, and 
50 years, three plots each in plantations aged 4 and 18 years, 
and two plots each in plantations aged 15, 21, and 27 years. 
Diameter at breast height (1.3 m) (DBH), total height (H), 
height to the lowest living branch, and crown width were 
recorded for all trees in the plots. Within each plot, 3–7 trees 
covering the DBH range were selected and destructively har-
vested for biomass measurements (including coarse roots). A 
total of 90 trees were sampled in this study. The stands were 
grouped into age classes at 5-year intervals before 30 years 
and the stands older than 30 years were combined to one 
age class. Information about stand characteristics and the 
number of sample trees in the stands is presented in Table 1.

The sample trees were felled at ground level using a hand 
saw. First the H, crown width, DBH, and diameter at the 

Table 1   Stand age, age class, stand density, average diameter at breast height (1.3 cm, DBH), average tree height (H), total basal area (BA), stem 
wood density (WD, mean ± SD) and sample sizes harvested for biomass measurement in Chinese fir plantations

Stand age 
(year)

Age class Stand density 
(stem ha−1)

DBH (cm) H (m) BA (m2.ha−1) WD (g.cm−3) Sample 
number

4 Class 1 (0–5 years) 3119 3.2 1.7 2.51 0.333 ± 0.058 15
7 Class 2 (6–10 years) 2490 9.6 8.7 18.01 0.280 ± 0.042 6
10 Class 2 (6–10 years) 2175 11.6 9.8 22.97 0.280 ± 0.042 6
15 Class 3 (11–15 years) 2370 13.5 12.8 33.91 0.318 ± 0.036 12
18 Class 4 (16–20 years) 1958 15.3 13.8 35.98 0.339 ± 0.054 15
21 Class 5 (21–25 years) 1635 16.5 13.8 34.94 0.309 ± 0.058 12
27 Class 6 (26–30 years) 1905 18.1 16.3 48.99 0.314 ± 0.057 12
31 Class 7 (> 30 years) 1560 18.5 16.6 41.91 0.329 ± 0.068 6
38 Class 7 (> 30 years) 1590 20.1 22.2 50.42 0.329 ± 0.068 3
50 Class 7 (> 30 years) 1305 23.3 22.2 55.62 0.329 ± 0.068 3
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tree base, at half H and at the lowest living branch of the 
felled trees were recorded. Tree stems were then cut at 1.3 m 
and at 1-m intervals thereafter up to the apex. The branches 
were stripped from each stem section. The stem sections and 
the branches with leaves were weighed in situ. The sum of 
the weights of all stem sections from a given tree was the 
total fresh stem mass. Based on the branch size, three to five 
random samples of branches with leaves were collected for 
each stem section to estimate the fraction of branch and leaf 
biomass. Leaves were removed from the sampled branches. 
The fresh mass of the leaves and branches was measured 
separately to calculate the ratio of leaf to branch mass and 
to determine the total fresh biomass of foliage and branches. 
One disk per stem section and subsamples of leaves and 
branches were collected, put into cloth bags and transported 
to the laboratory.

Root biomass was determined using a manual excavation 
method. The stump was excavated before excavating the rest 
of the roots by tracing them back to their root tips, as far as 
possible. Soil clinging to the stump and roots was removed 
and the roots were weighed in situ. Subsamples of stump and 
roots were collected and brought to the laboratory.

The samples of stem, branch, leaf, stump and roots were 
oven-dried at 80 °C until a constant weight to determine 
moisture content. The fresh mass of all tree components was 
converted into a dry mass (i.e. biomass) using their respec-
tive moisture content. Aboveground biomass was calculated 
as the sum of the stem, branch and leaf biomass, while root 
biomass was calculated as the sum of the stump biomass and 
that of other roots. All tree component biomass was summed 
up to calculate total tree biomass.

Data analysis and allometric equation fitting

The average values of tree component biomass, percentage 
of tree component biomass to total tree biomass, and the 
ratios of root: shoot (aboveground), leaf: stem, and branch: 
stem were computed for each stand age. These values were 
then plotted against stand age to examine how they change 
with stand age. In addition, tree component biomass was 
plotted against aboveground biomass to see how they were 
correlated.

Wood density did not differ significantly among age 
classes (Table 1) and was not used to develop allometric 
equations. Thus, we included DBH alone, H alone, the com-
bined form DBH2H, and DBH together with H as predic-
tor variables to develop allometric equations. All data were 
natural logarithmically transformed (ln) to ensure a linear 
relationship between variables and to meet the requirements 

of heteroskedasticity (Picard et al., 2012; Dutcä et al., 2018). 
In this study, the following four types of models were used 
to develop basic allometric equations:

where B = biomass, i = tree components (stem, branch, leaf, 
root, aboveground and total tree); βi0 is the intercept of the 
regression; βi1 and βi2 are the slopes of the regression; and 
εi is the residual error. Because DBH and H are highly cor-
related, the variance inflation factor (VIF) was calculated 
by using the r package ‘CAR’ (version 2.1-2) to identify the 
collinearity in Eq. (4) (Ouyang et al. 2019).

Three approaches were taken to fit allometric equations. 
At first, a multilevel modeling approach was employed to 
develop allometric equations. According to rotation length 
and tree growth process, the protocol for the forest resource 
inventory of China divides the development stages of Chi-
nese fir plantations into different stand age classes at a 5-year 
interval (i.e. 0–5, 6–10, 11–15, 16–20, 21–25, 26–30, 31–35, 
etc.). In this study, Chinese fir plantations at different stand 
ages were grouped into seven stand age classes so that the 
number of sampled trees was balanced to meet the require-
ment of mixed effects models. Stand age class rather than 
stand age was used as a random factor to examine whether 
stand age classes affect the parameters of allometric equa-
tions. For multilevel modeling, individual trees were nested 
within stand age classes (groups) (Finch et al. 2014). Ran-
dom coefficient models allow both slopes and intercepts to 
vary randomly from one stand age class to another (Finch 
et al. 2014). The nlme package (Pinheiro et al. 2020) in the 
statistical software R 3.9.1 (R Development Core Team 
2019) was used to fit multilevel models to estimate a ran-
dom intercept, random slope, and the relationship between 
tree biomass component and the fixed effect of predictor 
variables (Finch et al. 2014; Harrison et al. 2018). The codes 
for the models containing different predictor variables are 
as follows:

(1)ln
(
Bi

)
= �i0 + �i1 × ln(DBH) + �i

(2)ln
(
Bi

)
= �i0 + �i1 × ln(H) + �i

(3)ln
(
Bi

)
= �i0 + �i1 × ln

(
DBH

2
H
)
+ �i

(4)ln
(
Bi

)
= �i0 + �i1 × ln(DBH) + �i2 × ln(H) + �i

(5)
M1 ∶ lme

(
fixed = ln

(
Bi

)
∼ ln(DBH), random =∼ ln(DBH)|group

)

(6)
M2 ∶ lme

(
fixed = ln

(
Bi

)
∼ ln(H), random =∼ ln(H)|group

)

(7)M3 ∶ lme
(
fixed = ln

(
Bi

)
∼ ln

(
DBH

2
H
)
, random =∼ ln

(
DBH

2
H
)
|group

)



321European Journal of Forest Research (2021) 140:317–332	

1 3

where B = biomass, i = tree components (stem, branch, 
leaf, root etc.); group represents stand age class. In the 
case where a model did not reach a solution (converge), 
the default method and control option were changed into 
“method = ”ML”, control = list(maxIter = 100, msMax-
Iter = 100, opt = ”optim”)” (Finch et al. 2014). The intercept 
variance (τi0) and slope (βi1 and βi2) variances (τi1 and τi2) 
occurring between stand age classes, and residuals (σ) of the 
variance within stand ages were used to evaluate the effects 
of stand age classes on allometric models (Finch et al. 2014).

Secondly, specific allometric equations were developed 
for seven stand age classes. Models (1)–(4) were fitted using 
the data of tree component biomass (Bst, Bbr, Blf, Brt, Bab, 
and Btt) for each stand age class. In addition, Models (1)–(4) 
were fitted for the young age class (0–5 years) but in contrast 
to the models for older trees, the predictor variable DBH 
was replaced by basal diameter at the ground surface (DG).

Finally, all tree data were pooled together to develop 
generalized allometric equations across stand age. Equa-
tions (1)–(4) were fitted for each tree component (i.e. Bst, Bbr, 
Blf, Brt, Bab and Btt) using the pooled data without consider-
ing stand age. Then stand age was introduced as a comple-
mentary variable into Eqs. (1)–(4) for all tree compartments 
to examine whether biomass estimates were improved. The 
individual effects of stand age and interactive effects with 
other predictor variables (i.e. DBH, H and DBH2H) were 
taken into account when fitting the generalized allometric 
equations.

where Bi represents tree component biomass as explained 
in Eqs. (1)–(4), βi0-βi5 are the fitted parameters, and εi is 
the residual error. Only two common equations (i.e. (1) and 
(3)) fitted the pooled data of all stand ages and the best fitted 
generalized equations that included stand age for each tree 
component are presented in this study to examine whether 
the fitness and predictive capacity are improved.

The Akaike’s information criterion (AIC) was calculated, 
and the standard error of residuals (RSE) was recorded to 

(8)M4 ∶ lme
(
fixed = ln

(
Bi

)
∼ ln(DBH) + ln(H), random =∼ ln(DBH) + ln(H)|group

)

(9)
ln
(
Bi

)
= �i0 + �i1 × ln(DBH) + �i2 × age + �i3 × age × ln(DBH) + �i

(10)
ln
(
Bi

)
= �i0 + �i1 × ln(H) + �i2 × age + �i3 × age × ln(H) + �i

(11)ln
(
Bi

)
= �i0 + �i1 × ln

(
DBH

2
H
)
+ �i2 × age + �i3 × age × ln

(
DBH

2
H
)
+ �i

(12)ln
(
Bi

)
= �i0 + �i1 × ln(DBH) + �i2 × ln(H) + �i3 × age + �i4 × age × ln(DBH) + �i5 × age × ln(H) + �i

determine the model fitness. At the same time, to compare 
the performance of equations developed using the three 
approaches, each tree component biomass predicted by mul-
tilevel models, age class-specific equations and the best fit-
ted generalized equations were plotted against the observed 
values. Since Eq. (1) using DBH as a predictor variable and 
Eq. (3) using DBH2H as a predictor variable are commonly 
used allometric equations, we chose these two models fitted 
by multilevel modeling and stand age class-specific equa-
tions for the comparison. We randomly separated 90% of 
the data to fit the models and then used the remaining 10% 
to test predictive ability of the fitted models.

Logarithmic transformation for regression introduces 
inherently biased estimates of biomass (Montagu et  al. 
2005); thus a back transformation of linear models for pre-
diction requires bias correction. The systematic bias was 
adjusted using a correction factor (CF) that was computed 
by the equation (Baskerville 1972):

where RSE is the standard error of residuals obtained from 
the regression procedure. All statistical analyses were per-
formed using the statistical software R 3.9.1 (R Develop-
ment Core Team 2019).

Results

Biomass partitioning among tree components 
at different stand ages

Average biomass of all tree components tended to increase 
with stand age, ranging from 0.76 kg to 143.98 kg for stem, 

(13)CF = exp(RSE2∕2)

0.19 kg to 19.14 kg for branch, 0.44 kg to 8.92 kg for leaf, 
and 0.24 kg to 20.77 kg for root (Fig. 1a). As usual, stem 
was the largest biomass pool across all stand ages and its 
percentage to total tree biomass tended to increase with age 
from 42.63% to 73.57% (Fig. 1b). In contrast, the percent-
age of leaf biomass to total tree biomass decreased with age 
from 29.08% to 4.96%. The percentage of branch biomass 
also tended to decrease from 12.26% to 6.34%. However, the 
contribution of root biomass to total tree biomass tended to 
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increase initially from 16.02% to 20.49%, and then decreased 
slightly to 15.13% (Fig. 1b).

The biomass of stems, branches, leaves, and roots showed 
significant linear relationships (p < 0.001) when regressed 
with aboveground biomass (Fig. 2a). The regression slope 
was highest for stem biomass (0.81) and was lowest for leaf 
biomass (0.06). The slopes were intermediate for branch 
(0.12) and root (0.13) biomass (Fig. 2a). The average ratio of 
root to shoot (aboveground) biomass did not change signifi-
cantly (p = 0.903) and was about 0.19 averaged over all stand 
ages (Fig. 2b). A sharp decline in the ratio of leaf to stem 
biomass was observed between the 4-year-old stand and 
about 20-year-old stands and thereafter the ratio tended to 
be relatively stable (about 0.06). The ratio of branch to stem 
biomass decreased before age 30 years and then declined 
slightly before an equilibrium (about 0.08) in older stands 
(Fig. 2b).

Multilevel models and stand age effects

When using DBH as a single predictor variable, allometric 
equations fitted by multilevel models had lower AICs than 
that using H as a predictor variable (Table 2), indicating that 

DBH is more reliable than H for predicting tree component 
biomass. Compared with DBH-based equations, including 
H as an additional variable for the combined form DBH2H 
or separately largely improved predictions (i.e. decrease 
in AICs and RSE) for stem and aboveground biomass, but 
slightly decreased precision (i.e. increase in AICs and RSE) 
for branch and leaf biomass. The predictions for root and 
total biomass were marginally improved when including H 
as the combined form DBH2H, and were slightly worsened 
when including H as a separate variable.

Allometric equations fitted by multilevel models showed 
that intercept variances were larger than slope variances 
(Table 2). The largest source of random variation in tree 
component biomass was the variation between stand age 
classes, with higher variances than within a stand age class. 
Among tree components, leaf biomass exhibited the high-
est variances for both intercepts and slopes between stand 

Fig. 1   Changes in average tree component biomass (a) and the 
change in percentage of component biomass to total tree biomass in 
relation to age (b) in Chinese fir plantations

Fig. 2   Relationships between stem, branch, leaf, root and above-
ground biomass (dry weight, kg) (a); and changes in the ratios of 
root: shoot (aboveground), leaf: stem, and branch: stem (b) in Chi-
nese fir plantations with stand age
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age classes, followed by branch biomass, stem biomass, 
aboveground and total biomass, whereas root biomass had 
the lowest variances for both intercepts and slopes between 
stand age classes (Table 2). Including DBH as the single 
predictor variable in the allometric equations yielded lower 
variances between stand age classes for stem, root, above-
ground and total tree biomass, but a higher variance between 
stand age classes for branch and leaf biomass compared with 
using H as the single predictor variable. Adding H in com-
bined form DBH2H to allometric equations increased the 
variance between stand age classes for tree component bio-
mass, except for stem biomass compared with using DBH 
alone, but the reverse pattern occurred for stem, root, above-
ground and total biomass when comparing with using H 
alone (Table 2). For stem, branch and leaf biomass, using 
both DBH and H as separate predictor variables resulted in 
the lowest variance of intercept between stand age classes.

Age class‑specific allometric equations 
and generalized allometric equations

Across the seven stand age classes, biomass of all tree com-
ponents was significantly related to DBH. The determination 
coefficients (R2) of stem, aboveground and total tree biomass 
were larger than 0.95, except for age class 7, with R2 lower 
than 0.85. The determination coefficients of branch, leaf and 
root biomass varied greatly with age classes, with the lowest 
values for leaf biomass at age class 3 (R2 = 0.67) and root 
biomass at age class 4 (R2 = 0.69) (Table S1). When using 
H as a single predictor variable, the relationships for all tree 
biomass components were significant but were weaker than 
using DBH as a single predictor variable. The allometric 
equations using H as a predictor variable did not fit well in 
older stands after age class 4 (Table S2). Adding H in the 

combined form DBH2H improved the fit of allometric equa-
tions, except for branch and leaf biomass in older stands (age 
class 6 and age class 7) (Table S3). When both DBH and H 
were included as separate predictor variables, the fit was 
improved but the H effects on allometric equations were not 
significant (Table S4).

For the smallest age class, the allometric equations fitted 
well for all tree biomass components, whether diameter at 
the ground surface (DG) (Fig. S1) or the combined DG and 
H was used as the predictor variables. The determination 
coefficient (R2) was higher than 0.85 (Table 3).

When the data for all trees were pooled together to 
develop the generalized allometric equations, using DBH 
and DBH2H as the predictor variables had a high determi-
nation coefficient (R2 > 0.85) for stem, branch, root, above-
ground and total tree biomass, but a low determination coef-
ficient (R2 = 0.83 and 0.81) for leaf biomass (Table 4). The 
equations using DBH as a predictor variable provided better 
fits for branch and leaf biomass than those using DBH2H as a 
predictor variable. But for stem, root, aboveground and total 
biomass, the equations using DBH2H as a predictor variable 
had the best fits. Including stand age as a complimentary 
predictor variable greatly improved the fit of the generalized 
equations for all tree components (Table 4 and Fig. 3). But 
predictor variables included in the generalized allometric 
equations varied with tree components (Table 4).

Comparison of three modeling approaches

The biomass values predicted by multilevel models, age 
class-specific equations and generalized equations for stem, 
aboveground and total tree were comparable to the observed 
biomass values, except aboveground biomass predicted 
using the generalized equation (Fig. 4 and Table S5). For 

Table 3   The parameters 
(βi0 and βi1) with standard 
errors (in parenthesis) 
for allometric equations 
[ln(Bi) = βi0 + βi1 × ln(DG)] 
(model 1) relating 
component biomass i (Bi, 
g) to basal diameter at 
ground level (DG, cm) and 
[ln(Bi) = a+b × ln(DG2H)] 
(model 2) relating Bi, to 
combined predictors of DG 
and tree height (H, cm) for 
young Chinese fir trees at age 
of 4 years

The number of sample trees was 15; RSE is residual standard error; R2 is the adjusted coefficient of deter-
mination; CF is logarithmic correction factor. Asterisks ** and *** after the coefficients indicate the sig-
nificance level at p < 0.01 and p < 0.001, respectively

Component Model βi0 βi1 AIC RSE R2 CF

Stem Model 1 2.182 (0.224)*** 2.762 (0.158)*** 5.859 0.259 0.959 1.034
Model 2 2.579 (0.258)*** 0.930 (0.068)*** 12.684 0.325 0.930 1.054

Branch Model 1 1.445 (0.368 *** 2.378 (0.260)** 20.675 0.424 0.855 1.094
Model 2 1.671 (0.270)*** 0.833 (0.071)*** 14.126 0.341 0.907 1.048

Leaf Model 1 2.722 (0.204)*** 2.118 (0.144)*** 2.979 0.235 0.939 1.028
Model 2 3.017 (0.212)*** 0.716 (0.056)*** 6.830 0.267 0.921 1.036

Root Model 1 2.073 (0.222)*** 2.171 (0.156)*** 5.463 0.255 0.932 1.033
Model 2 2.348 (0.198)*** 0.742 (0.052)*** 4.834 0.250 0.935 1.032

Aboveground Model 1 3.314 (0.177)*** 2.456 (0.125)*** -1.197 0.205 0.965 1.021
Model 2 3.646 (0.186)*** 0.833 (0.049)*** 2.979 0.235 0.954 1.028

Total tree Model 1 3.574 (0.165)*** 2.401 (0.116)*** -3.403 0.190 0.968 1.018
Model 2 3.895 (0171)*** 0.815 (0.045)*** 0.374 0.216 0.959 1.023
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branches and roots, the biomass values predicted by age-
specific equations were close to the observed values, while 
the multilevel models and generalized equations had similar 
estimations but poorly predicted biomass values (Fig. 4 and 
Table S5). For leaves, age-specific equations using DBH as 

a predictor variable had close estimates for the observed 
biomass. The other four equations (two multilevel models, 
age-specific equation using DBH2H as predictor variable, 
and generalized equation) poorly predicted leaf biomass 
(Fig. 4 and Table S5).

Fig. 3   The observed biomass (kg) of stem (a), branch (b), leaf (c), 
root (d), aboveground (e) and total tree (f) plotted against diameter 
at breast height (1.3  m) (DBH, cm) together with the fitted curves 
using the DBH-based generalized equations in Chinese fir planta-
tions at different age classes. Note: the color of dots is green for Class 

1, brown for Class 2, light blue for Class 3, pink for Class 4, purple 
for Class 5, yellow for Class 6, and red for Class 7. The relationship 
between ground diameter and biomass for the < 5 year class are pre-
sented in Fig S1
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Discussion

Effects of stand age on tree biomass partitioning

The effects of stand age on biomass partitioning are the 
result of tree growth and the balance of resource alloca-
tion among tree components in a way that maintains the 
physiological activities and functions of each component 
(Landsberg and Sands 2011; Mensah et al. 2016). The 
aboveground partitioning pattern where the proportion of 
stem increases and proportions of leaf and branch biomass 
decrease with stand age (Fig. 1) is consistent with previous 

studies (Saint-André et al. 2005; Peichl and Arain 2007; 
Seo et al. 2013; Lim et al. 2013; Li et al. 2014). This 
results firstly from the rapid foliage and branch expansion 
during early stages, which is crucial for light capture and 
tree survival (Fatemi et al. 2011; Peichl and Arain 2007). 
The higher leaf to stem ratio in younger trees or stands 
suggest that more resources (carbohydrate resources) 
might have been allocated to foliage for photosynthetic 
activities (Mensah et al. 2016). Then, as stands age, tree 
size increases due to ontogeny and more resources are 
allocated for stem growth (Mensah et al. 2016). Mean-
while, the canopy closes, crown sizes and hence leaf and 

Fig. 4   Comparison of the predicted stem (a), branch (b), leaf (c), root 
(d), aboveground (e), and total tree biomass (kg) (f) against the corre-
sponding observed biomass (kg) in Chinese fir plantations. Note: the 
blue dots represent multilevel models, red triangles represent general-

ized additive models, and green crosses represent age class-specific 
models, using diameter at breast height (DBH, cm) as predictor vari-
able
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branch biomass increases proportionally less than stem 
mass (Mensah et al. 2016) which continues to increase 
due to physical adaption to ensure tree stability (Peichl 
and Arain 2007). Even through stem biomass was the 
largest biomass component, leaf and branch biomass is 
also important for C storage and should be included in C 
accounting in forests, in particular in young plantations.

The relative proportion and root:shoot ratio are usually 
applied to estimate root biomass due to the labor input 
and large time-consumption of direct root measurements 
(Lim et al. 2013). In this study, the relative proportion of 
root biomass increased initially and then decreased slightly 
before reaching a stable value, ranging from 15.13% to 
20.49%. This is inconsistent with other studies where the 
relative proportion of root biomass decreased consider-
ably after stand establishment and then stabilized to a 
certain value (Tobin and Nieuwenhuis 2005; Peichl and 
Arain 2007). The average ratio of root to shoot remained at 
about 0.19 for different stand ages. This is very similar to 
0.205 reported for subtropical moist plantations in a meta-
analysis (Mokany et al. 2006) and is in line with Li et al. 
(2014), who reported a relatively stable root:shoot ratio 
for Pinus bungeana. Therefore, variation in relative root 
biomass needs to be considered in order to avoid consider-
able error in root biomass and C stock estimates.

Effects of stand age on allometric equations

Stand age effects on relationships between biomass and 
tree dimensions have been reported since the early 1970s 
(Saint-André et al. 2005). However, the fitted regression 
coefficients of allometric equations related to stand age are 
controversial, depending on tree components and species 
(Bond-Lamberty et al. 2002; Saint-André et al. 2005). Mul-
tilevel models were used in this study to examine which tree 
components were more influenced by stand age and how the 
effects varied with predictor variables.

The results showed that variances of both intercepts and 
slopes for all tree components were higher between stand 
age classes than within stand age classes, indicating the 
effects of stand age on allometric equations. Leaf and branch 
biomass exhibited higher variances of intercepts and slopes 
than stem, aboveground and total biomass, but root biomass 
had lower variances (Table 2). This not only reflects the 
change in tree growth but is also the result of the combined 
effect of tree age and tree social status (Saint-André et al. 
2005). On the one hand, structural components (i.e. stem, 
branch and coarse root) change gradually over time while 
functional components (i.e. foliage, sapwood and fine roots) 
are more sensitive to the environment (Landsberg and Sands 
2011) and competition from the neighboring trees (Dutca 
et al. 2018). On the other hand, trees of the same size but 
different age might have a distinct social status: dominant 

in young stands and suppressed in old stands (Wirth et al. 
2004; Saint-André et al. 2005). The suppressed and older 
trees of same size tend to decrease leaf and branch biomass 
(Fig. 3). Therefore, allometric equations for leaf and branch 
biomass exhibited larger variations in intercepts and slopes 
between stand age classes than stem, root, aboveground and 
total biomass (Table 2). Developing age-specific equations 
or generalized equations that include stand age effects is 
required to improve estimates of branch and leaf biomass.

Multilevel models using DBH as a predictor variable 
had lower intercept and slope variances between stand age 
classes for stem, root, aboveground and total tree biomass 
than the models using H as a predictor variable (Table 2). 
However, the reverse pattern was found for branch and leaf 
biomass. This confirms that the biomass of large woody 
components is more strongly related to DBH and this rela-
tionship varies less between stand age classes than that of 
smaller and shorter-lived components (such as branch, leaf 
and root biomass) (Cole and Ewel 2006). Moreover, com-
petition for canopy dominance may cause trees to allocate 
more photosynthates to increase tree height instead of radial 
growth (Fatemi et al. 2011). Thus, using H as a predictor 
variable explained less variance for branch and leaf biomass 
between stand age classes than using DBH as a predictor 
variable.

Including H as an additional predictor variable only 
reduced the variance between stand age classes for stem 
biomass. This may be because stem biomass is determined 
more by tree size (diameter and height) while the other com-
ponents are determined by biomass allocation patterns that 
vary with stand age (Dutca et al. 2018).

Age class‑specific versus generalized allometric 
equations

Age class-specific allometric equations that had DBH as a 
single predictor variable were significant for all tree biomass 
components (Table S1). This result is consistent with other 
studies (Brown et al. 1989; Zianis and Mencuccini 2004; 
Basuki et al. 2009; Kuyah et al. 2012) where DBH was a 
strong predictor of tree component biomass. The proportion 
of variation in biomass that was explained by DBH was high 
(R2 > 0.95) for stem, aboveground and total tree biomass in 
stand age-specific allometric equations, but was relatively 
low and differed among stand age classes for branch, leaf 
and root biomass (Table S1). This indicates that branch, leaf 
and root biomass are more responsive to competition and 
environment (Cole and Ewel 2006; Xiang et al. 2016).

Age-specific allometric equations using H as a single 
predictor variable were also significant. Thus, tree height in 
combination with other dimensional variables (i.e. crown 
diameter) may be attractive for the development of allomet-
ric equations to predict biomass using the data retrieved 
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from remote sensing (Jucker et al. 2017). However, the 
determination coefficients were lower than using DBH as a 
predictor variable, in particular for older age classes. This 
is due to the fact that DBH explains a greater proportion of 
biomass variance than H (Dutca et al. 2018). Meanwhile, in 
older plantations tree height development slows so that tree 
DBH varies much more than height. Including H in the com-
bined form DBH2H generally improved the fit of age-specific 
allometric equations. This may be because the combined 

DBH2H captures the variation in the DBH-H ratio and tree 
architecture, and avoids multicollinearity problems between 
DBH and H as separate variables in allometric equations 
(Rojas-García et al. 2015; Dutca et al. 2018).

This study developed generalized allometric equations 
for tree component biomass across stand age. Adding 
stand age as a complementary variable in the generalized 
allometric equations improved the fit (Table 4) and the 
prediction of tree component biomass (Fig. 4 and Fig. 5). 

Fig. 5   The predicted stem (a), branch (b), leaf (c), root (d), above-
ground (e), and total tree biomass (kg) (f) plotted against the corre-
sponding observed biomass (kg) in Chinese fir plantations. Note: the 
blue dots represent multilevel models, red triangles represent general-

ized additive models, and green crosses represent age class-specific 
models, using diameter at breast height (DBH, cm) and height (H, m) 
as composite variable (DBH2H)
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This is consistent with the results reported by Saint-André 
et al. (2005), because of the increasing sample size and 
the consideration of stand age effects (Porté et al. 2002). 
When compared with the observed data, the three fitting 
approaches (multilevel, age-specific and generalized mod-
els) provided comparable predictions for stem, root, above-
ground and total biomass. As for branch and leaf biomass, 
age class-specific allometric equations provided similar 
predictions but multilevel models and generalized allo-
metric equations underestimated their values (Fig. 4 and 
Fig. 5). This confirms more variation in branch and leaf 
biomass in Chinese fir plantations (Cole and Ewel 2006; 
Xiang et al. 2016). Further improvement may be possible 
if stand structure and canopy architecture of individual 
trees are taken into account (Forrester et al. 2017b).

Conclusions

As the age of Chinese fir plantations increased, the pro-
portions of branch and leaf biomass decreased while the 
stem biomass proportion increased. The proportion of root 
biomass increased initially and then decreased to a stable 
state. Multilevel models indicated that stand age affected 
the intercept and slope of allometric equations. Branch 
and leaf biomass exhibited higher variances between stand 
age classes. Using DBH as a predictor variable had lower 
variances between stand age classes for stem, root, above-
ground and total tree biomass, but using H as predictor 
variable explained less variance for branch and leaf bio-
mass between stand age classes. Age-specific allometric 
equations fitted well using DBH and the combined form 
DBH2H. Including stand age as a complementary predic-
tor variable improved the fitness of generalized allometric 
equations. Stem, aboveground and total tree biomass pre-
dicted by the multilevel models and generalized equations 
were comparable to the observed data. Nevertheless, mul-
tilevel and generalized equations had relatively low pre-
dictive capacity for branch, leaf and root biomass. There-
fore, multilevel models and the best generalized equations 
could be used to estimate stem, aboveground and total tree 
biomass, but age-specific equations are recommended to 
improve the estimates of branch, leaf and root biomass.
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