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Abstract
Tree age (AGE) and stocking degree (P) strongly influence tree shape, but their effects have been neglected in most tree 
profile equations. In addition, data used to build traditional tree profile equations usually do not meet the statistical require-
ments of independence and identical distribution of observations. Therefore, our main objectives were to present a method 
to improve taper equations with measurements easily collected in tree inventories (age, stocking degree) and also improve 
the statistical accuracy of those equations by selecting parameters with a more rigorous way than what is traditionally being 
done. We evaluated the effects of incorporating age and stocking degree as regressors in tree profile equations selected among 
30 candidate foundation equations and parameterized with data from 1858 Larix gmelinii (Rupr.) trees growing in the north-
ern China. We used nonlinear mixed-effects models to minimize statistical problems present when building traditional tree 
profile equations: lack of independence and identical distribution of observations, random effects related to individual trees. 
Equations incorporating age and stocking degree significantly improved their accuracy. When the equation parameters were 
estimated with mixed-effects models containing exponential variance functions and accounting for non-independence of 
observations from the same tree, diameters at any height along the tree bole were more accurately estimated. We demonstrate 
a new methodology to build more accurate tree profile equations that could support better economic valorization of timber 
and improve calculations of carbon flows in forests, not only for natural L. gmelinii forest but for other species growing in 
dense natural stands around the globe.

Keywords  Nonlinear mixed-effects model · Single, segmented and variable-form taper functions · Autocorrelation · 
Heteroscedasticity

Introduction

Taper equations allow forest managers to estimate timber 
volume, how the diameter of the stem (over or under bark) 
changes along the length of the stem (Clutter et al. 1983; 
West 2009), and the size of various end products (pulpwood, 
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sawlogs, poles, veneer, etc.). Taper equations can be clas-
sified into three main categories: (1) single taper equations 
such as those developed by Kozak et al. (1969), Ormerod 
(1973), and Sharma and Oderwald (2001); (2) segmented 
taper equations, as presented by Max and Burkhart (1976) 
and Farrar (1987); and (3) variable-form taper equations as 
described by Kozak (1988), Kozak (2004), and Sharma and 
Parton (2009).

Single taper models describe the taper in a stem based 
on a single function (Sharma and Oderwald 2001). To save 
computing time, Kozak (1988) developed the variable-form 
taper equation, becoming the most researched model type 
(Bi 2000; Bi and Long 2001; Kozak 2004; Li and Weiskittel 
2010). In general, variable-form taper models have shown 
the lowest bias and the greatest precision in taper predictions 
of the three types of taper models, followed by segmented 
and single taper models (Rojo et al. 2005; Sakici et al. 2008).

Taper equations also have to be in accordance with the 
known tree ecophysiology. The shape of the bole gener-
ally shows considerable differences such as straight from 
top to bottom, satiation, curve (bend), or a sharp and dis-
tinct or indistinct trunk. Tree shape is generally influenced 
by a broad range of factors such as: tree genetic make-up 
(Larson 1963; Meng 2006), tree characteristics (e.g., age, 
crown size, position of branch and species) (Gray 1956; 
Li and Weiskittel 2010; Muhairwe 1993; Muhairwe et al. 
1994), stand characteristics (e.g., density and stand age) 
(Gray 1956; Larson 1963; Muhairwe 1993; Sharma and 
Zhang 2004), site characteristics (e.g., water and nutrients) 
(Calama and Montero 2006; Larson 1963; Metzger 1894), 
climatic factors (e.g., mean annual precipitation and end of 
frost-free period) (Nigh and Smith 2012; Schneider 2018), 
and management and land use actions (e.g., thinning and 
pruning) (Ferreira et al. 2014; Tasissa and Burkhart 1998; 
Tasissa et al. 1997). These factors play an important role 
on taper equations as well (Brooks et al. 2008) and have 
been incorporated as independent variables on top of con-
ventional variables such as total height, diameter at breast 
height (DBH) and height above the ground. Numerous 
studies have documented that the addition of crown dimen-
sions-related metrics can improve taper equations’ accuracy 
(Jiang and Liu 2011; Leites and Robinson 2004; Valenti and 
Cao 1986). However, such improvements in model accuracy 
depend on the region, species and other aforementioned 
factors (Burkhart and Walton 1985; Li and Weiskittel 2010; 
Muhairwe et al. 1994; Valenti and Cao 1986). It is also well 
known that tree age (AGE) also strongly influences tree 
stem form because tree growth includes diameter and height 
from the continued biomass accumulation with increasing 
AGE (Brooks et al. 2008). Newnham (1965) stated that 
taper increased most rapidly with AGE in trees grown with 
heavy thinning.

In addition, several attempts have been made to incor-
porate tree density (defined as the number of trees per area 
unit) into taper models (e.g., Sharma and Zhang 2004; 
Smithers 1961). However, there are two major disadvantages 
of incorporating tree density into taper profile models. First, 
available tree density information is usually deficient. For 
example, only three tree density values were used by both 
Sharma and Zhang (2004) and Smithers (1961) to assess 
the effect of tree density on stem form. Second, tree density 
typically shows a response to stand density worse than the 
stocking degree (P).

Although other stand or individual tree variables have 
been previously incorporated to taper equations, few studies 
have quantitatively examined the effects of introducing AGE 
or AGE and P simultaneously on taper model accuracy. In 
addition, the effects of both AGE and P are typically species 
specific, as each tree species grows at a different rate and 
into different stem shapes. Therefore, taper equations are 
limited by species specificities (Li et al. 2012; Sharma and 
Zhang 2004). It is particularly important to account for that 
for species not well represented in academic literature, like 
those from northern China.

While taper equations have been extensively used, a 
concern is that multiple measurements from an individual 
tree used in the construction of taper equations may led 
to autocorrelation and heteroscedasticity (Lindstrom and 
Bates 1990), which violate the assumption of independent 
distribution of observations (Valentine and Gregoire 2001). 
An early example of introducing random factors in volume 
equations was provided by Lappi (1991). Nonlinear mixed-
effects (NLME) models can solve these problems as they 
allow a predictive role in two ways, i.e., a typical response 
(including only fixed-effects parameters) and a calibrated 
response (including both fixed- and random-effects param-
eters) (Calama and Montero 2004). NLME models have the 
advantage of estimating the covariance matrix associated 
with hierarchical structure data (Garber and Maguire 2003). 
Additionally, they can use the prior measurement of the 
diameter within the sample tree to calculate random-effects 
parameters and then calibrate the taper profile model to the 
sample tree level (Gómez-García et al. 2013; Trincado and 
Burkhart 2006).

The forests in the Great Khingan Mountains (Inner Mon-
golia, northeast China) are among the most sensitive eco-
systems to global climate change in China (Fu et al. 2018). 
These forests are the largest continuous bright coniferous 
forest of the cold temperate zone in China (Xu 1998), being 
Larix gmelinii (Rupr.) the dominant tree species (Jiang et al. 
2002). Larix gmelinii forests account for more than 57% of 
the total Greater Khingan Mountains area, and the volume 
of L. gmelinii forests occupies about 8% of the total standing 
volume in Chinese forests (DFPRC 2014). These forests have 
been the focus of research for several years as L. gmelinii 
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is also a major commercial species in Chinese boreal forest 
(Xu 1998). As the demand for timber has increased during 
the past decades, accurate determination of stem taper has 
great interest (Lejeune et al. 2009). However, in spite of its 
economic and ecological importance, the factors driving L. 
gmelinii stem growth and shape are yet poorly understood. 
Hence, we attempt to develop specific stem taper equations 
for L. gmelinii, which would help to improve timber volume 
estimates and carbon sequestration budgets, and as a result, 
contribute to the sustainable management of these forests.

Given the above mentioned research gaps, we hypothesize 
that: (1) in the case of natural forests adding the variables 
AGE and P will significantly improve stem taper equations; 
and (2) using NLME tree profile equations with random 
effects at tree level will be a successful strategy to remove 
the issues of heteroscedasticity and autocorrelation from 
the data structure used to build up the taper models. When 
testing these two hypotheses, we aim to reach the following 
objectives: (1) to construct a specific taper equation for L. 
gmelinii; (2) if our first hypothesis is supported, to incor-
porate AGE and P as independent variables into the taper 
equation to quantitatively analyze their effect on model pre-
dictive precision when estimating diameters along the bole; 
and (3) if our second hypothesis is supported, to develop a 
NLME taper equation with random effects at tree level to 
reduce autocorrelation and heteroscedasticity of hierarchi-
cal structure data when data are repeatedly measured for 
the same tree.

Materials and methods

Study area and stem data

The study area is located in the Greater Khingan Mountains 
of Inner Mongolia, situated in the sub-frigid region with a 
distinct cold temperate continental monsoon climate (Sup-
plementary Information: Fig. S1). The geographic range of 
the study area is 119° 36′–125° 19′ E, and 47° 3′–53° 20′ N. 
Between 330 and 1750 m.a.s.l., the annual precipitation 
ranges from 350 to 500 mm, most of which falls in May to 
October. The mean annual temperature is about − 3 °C, and 
the mean monthly maximum and minimum temperatures are 
17 to 20 °C and − 20 to − 30 °C in July and January, respec-
tively. Slopes in the region are moderate, being the average 
slope 10°. Research area’s soil type is predominantly a dark 
brown forest soil. L. gmelinii is the dominant tree species. 
Other tree species include white birch (Betula platyphylla 
Suk.), aspen (Populus davidiana Dole), Scots pine (Pinus 
sylvestris L. var. mongolica Litv.) and Korean spruce (Picea 
koriensis Nakai). The main forest types include L. gmelinii-
Ledum palustre, L. gmelinii-grass and L. gmelinii-Rhodo-
dendron dahurica (Xu 1998).

Data used in this research came from natural L. gmelinii 
stands located in the 17 Forestry Bureaus throughout the 
Greater Khingan Mountains (Fig. S1), covering the exist-
ing P range of these forests. A total of 10,729 measured 
values were taken from 1858 dominant, intermediate and 
suppressed trees with AGE ranging from 7 to 201 years from 
381 plots with areas from 0.04 to 1.05 ha. Trees were felled 
and measured to model stem shape variability. To validate 
each model, 2146 data points (20% of total data) were ran-
domly selected as a validation dataset. The remaining data 
were used for model fitting.

All trees were measured for DBH outside bark (D) (diam-
eter at breast height, 1.3 m above the ground) to the nearest 
0.1 cm, total tree height (H) to the nearest 0.1 m, and diam-
eter outside bark (d) at stump height (between 0.1 and 0.3 m 
above the ground) and at 0.7 m height. Diameter along the 
stem was measured at 0.5, 1 or 2 m intervals (depending on 
the total height of the sample trees) from DBH to the tree 
tip. In each section, two perpendicular diameters outside 
bark (d) were measured and were then arithmetically aver-
aged. Tree age was estimated by counting growth rings at 
the basal stem section.

The following three indicators were calculated for each 
tree: q = h/H (relative height), X = (H − h)/(H − 1.3) and 
Z = (H − h)/H. For stand density, P is the most accurate indi-
cator in multi-aged stands (O’Hara 2014). In order to calcu-
late P, the basal area of the stand was first calculated. Two 
methods were used to determine the basal area of the stand;

	 I.	 For the first 355 plots, stand basal areas were calcu-
lated by positioning a subplot of known area. The 
diameters at breast height outside bark of all the trees 
in the subplot were measured. The diameters were 
then converted to stem cross-sectional areas; the 
results were summed and divided by the plot area to 
give stand basal area.

	 II.	 For the last 26 plots that were set up, stand basal 
areas were measured using the self-leveling stick type 
angle gauge (angle count sampling), using a basal 
area factor (Fg) of 1 m2/ha. The principles of this 
method can be found in Bitterlich (1984).

The P value of each stand was determined using the basal 
area of the current stand divided by the basal area of the 
standard yield stand (P = 1), which was estimated based on a 
standard table of the basal area–volume for natural L. gmeli-
nii under the same site conditions (Agriculture and Forestry 
Planning Team of Inner Mongolia Autonomous Region 
1974). Summary statistics for D, H, AGE and P of sample 
trees used in fitting and validating the models are described 
in Table 1. Figure 1 shows the variation magnitude between 
the relative height and relative diameter (d/D) according to 
measurement data points of the 1858 trees.
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Stem taper foundation equation

Thirty different taper equations were used (Table S1). The 
first sixteen taper equations are single taper models, the mid-
dle four equations are segmented taper models, and the last 
ten taper equations are variable-form taper models. All the 
foundation stem taper models were fitted with the nonlinear 
least squares using the nlme package in R (Pinheiro et al. 
2018). The Newberry and Burkhart (1986), Max and Bur-
khart (1976) and Kozak (2004)-(2) models were superior to 
the other models in predicting diameter outside bark of Larix 
gmelinii for the single, segmented and variable-form taper 
models, respectively. However, the Max and Burkhart (1976) 
model displayed the smallest R2

adj
 and the largest RMSE, 

MAB and MPRB for both fitting and validation, when com-
pared with the other two models mentioned above. There-
fore, the Newberry and Burkhart (1986) and Kozak (2004)-
(2) models were selected in this study as the foundation 
models for further incorporation of AGE and P, and for 
developing NLME single and variable-form taper models, 

respectively. The best single taper foundation model selected 
was [Eq. (1)]:

The best variable-form taper foundation model selected 
was [Eq. (2)]:

where dij (cm) is diameter outside bark at a height hij of 
the jth measurement in the ith tree; Di (cm) and Hi (m) are 
the DBH outside bark and total tree height of the ith tree, 
respectively; xij = (1 − qij

1/3)/(1 − (1.3/Hi)1/3), qij = hij/Hi; εij is 
an error term; and b1–b9 are model parameters.

Additional AGE and P variables as regressors in stem 
taper foundation equations

A univariate ANOVA was used to test whether relative 
diameters were statistically different for AGE and P. The 
relative height (independent variable) was divided into 
ten sections. Within each section, AGE was divided into 
five different classes, following the standard set by the 
State Forestry Administration of the P.R. China (SFAPRC 
2011, see Appendix 1 in Supplementary Information for a 
detailed explanation of how age classes are defined). The 
AGE classes were as follows: young (0–40 years), half-
mature (41–80 years), near mature (81–100 years), mature 
(101–140 years) and over mature (> 141 years). The P values 
of the stands were equally divided into three different density 
classes as follows: low (0.10–0.39), middle (0.40–0.69) and 
high (> 0.7). Before data analysis, boxplots and histograms 
were used to detect possible outliers and to determine the 
skewness of the data (Liu et al. 2014). Differences among 
groups of AGE and P were tested with Tukey’s honest sig-
nificant difference test. A p value of 0.05 or less was defined 
as statistically significant.

(1)dij = b1Di

(
Hi − hij

Hi − 1.3

)b2

+ �ij

(2)
dij = b1D

b2
i
H

b3
i
x

[
b4q

4
ij
+b5[1∕eDi∕Hi]+b6x0.1ij

+b7(1∕Di)+b8H
(1−q

1∕3
ij

)

i
+b9xij

]

ij
+ �ij

Table 1   Summary statistics for 
Larix gmelinii tree attributes for 
the model fitting (1486 trees) 
and validation (372 trees) data

D diameter at breast height outside bark; H total tree height; AGE tree age; P stocking degree. Min mini-
mum; Max maximum; SD standard deviation

Variable Fitting Validation

Mean SD Min Max Mean SD Min Max

No. of data points = 8583 No. of data points = 2146
 D (cm) 16.3 6.9 1.0 68.3  16.4 7.2 2.1 68.3
 H (m) 15.3 4.1 2.0 43.0  15.3 4.3 3.2 41.9
 AGE (a) 25 32 7 200  27 35 10 201
 P 0.63 0.14 0.27 0.96  0.64 0.12 0.32 0.94
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Fig. 1   Scatter plot of the relative height over relative diameter of 
10,729 data points for 1858 Larix gmelinii (Rupr.) trees
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Pearson’s correlation coefficient was calculated to meas-
ure the relationship between the dependent variable (d) and 
AGE and P (independent variables). Scatter plots were used 
to seek the relationship between the relative diameter and 
AGE and P. To avoid bias on model selection by the use of 
pre-selected regressor type on AGE or P in the taper equa-
tion, several forms of linear, power, exponential, and loga-
rithmic models and their combinations for AGE and P were 
repeatedly tested by adding them into the best-fitted founda-
tion model identified for L. gmelinii to validate the perfor-
mance and identify the most suitable form of the variables 
AGE and P in the best-fitted foundation models. Compari-
sons were made among fitted models with different forms for 
AGE and P in terms of the Akaike’s information criterion 
(AIC), Bayesian information criterion (BIC) and log likeli-
hood (logLik) (Sakamoto et al. 1986; Schwarz 1978; Yang 
et al. 2009b) for the stem diameter predictions.

Nonlinear mixed‑effects (NLME) models

NLME models contain both fixed-effects parameters com-
mon to all individuals and random-effects parameters spe-
cific for each individual. Hence, the most important step 
in the construction of the NLME models is to determine 
which parameters are the fixed-effects parameters and which 
parameters are the mixed-effects (both fixed and random 
effects) parameters. The most common method to determine 
the parameter status is to fit the same tree profile model with 
possible combinations of fixed- and random-effects param-
eters and to select as the optimal fitted mixed-effects model 
the one with the smallest AIC and BIC. The mixed-effects 
model fitting was performed with restricted maximum like-
lihood using the nlme function of the nlme package in R v. 
3.5.2 (R Development Core Team 2017).

Datasets of tree profile equations were compiled from 
different points along the same individual tree stem, thus 
leading to the two problems of heteroscedasticity and auto-
correlation usually identified in common taper equations 
(Neter et al. 1996). Heteroscedasticity and autocorrelation 
can be handled by incorporating individual tree as a random 
effect into NLME models of tree profile to accurately predict 
stem diameters at any h value (Garber and Maguire 2003; 
Pinheiro and Bates 2000). The expression of NLME models 
was as follows Eq. (3):

where di is the vector for diameter outside bark at the dif-
ferent heights h on the ith tree (dependent variable); Xi is 
the vector for the independent variable; θi is the parameter 
vector of fixed and random effects for the NLME model, 
�i = �i� + �i�i ; β is the vector of fixed parameters with 
design matrix Ai; Bi is the random-effects design matrix for 

(3)�i = f (�i,�i) + �i

the sample tree; ui is the vector of random effects for sample 
tree, �i ∼ N(0,�) , where N is the multivariate normal distri-
bution and D is the variance–covariance structure matrix for 
the random-effects parameters ui, which explains between-
tree random variability, and is considered common to every 
tree analyzed (Calama and Montero 2005).

Under these conditions, the D matrix, which must be 
a positive semidefinite matrix, is generally considered as 
the unstructured positive definite matrix in forest research 
(Dong et al. 2016; Pinheiro and Bates 2000; Yang et al. 
2009b). We also used our dataset of stem taper to show that 
the evaluation indices, AIC and BIC, are the smallest when 
the D matrix is the unstructured positive matrix. D can be 
expressed as follows Eq. (4):

where �1 , �2 and �n represent the standard deviation of the 
first, second and nth random effects, respectively; Corr12 , 
Corr1n and Corr2n are the correlation coefficient between 
the first and second random effects, the first and nth ran-
dom effects and the second and nth random effects; εi is 
random error, εi ~ N (0, Ri), where Ri is the within-tree 
variance–covariance matrix, which needs to be specified to 
account for any within-tree heteroscedasticity and autocorre-
lation among measurements. Ri can be expressed as follows:

where �2 is a scaling factor for error dispersion which was 
given by the value of residual variance of the estimated 
model; Gi is the diagonal matrix explaining the variance of 
within-tree heteroscedasticity; and �i is a matrix accounting 
for within-tree autocorrelation structure of the errors.

To correct the within-tree heteroscedasticity, we uti-
lized a power of the fitted value ( ̂d ) variance function, 
Var(𝜀i) = 𝜎2d̂2𝛿

i
 , an exponential of the fitted value variance 

function, Var(𝜀i) = 𝜎2 exp(2𝛿d̂i) , or a constant plus power of 
the fitted value variance function, Var(𝜀i) = 𝜎2(𝛿1 + d̂

𝛿2
i
)2 , 

where δ, δ1 and δ2 are estimated parameters (Pinheiro and 
Bates 2000). Among the three variance functions tested 
mentioned above, the exponential variance function dem-
onstrated the best performance for the NLME single and 
variable-form taper models (see Appendix S and Table S3 in 
Supplementary Information for details for the performance 
comparison of NLME models with different variance func-
tions). Thus, in this study we selected the exponential vari-
ance function to explain observed data heteroscedasticity.

Because the data used in the tree profile models were 
measured with an unequal distance along the stem, we used 
first-order autoregressive models [AR(1) models], first-order 

(4)� =

⎛
⎜⎜⎜⎝

�2
1

Corr12�1�2 ⋯ Corr1n�1�n
Corr12�1�2 �2

2
⋯ Corr2n�2�n

⋮ ⋮ ⋱ ⋮

Corr1n�1�n Corr2n�2�n ⋯ �2
n

⎞
⎟⎟⎟⎠

(5)�i = �2�0.5
i
�i�

0.5
i
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continuous autoregressive correlation structure [CAR(1) 
models] and mixed autoregressive-moving average models 
(ARMA models) (Pinheiro and Bates 2000) to model the 
within-tree autoregressive structure of error and thus account 
for the autocorrelation of the data. Among the AR(1), 
CAR(1) and ARMA models, the CAR(1) model demon-
strated the best performance for the NLME single and vari-
able-form taper models (see Appendix S and Table S2 in 
Supplementary Information for details for the performance 
comparison of NLME models with different correlation 
structures). Thus, in this study we select the CAR(1) model 
to remove the autocorrelation of within the sample tree, 
which can be defined as Cov(�ij, �ij� ) = �

d
jj� , where 

Cov(�ij, �ij� ) is the covariance between two residuals �ij and 
�ij′ from tree i; � is the estimated correlation parameter of 
first-order continuous autoregressive correlation structure 
[CAR(1)]; the continuous autoregressive error structure 
assumes that the within-sample tree correlation decreases 
with increase in distance djj′ between two observation h on 
tree i. djj� =

|||hij − hij�
||| , for j ≠ j

′(Pinheiro and Bates 2000).

Prediction of diameter outside bark (d)

The prediction of d could be made by the NLME taper equa-
tion with or without random effects at tree level. The d pre-
diction using NLME taper equation without random effects 
does not require prior diameter measurements from each 
tree. Only fixed-effects parameters were applied to predict 
the d mean response. Thus, the random-effects parameters 
(the expected value as 0) are not predicted. The d prediction 
using NLME taper equation with random effects requires 
prior measured diameter information. The mixed-effects 
parameters including both mean response (only fixed-effects 
parameters) and calibrated response (fixed- and random-
effects parameters) were applied to predict subject-specific 
d calibrations. The empirical best linear unbiased prediction 
(EBLUP) method [Eq. (6)] (Vonesh and Chinchilli 1997) 
was used to calculate the sample tree-level random effects. 
The expression is written as Eq. (6)

where �̂i is vector of the random effects from sample tree i; 
�̂ is the estimated unstructured variance–covariance matrix 
for ui; �̂i is the estimated matrix of within-tree vari-
ance–covariance for the error term; �̂i is the residuals vector, 
the components of which are calculated as the difference 
between the observed d value of the sample tree for the sub-
sample and the predicted d value using the fixed-effects 
models; and �̂i is the design matrix of the partial derivatives 
of Eq. (3), i.e., �i =

𝜕f (�,�i,�i)

𝜕�i

|||�̂,�i=0.
The random-effects parameters of the NLME models 

were predicted using the method of random subsamples 

(6)𝐮̂i = 𝐃̂𝐙̂
T

i
(𝐑̂i + 𝐙̂i𝐃̂𝐙̂

T

i
)−1𝐞̂i

(Sharma et al. 2016). A total of four randomly selected 
subsamples, which have low inventory cost and high pre-
diction accuracy, have been recommended as the optimal 
sampling number for the most accurate calculation of the 
random-effects parameters, even when model types are dif-
ferent (Calama and Montero 2004; Fu et al. 2017b; Paulo 
et al. 2011). Thus, d measurements at four random h for each 
sample tree were used to predict the random effects of the 
tree profile model in this study. Details on the calculation of 
random-effects parameters for NLME models can be found 
in Meng and Huang (2009) and Fu et al. (2017b).

Model evaluation

As AIC and BIC can represent a penalized likelihood crite-
ria, so they are widely used goodness-of-fit criteria for com-
paring taper models, where the dependent variable for each 
taper model was the same and all the models compared were 
fitted to the same data. In this study, in order to determine 
whether the fit and prediction performance of corresponding 
fixed- and mixed-effects models met the accuracy require-
ments, besides AIC and BIC, the following four statistical 
indicators for each model were calculated to determine the 
best stem taper model for L. gmelinii: adjusted coefficient of 
determination ( R2

adj
 ), root mean squared error (RMSE), mean 

absolute error (MAB) and mean percentage of relative bias 
(MPRB).

Residual plots were generated to ensure satisfaction of 
the assumptions of normality and homoscedasticity of the 
residuals, identifying outliers when the standardized residu-
als of the observation value were lower than −2 or higher 
than +2 standard deviation (Dong et al. 2015; Feng 2004).

Results

Inclusion of AGE and P variables

There were significant differences in the relative diameter 
of the trees among the three P classifications (low, middle 
and high) along the entire tree stem (0 < q ≤ 1; F = 21.82, 
p < 0.001; Table 2). The average relative diameter of tree 
bole in the stands with low P was 0.783 ± 0.003, the biggest 
among all stands, significantly higher than the other two 
stands (p < 0.001, Table 2). Stands with different P showed 
different trends for relative diameter in each relative height 
(q intervals of 0.1).When q ranged from 0 to 0.1 and from 
0.8 to 1.0, the relative diameter variables had no significant 
differences among stand densities, where tree boles are mod-
eled geometrically in the forest literature commonly using 
neiloid and cone approaches, respectively. Relative diameter 
of the stands with low densities in q from 0.1 to 0.4 was 
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significantly different from the stands with the middle and 
high densities, reduced as the stand densities progressively 
increased, where a cylindrical shape was usually used to 
describe stem form. The section from the top end of the 
cylinder to the bottom start of the cone was characterized 
using a paraboloid, where q range is between 0.4 and 0.8, but 
the q range corresponding to different geometrical shapes is 
dependent on tree species. Differences in paraboloid stem 
form were not significant for stands with middle and high P.

The smallest relative diameter (0.717 ± 0.008) was found 
in the half-mature forest (Table 3). Differences in relative 
diameter among AGE classes were smaller than among P, 
but there were significant differences among young, half-
mature and near-mature forests in relative diameter along the 
entire tree bole (0 < q ≤ 1) except for q from 0.7 to 1 (there 
were no differences between young and half-mature forests). 
In the q from 0.1 to 0.7, relative diameter in the mature 
forests was larger than over-mature forest and there were 
significant differences between the mature and over-mature 
forests (Table 3). However, in the q from 0 to 0.1 (neiloid) 
and 0.8 to 1.0 (cone) the relative diameter variables showed 
no significant differences between the mature and over-
mature forests. In summary, ANOVA indicated that P and 
AGE exerted significant effects on the tree stem diameter.

Among all the models in which several functions of vari-
ables (all forms of AGE and P) were combined for the single 
[Eq. (1)] and variable-form [Eq. (2)] taper models, Eqs. (7) 
and (8), for which all the parameters were significant at the 
95% confidence level, showed the lowest AIC (28,298.52 
and 26,630.35) and BIC (28,333.81 and 26,715.04) values, 
and the largest logLik (−14,144.26 and −13,303.17) values, 
respectively. The final taper equations including AGE and P 
information were written as

Newberry and Burkhart (1986) model with AGE and P:

Kozak (2004)-(2) model with AGE and P:

where AGEi and Pi are age of the ith tree and the stocking 
degree of the stand in which the ith tree is located, respec-
tively, and b1–b11 are model parameters.

The parameters, which were significant at the 95% confi-
dence level, in the models adding the AGE and P [Eqs. (7) 
and (8)] for the single and variable-form taper models are 
shown in Table 4.

NLME models and parameter estimates

When considering sample tree-level random effects, Eq. (7) 
with more than three random-effects parameters and Eq. (8) 
with more than two random-effects parameters failed to 
reach convergence (the different tolerances of the two adja-
cent iterations are more than 0.000001, with a maximum 
number of iterations of 50). Preliminary analysis showed 
that Eqs. (7) and (8) including two random-effects param-
eters were better than Eqs. (7) and (8) including one ran-
dom-effects parameter among the converged mixed-effects 

(7)

dij =

⎧⎪⎨⎪⎩
[b1 + b2 ln(AGEi)]

�
Hi − hij

Hi − 1.3

�(b3+b4
√
Pi)
⎫⎪⎬⎪⎭
Di + �ij

(8)

dij = b
1
D

b2
i
H

b3
i

x

[
b4q

4

ij
+b5[1∕eDi∕Hi ]+b6x0.1ij

+b7(1∕Di)+b8H
(1−q

1∕3
ij

)

i
+b9xij+b10AGEi+b11Pi

]

ij

+ �ij

Table 2   ANOVA of relative 
diameter (mean ± standard 
error) for different stocking 
degrees (low, middle and high 
stocking degree) for different 
relative height classes (q 
intervals of 0.1)

Superscript letters in the same row indicate significant differences between treatments (Tukey’s HSD, 
p < 0.05)

Relative height Low stocking degree Middle stocking 
degree

High stocking degree F p

d/D N d/D N d/D N

0 < q ≤ 1 0.783 ± 0.003a 8719 0.763 ± 0.006b 1460 0.713 ± 0.011c 550 21.82 < 0.001
0 < q ≤ 0.1 1.044 ± 0.003a 2288 1.032 ± 0.006a 447 1.034 ± 0.009a 143 2.24 0.106
0.1 < q ≤ 0.2 0.972 ± 0.002a 912 0.915 ± 0.008b 48 0.866 ± 0.006c 51 132.34 < 0.001
0.2 < q ≤ 0.3 0.846 ± 0.002a 1172 0.825 ± 0.003b 228 0.806 ± 0.006c 43 25.20 < 0.001
0.3 < q ≤ 0.4 0.803 ± 0.003a 686 0.756 ± 0.005b 98 0.732 ± 0.006c 53 47.70 < 0.001
0.4 < q ≤ 0.5 0.713 ± 0.002a 1124 0.688 ± 0.004b 184 0.669 ± 0.006bc 51 22.61 < 0.001
0.5 < q ≤ 0.6 0.636 ± 0.003a 797 0.585 ± 0.004b 196 0.590 ± 0.006bc 59 51.31 < 0.001
0.6 < q ≤ 0.7 0.535 ± 0.003a 664 0.517 ± 0.005ab 121 0.496 ± 0.006b 54 7.17 0.001
0.7 < q ≤ 0.8 0.441 ± 0.004a 487 0.417 ± 0.010ab 67 0.401 ± 0.007b 54 7.30 0.001
0.8 < q ≤ 0.9 0.273 ± 0.005a 357 0.278 ± 0.011a 39 0.262 ± 0.014a 26 0.22 0.804
0.9 < q < 1 0.136 ± 0.005a 232 0.132 ± 0.013a 32 0.136 ± 0.012a 16 0.06 0.945
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models. The best two random-effects parameters for Eqs. (7) 
and (8) were associated with the parameters b2 and b4, and b1 
and b6, respectively. The following Eqs. (9) and (10) had the 
lowest AIC (27,236.59 and 25,349.94) and BIC (27,293.05 
and 25,455.80) values, and the highest logLik (−13,610.30 
and −12,659.97) values. In addition, all the parameters of 
Eqs. (9) and (10) were significant at the 95% confidence 
level, and Eqs. (9) and (10) were thus selected as the optimal 
NLME single and variable-form taper models, respectively:

where u2i, u4i, u1i and u6i are the random-effects parame-
ters produced by the ith sample tree on b2, b4, b1 and b6, 
respectively.

Equations (9) and (10) including each of the three vari-
ance functions and the three correlation structures sig-
nificantly improved model performance (using L.Ratio, 
p < 0.0001) comparing with the models in which homo-
geneous variances were assumed (Table S2 and S3). Even 
with random effects in the parameters, heteroscedasticity 
and autocorrelation persisted in the NLME single and var-
iable-form taper models [Eqs. (9) and (10)]. Consequently, 
both Eqs. (9) and (10) were fitted with exponential vari-
ance functions and CAR(1) with the best performance to 
further explain the variance heterogeneity and autocorrela-
tion, respectively. The parameters, which were significant at 
the 95% confidence level, in the complete NLME models of 
L. gmelinii (the foundation models adding the AGE and P 
at sample tree level combining exponential variance func-
tion and CAR(1) model) for the single and variable-form 
taper profile models were estimated as follows [Eqs. (11) 
and (12)]. Equations (11) and (12) had lower AIC (23,025.68 
and 22,467.98) and BIC (23,096.26 and 22,587.96) values, 
and larger logLik (−11,502.84 and −11,216.99) values than 
Eqs. (9) and (10).
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The complete NLME single taper profile model:

The complete NLME variable-form taper profile model:

Evaluation of model fitting and validation

Four randomly selected diameters for each sampled tree 
were used to calculate the random effects of the tree profile 
NLME models in this study. Table 5 summaries the evalua-
tion indices of the fitting and validation for fixed and NLME 
models of single and variable-form taper models based on 
the fitting and validation datasets.

All six models showed acceptable goodness of fit and 
validation, accounting for more than 97% of L. gmelinii taper 

(11)
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variation (Table 5). Regardless of the fitting or validation 
data, each variable-form taper profile model (except for the 
Kozak (2004)-(2) model) showed a better performance than 
the single taper profile model. The MAB and MPRB of the 
validation data for the Kozak (2004)-(2) model were much 
larger than those of the NLME model combining CAR(1) 
and an exponential variance function for the single taper 
profile model [Eq. (11)]. Of the single taper profile mod-
els, Eq. (11) performed best, followed by the foundation 

Table 4   Regression coefficients and standard errors (in parentheses) for Newberry and Burkhart (1986) model and Kozak (2004)-(2) model 
without (Eqs. (1) and (2)) and with (Eqs. (7) and (8)) tree age (AGE) and stocking degree (P)

Model b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Equation (1) 1.0065
(0.0011)

0.7265
(0.0029)

Equation (2) 0.9687
(0.0084)

0.9759
(0.0053)

0.0445
(0.0074)

7.0916
(0.1319)

− 1.1192
(0.2323)

− 10.4929
(0.3488)

− 0.6966
(0.0506)

0.0163
(0.0036)

15.1469
(0.4142)

Equation (7) 0.9141
(0.0031)

0.0293
(0.0009)

0.3793
(0.0205)

0.4043
(0.0234)

Equation (8) 0.9731
(0.0082)

0.9749
(0.0051)

0.0441
(0.0072)

7.4220
(0.1299)

− 0.2243
(0.2532)

− 11.6700
(0.3683)

− 1.9030
(1.0140)

0.0123
(0.0035)

15.8800
(0.4072)

− 0.0036
(0.0002)

0.6589
(0.0944)



452	 European Journal of Forest Research (2020) 139:443–458

1 3

model incorporating AGE and P variables [Eq. (7)] and 
then by the foundation model [Eq. (1)], which showed an 
average RMSE decrease of 13.93% and 11.83% for fitting 
and validation, respectively. There were also correspond-
ing decreases of 9.18% and 8.72% in MAB and MPRB 
for fitting and validation, respectively. Similarly, in the 
variable-form taper profile models, NLME model combin-
ing CAR(1) and exponential variance function [Eq. (12)] 
had the smallest RMSE, MAB and MPRB. Models adding 
AGE and P [Eq. (8)] showed slightly worse performance 
in the fitting statistics than the foundation model [Eq. (2)], 
but better validation statistics (Table 5). However, Eq. (8) 
demonstrated lower AIC (26,630.35 < 27,014.52) and BIC 
(26,715.04 < 27,085.09) values, and larger logLik values 
(−13,303.17 > − 13,497.26) for predicting the stem diameter 
of any tree height. The RMSE decrease ranged from 2.39 
to 4.67%, and the MAB and MPRB decrease ranged from 
4.43 to 6.86%, depending on whether the fitting or valida-
tion dataset was applied. Based on AIC, BIC, logLik, and 
fitting and validation statistics, the NLME models including 
the exponential variance function and CAR(1) eliminated 

the heteroscedasticity and autocorrelation and significantly 
improved the predicted performance.

The standardized residual plots also showed that residu-
als of all six models were distributed around the zero mean, 
except the bottom sections of the stem, which were substan-
tially larger than ± 2 standard deviation (Fig. 2, 1.0 < pre-
dicted relative d ≤ 1.2). It is clear that residual variance of 
Eq. (12) was more homogeneous along the tree bole and 
Eq.  (1) showed a much poorer performance than other 
models (Fig. 2). Overall, based on the fitting and valida-
tion indictors and standardized residual plots, Eq. (12) was 
identified as the optimal model for modeling taper profile 
of L. gmelinii in the Greater Khingan Mountains of Inner 
Mongolia, northeast China.

An example application of the developed single 
and variable‑form taper models

Figure 3 shows the simulation of diameters at corresponding 
heights along the tree bole for a selected tree of L. gmelinii 

Table 5   Evaluation statistics of NLME models and models with and without tree age (AGE) and stocking degree (P) for the Newberry and Bur-
khart (1986) and Kozak (2004)-(2) models

Model No. Fitting Validating

R
2
adj

RMSE MAB MPRB (%) AIC BIC logLik RMSE MAB MPRB (%)

Single taper models
 Equation (11) 0.97951 1.15163 0.67737 5.13700 23,025.7 23,096.3 − 11,502.8 1.03868 0.64442 4.88682
 Equation (7) 0.97557 1.25764 0.72778 5.51927 28,298.5 28,333.8 − 14,144.3 1.12334 0.69834 5.29571
 Equation (1) 0.97234 1.33797 0.74581 5.65600 29,359.4 29,380.6 − 14,676.7 1.17807 0.70600 5.35382

Variable-form taper models
 Equation (12) 0.98250 1.06436 0.64142 4.86440 22,468.0 22,588.0 − 11,217.0 0.94898 0.61193 4.64041
 Equation (8) 0.98135 1.09917 0.67059 5.08559 26,630.4 26,715.0 − 13,303.2 0.96067 0.63149 4.78873
 Equation (2) 0.98165 1.08979 0.66981 5.07970 27,014.5 27,085.1 − 13,497.3 0.99333 0.65384 4.95823

Fig. 2   Diameter outside bark 
residuals plotted against pre-
dicted relative d for Newberry 
and Burkhart (1986) and Kozak 
(2004)-(2) models fitted only 
without tree age (AGE) and 
stocking degree (P) incor-
porated [Eqs. (1) and (2)], 
with AGE and P incorporated 
[Eqs. (7) and (8)], and with 
fixed- and random-effects 
parameters (with AGE and P 
incorporated) plus an autore-
gressive error structure CAR(1) 
and exponential variance func-
tion [Eqs. (11) and (12)]
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(D = 24.5 cm, H = 20.3 m, AGE = 103 years and P = 0.71, 
from the validation dataset).

(1) If tree age, stocking degree and four random com-
plementary upper-stem diameter measurements are avail-
able (h = 1.0, 5.0, 9.0 and 19.0 m and d = 25.2, 22.0, 20.0 
and 2.5 cm at the corresponding height h) for this selected 
tree, the vector of the random-effects parameters �̂i for the 

NLME single and variable-form taper models can be esti-
mated using the EBLUP [Eq. (6)]:

�i(s) =

[
u2i

u4i

]
=

[
0.00059

0.07566

]
 for the NLME single taper 

model, and �i(v) =

[
u1i

u6i

]
=

[
0.00358

0.02753

]
 for the NLME varia-

ble-form taper model. Then, the random-effects parameter 
values �̂i were substituted into Eqs. (11) and (12) to obtain 
the tree-specific stem diameters at the corresponding height 
(Fig. 3, red lines);

(2) If tree age and stand stocking are available but no stem 
diameter measurement is available, then Eqs. (11) or (12) 
are still the equations used to obtain the mean upper-stem 
diameter prediction only using the fixed parameter estimates 
as the random effects can no longer be predicted and the 
random-effects vectors were assumed to be equal to their 
expected estimates E(ui = 0);

(3) If tree age and stocking degree are not available and 
only D and H are known, strictly speaking, Eqs. (1) and (2) 
are still invalid to estimate the stem diameters if they were 
fitted using nonlinear least squares and there is heterosce-
dasticity and autocorrelation in residuals. But if the require-
ment to model accuracy is not very high and the error is 
acceptable, Eqs. (1) and (2) can be used to estimate the stem 
diameters at the corresponding height (Fig. 3, black lines). 
Because model parameters estimated using nonlinear least 
squares are still unbiased, only estimated variances and con-
fidence interval estimation on model parameters are biased 
(the parameters of Eqs. (1) and (2) can be found in Table 4). 
If we also know AGE and P, similarly, Eqs. (7) and (8) can 
be used to estimate the stem diameters at the corresponding 
height (Fig. 3, blue lines). Overall, the NLME taper mod-
els including both fixed-effects parameters and calibrated 
responses improved the model d prediction, particularly in 
the middle and near the top of the stem, where bias of d was 
the lowest (Fig. 3).

Discussion

Stem taper foundation models for L. gmelinii

This study identified the optimal stem taper foundation 
models on the basis of the statistical indicators and model 
simplicity as the Newberry and Burkhart (1986) and Kozak 
(2004)-(2) models for the single and variable-form taper 
models. However, our results were not fully consistent 
with previous studies. Adding to this inconsistency among 
previous studies, Sakici et al. (2008) recommended the 
Demaerschalk (1972) model as the optimal single taper 
model for Bornmullerian fir (Abies nordmanniana subsp. 

Fig. 3   An example stem profile simulation using the Newberry and 
Burkhart (1986) and Kozak (2004)-(2) models (black lines), New-
berry and Burkhart (1986) and Kozak (2004)-(2) models with tree 
age (AGE) and stocking degree (P) (blue lines), and Newberry and 
Burkhart (1986) and Kozak (2004)-(2) models with AGE and P 
and with fixed- and random-effects parameters plus CAR(1) and an 
exponential variance function (red lines). The calibrated response of 
NLME models (Newberry and Burkhart (1986) and Kozak (2004)-
(2) models with AGE and P and with fixed- and random-effects 
parameters plus CAR(1) and an exponential variance function) was 
based on four randomly selected upper-stem diameters at h = 1.0, 5.0, 
9.0 and 19.0 m for the same sample tree (D = 24.5 cm, H = 20.3 m, 
AGE = 103 years and P = 0.71). The three color codes represent the 
three different models of single and variable-form taper models. The 
dots represent the measured value of the upper-stem diameter at cor-
responding height along the tree bole. The stem diameters used for 
calibration are represented by four hollow dots
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bornmulleriana Mattf.), which was the most accurate sin-
gle taper model for the selected 17 simple polynomial in 
their study. Yet Rojo et al. (2005) found that the single taper 
functions developed by Cervera (1973) provided the most 
accurate predictions among 19 other single taper models 
for maritime pine (Pinus pinaster Ait.). One of the main 
reasons for such disparity of results is the simple ecophysi-
ological fact that there is no general stem taper model to 
provide a better description for all tree species, as different 
tree species have different wood properties, growth rates, 
and aboveground architecture. To make things more compli-
cated, all these factors have strong genetic and site-specific 
environmental drivers.

In the present study, the Kozak (2004)-(2) variable-form 
taper model showed the best performance for L. gmelinii, 
agreeing with results by Kozak (2004) who concluded it was 
the best taper model to estimate diameter inside bark and 
suggested that it could be widely applied to many tree spe-
cies. Supporting the transferability of this model, the Kozak 
(2004)-(2) variable-form taper model similarly provided the 
best performance in describing the stem profile of five major 
pine species in El Salto (Durango, Mexico) (Corral-Rivas 
et al. 2007); lodgepole pine (Pinus contorta var. latifolia 
Engelm.) (Yang et  al. 2009b); birch (Betula pubescens 
Ehrh.) (Gómez-García et al. 2013); and red spruce (Picea 
rubens (Sarg.)) and white pine (Pinus strobus (L.)) (Li and 
Weiskittel 2010). Menéndez-Miguélez et al. (2014) also 
described superior performance using the Kozak (2004)-(2) 
model in predicting diameter for chestnut (Castanea sativa 
Mill.) coppiced stands.

However, despite such reports on superior performance, 
the Kozak (2004)-(2) taper model still has relatively large 
residuals at the tree stem butt (Fig. 2) and is a non-compat-
ible variable-exponent taper model. One reason could be 
the lack of clear ecophysiological parameters in a purely 
mathematical model, as many of the early taper models have 
been developed using data from even-age secondary forests 
or even plantations, in which growth variability among trees 
is reduced compared to a natural dense forest. When includ-
ing age and tree density, some of the variability in micro-site 
and tree conditions directly affecting growth conditions of 
each individual tree is therefore taken into account, improv-
ing predictions of stem taper, as seen in Fig. 3.

In general, it is assumed that the variable-form taper 
model had the lowest bias when estimating diameters along 
the tree bole, closely followed by the segmented and single 
taper models (Rojo et al. 2005; Sakici et al. 2008). How-
ever, our results do not support this assumption, as they indi-
cated that the single taper model by Newberry and Burkhart 
(1986) provided more accurate prediction than the Max and 
Burkhart (1976) segmented taper model. Similarly, Özçelik 
and Crecente-Campo (2016) found that variable-form taper 
models were inferior to segmented taper models in terms 

of prediction accuracy, which is again in contradiction with 
the most common results described in the literature. Given 
these inconsistencies among studies, it is clear that no opti-
mal taper model (either single or variable-form) exists and 
that species- and site-specific factors are influential in stem 
shape.

Modeling AGE and P effects on taper of L. gmelinii

Some previous studies suggested that predictors of h, H and 
DBH were able to accurately model the stem taper, while 
other studies considered that including predictors of tree age 
(Muhairwe et al. 1994; Tasissa and Burkhart 1998), stand 
density (Muhairwe et al. 1994; Scolforo et al. 2018; Sharma 
and Parton 2009) and climatic variables (Schneider 2018) 
would best improve the stem taper prediction accuracy. 
However, based on our results, we argue that stem taper 
models including h, H and DBH as the independent vari-
ables may be sufficiently accurate for even aged stands and 
stands with a consistent density, but might not be so for 
natural forests, supporting our first hypothesis.

The corroboration of our first hypothesis is sustained by 
the significant improvements observed for the stem taper 
model incorporating AGE and P as predictor variables. For 
example, the predictive ability on the upper stem for the 
Kozak (2004)-(2) taper model with AGE and P was higher 
than without AGE and P (Fig. 2). This could be because 
the Kozak (2004)-(2) model incorporating AGE and P had 
greater biological relevance than the foundation model. The 
effect of AGE on stem taper is likely to be mostly associ-
ated with the tree crown as the upper stem receives more 
sunlight than the lower stem (Barnes et al. 1998) and the 
tree crown responds to changes in stand density (P). Pre-
vious studies have also shown that the addition of new 
parameters substantially improved stem form predictions. 
For example, the introduction of crown class, site class and 
breast height age into the Kozak (1988) variable-exponent 
taper model (Muhairwe et al. 1994); total basal area (BA) 
and D, i.e., ( 

√
BA∕D ) into the Sharma and Oderwald (2001) 

model (Sharma and Parton 2009); or slenderness (reflected 
by height to diameter ratio) and crown base height into a 
variable-exponent model (Courbet and Houllier 2002), all 
improved the basic model’s accuracies.

However, in our results the prediction accuracy for stem 
taper models with AGE and P was still low in the neiloid 
shape (Fig. 2, 1.0 < predicted relative d ≤ 1.2), for which 
there was no significant difference between models with 
and without AGE and P as independent variables. There are 
three possible reasons for this result. First, P had no effect 
and AGE had little to no effect (between mature and over-
mature forests) on the relative diameters for the frustum of 
the neiloid (0 < q ≤ 0.1, Table 2, 3). Second, a neiloid taper 
equation is especially adequate to model stump volume, but 
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if stump diameter has been used to estimate DBH, error is 
introduced when estimating volume from DBH (Pond and 
Froese 2014). Third, although tree growth primarily follows 
biological limitations, stem growth depends on complex 
multifactorial and site-specific factor combinations, which 
are complicated and thus hard to model with statistical meth-
ods. Empirical and theoretical taper equations only simulate 
the effect of relative height change on taper. No matter how 
accurate the equation, uncertainty cannot be completely 
eliminated, because all models are simplifications of reality 
(Kimmins et al. 2008).

Mixed‑effects taper models for L. gmelinii

Our results demonstrated that incorporating two random-
effects parameters led to more accurate predictions of stem 
taper, supporting our second hypothesis. Such result indi-
cate that accounting for the sampled tree as a random effect 
accounted for part of the variability and therefore the result 
was a more reliable prediction of diameters along the tree 
stem. It is crucial for studies applying mixed-effects models 
to determine the within-tree variance–covariance structure 
for the matrix of the error term Ri. Both the NLME sin-
gle taper model [Eq. (11)] and NLME variable-form taper 
model [Eq. (12)] used exponential variance functions and 
CAR(1) to minimize the effect for the within-tree heterosce-
dasticity and autoregressive structure of error, respectively. 
In this manner, Eqs. (11) and (12) improved the model per-
formances relative to other NLME model forms that did not 
include CAR(1) and exponential variance functions [Eqs. (9) 
and (10), Table S2 and S3] or fixed-effects models of the 
stem profile (Table 5, Fig. 2). Other authors have also shown 
that adding CAR(1) to the taper model greatly removed the 
autocorrelation (Li and Weiskittel 2010; Trincado and Bur-
khart 2006; Younger 2007). In addition, an exponential vari-
ance function had a better correction effect on the hetero-
geneous residual variances than a power variance function 
for repeated-measures data (Fu et al. 2017a; Trincado and 
Burkhart 2006; Zhao et al. 2005). However, some studies 
have shown that heterogeneous residual variances could be 
corrected by weighting through a power variance function 
(Wang et al. 2014; Yang et al. 2009a).

One of the earliest examples of the inclusion of random 
effects in forestry applications was the generation of height 
growth curves (Lappi and Bailey 1988). In the same line as 
our results, NLME models have been successfully applied 
to the development of taper equations (Özçelik et al. 2011), 
crown width equations (Fu et al. 2013; Yang and Huang 
2017), biomass equations (Njana et al. 2016), tree height 
and diameter equations (Gollob et al. 2018; MacPhee et al. 
2018; Mehtätalo et  al. 2015) and top height equations 
(Sharma and Reid 2018). This suggests that the inclusion of 
random-effects parameters significantly improves the fit of 

the corresponding equations by capturing part of the natural 
variability related to biological processes involved in tree 
growth.

Estimation of the random-effects parameters of the 
NLME model is a key step in model applications based on 
the EBLUP method [Eq. (6)] and explicit derivation of cor-
responding models if additional diameter subsamples are 
available. NLME models significantly improved their pre-
dictive ability relative to the fixed-effects models with reduc-
tion of RMSE by 1.22–13.93% and R2

adj
 increase of 

0.09–0.74% (Table 5), based on the calibrated response 
using four random measured upper-stem diameters for each 
sample tree. Hence, our results with previous research sug-
gesting four as the optimal subsample size used in estimating 
random effects (Calama and Montero 2004; Fu et al. 2017a; 
Paulo et al. 2011).

Although models fitted considering random-effects 
parameters can eliminate the autocorrelation and hetero-
scedasticity, a compromise should be achieved between 
model prediction accuracy requirements for practical appli-
cations, complexity of the error covariance structure when 
using more than one randomly selected subsample, and 
operational costs involved in additional diameter measure-
ments to estimate random-effects parameters. It is difficult 
to estimate the random effects within sample trees unless 
four randomly selected diameters at different points along 
the same tree stem are available for the calibration of the 
NLME models. However, recent advances in measurement 
equipments make this issue of accurately measuring four 
upper-stem diameter measurements on standing trees in a 
forested setting less problematic. In addition, sometimes 
the reduction of the precision of the models by measure-
ment error exceeds the improvement in precision from the 
inclusion of the random-effects parameters (Fu et al. 2017b; 
Gómez-García et al. 2013). This could arise in the following 
cases: (1) deformed diameter measurement, such as forked, 
sunken or burl stems or trees lacking apical dominance; (2) 
the field measurement errors encountered by field staff or 
faulty instruments (Fu et al. 2017b; Omule 1980); or (3) the 
choice of number of diameter classes (Schröder et al. 2015), 
and the values of AGE and P.

Our results show the viability of including more ecologi-
cally meaningful parameters (such as tree age and stocking 
degree) but at the same time improving accuracy of taper 
equations, reaching therefore a more adequate degree of 
model complexity (Kimmins et al. 2008). Such enhanced 
models can be used to improve estimations of volume, bio-
mass or carbon in standing forests as well as in harvested 
trees.
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Conclusions

Out of the 30 stem taper foundation models studied, the 
Newberry and Burkhart (1986), Max and Burkhart (1976) 
and Kozak (2004)-(2) models showed the best estimates for 
diameters along the stem. Of these, the Max and Burkhart 
(1976) model provided the worst accurate predictions. As 
we hypothesized, AGE and P exhibited significant effects 
on tree stem and improved the models when incorporated 
into the taper equations. As we also hypothesized, common 
exponential variance functions and CAR(1) can be used to 
minimize within-tree heteroscedasticity and autoregressive 
structure of error for both NLME models. The NLME taper 
models included both fixed-effects parameters and calibrated 
responses when four random complementary upper-stem 
diameter measurements are available for a new tree, which 
improved the fitting and predicting abilities of model estima-
tion for diameter at any height along the tree bole. We have 
then provided the first improved taper modes with NLME 
single and variable-form taper models for natural forests of 
L. gmelinii in the Greater Khingan Mountains of Inner Mon-
golia, northeast China [Eqs. (11) and (12)], but our approach 
is probably suitable for other tree species, and the example 
provided here can be used as guidance for further research.

In conclusion, when developing taper functions for trees 
in natural forests it is strongly suggested that tree age and 
stocking degree to be accounted for in the model, and if 
possible, the introduction of a random-effects model to 
account for the potential violation of assumptions in the 
stem data used to create the models. These recommenda-
tions are timely and relevant as the need for accurate timber 
volume estimation in multi-aged, dense stands is already 
increasing as forest management moves toward management 
regimes closer to nature, precisely by increasing the number 
of tree age cohorts in secondary forests, therefore making 
them more similar to natural forests such as those used in 
this research.
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