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Abstract In this study, we investigated the effect of forest

types changes (from coniferous and broadleaf mixed forest

(CBMF) to plantation forests of bamboo (Phyllostachys

pubescens forest, MBF) and hickory (Carya cathayensis

forest, CHF)) combined with intensive management on soil

organic carbon (SOC) and microbial community structure,

using the 13C-nuclear magnetic resonance (NMR) and

phospholipid fatty acid (PLFA). The results indicated that

soil organic carbon significantly decreased by 30.7 and

28.5% in MBF and CHF, respectively. The aromatic C and

aromaticity also significantly decreased in MBF and CHF

(P\ 0.05), while alkyl, O-alkyl and carbonyl C contents

increased (P[ 0.05). Significant changes of the soil

microbial community were found after the forest type

changed from CBMF to MBF and CHF. Total soil micro-

bial PLFAs, soil bacteria PLFAs, fungus PLFAs,

actinobacteria PLFAs, arbuscular mycorrhizal fungi PLFAs

and protozoan PLFAs ranked as follows: CBMF[CHF[
MBF (P\ 0.05). The ratio of soil fungus to bacteria was in

the order of MBF (0.78)[CHF (0.66)[CBMF (0.49)

(P\ 0.05), while an opposite order was found for ratio of

G?/G- values (CBMF[CHF[MBF, P\ 0.05). The

converting CBMF into MBF and CHF combined with

fertilization and tillage significantly changed the SOC and

microbial community. Therefore, necessary measures

should be taken to improve the SOC and soil fertility in the

MBF and CHF.
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Introduction

The conifer-broadleaf mixed forest (CBMF) is one of the

most widely distributed forests in subtropical China (Ma

et al. 2014). However, due to pursuing high economic

profits by local foresters, large areas of CBMF were

changed to commercial plantations, such as moso bamboo

(Phyllostachys pubescens, Mazel ex Houzeau de Lehaie)

and Chinese hickory (Carya cathayensis Sarg.) stands in

southern China. Moso bamboo forest (MBF) is one of the

most important plantations in China, with a total area of

3.87 million hectares (Mha), accounting for about 25% of

the global bamboo forest areas. The MBF area is increas-

ing, at a rate of about 1% per year (Wang et al. 2009),

because of its well-developed underground root system.

Chinese hickory forest (CHF) is a traditional Chinese high-

quality woody nut and oil tree species. It is mainly
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distributed on Tianmu Mountain at the boundary of Zhe-

jiang and Anhui provinces in China (Wu et al. 2014a).

Currently, the total area of CHF is 8.93 9 105 ha in China,

which is 2 times larger than that in the 1980s. In order to

improve the yields of moso bamboo and hickory, intensive

management referred to deep plow, heavy application of

fertilizer and complete clearing of ground vegetation

(herbaceous grass and shrub) was taken. In addition, large

amounts of herbicides have been applied, which leads to a

decrease in plant diversity, and to increasing water loss and

soil erosion (Wang et al. 2011; Bai et al. 2012).

Soil organic carbon (SOC) is an important factor in

maintaining soil fertility and plant growth (Chang and Chiu

2015). The content and structure of SOC could reflect the

spatial distribution of above-ground species, vegetation

succession and human disturbance (Su et al. 2005). The

soil microbial community is a vital component of the soil

biological system, which can be used for monitoring the

change of soil quality (Zhang et al. 2013a, b). Forest-type

shifts have resulted in forest ecosystem changes, which

could further affect soil organic carbon, microbial com-

munities and other physic-chemical properties (Ushio et al.

2010). This was probably related to the forest species dif-

ferences in total forest litter amount and quality, root

exudates, and nutrient uptake and transportation (Lucas-

Borja et al. 2012). The litter chemistry effected by initial

litter quality, is generally regarded to be closely associated

with the structure and stability of soil organic matter during

the long-term litter decomposition process (Kogel-Knabner

2002; Schmidt et al. 2011).

The 13C nuclear magnetic resonance spectroscopy with

cross-polarization and magic-angle spinning (CPMAS

NMR) has been popularly uses to investigate the SOM

chemical structure (Simpson et al. 2011). The relative

ratios of different organic C functional groups, such as

alkyl C, O-alkyl C, aromatic C from the NMR spectrum of

the soil samples could be investigated. Li et al. (2014)

studied the soil C pool variation using NMR technology

after the conversion of vegetation from the native shrub

forests to Chinese chestnut plantations. Some researchers

also studied the relationship between SOC chemical com-

position and labile organic C pools such as microbial

bacterial C (Webster et al. 2001; Chen et al. 2004).

However, previous research mostly focused on above-

ground change and plantation cultivation after land-use

change (Wang et al. 2011; Chen et al. 2014) in subtropical

forest region. There are few studies about the accompa-

nying changes in underground soil organic carbon and

microbial diversity in this area of China. The objective of

this study was to investigate the effects of converting

CBMF to intensively managed MBF and CHF on SOC

concentrations, the chemical composition of SOC and

microbial community structure by 13C-nuclear magnetic

resonance (NMR) and PLFA techniques. We aimed to

understand how the extension of bamboo and hickory

forests stimulates the change of soil organic carbon and

microorganisms. It is expected that the results can be used

to guide sustainable forest management in subtropical

region.

Materials and methods

Site description

The study site was located in Lin’an County (119�060–
119�150E, 27�460–27�580N), northwest Zhejiang Province,

China. Under a monsoonal subtropical climate with four

distinct seasons, the study area has an average annual

temperature of 16.4 �C, an average annual precipitation of

1628 mm. The average annual day-light hours are about

1774 h, with 235 frost-free days. The elevation of the study

area ranges from 100 to 150 m above the sea level, and the

soils were classified as Ferralsols in FAO soil classification

system (WRB 2006).

Before the land use change, the study area was uniformly

distributed by CBMF. The original tree species of the area

were Cyclobalanopsis glauca (50%), Pinus massioniana

(40%), Liquidamba formosana and Taxus maire (10%). In

1989, in order to set up the experiment, the previous natural

forest was harvested. Then, three different forest stands have

been formed in the study area (Table 1). Ten hectares

remained as CBMF through natural regeneration. Ten hec-

tares of the original CBMF were changed to MBF, and 10

hectares of CBMF were converted to CHF through artificial

stimulation of natural regeneration. No further anthro-

pogenic measures were taken to manage the CBMF since

1989. The MBF and CHF were managed by annual appli-

cation of inorganic fertilizer, deep tillage and removal of

understory vegetation. InApril of each year, NPK compound

fertilizer was broadcast applied to the plantations

(450 kg N ha-1, 450 kg P2O5 ha
-1, and 450 kg K2O ha-1,

respectively). The understory vegetation including shrub

and grass was removed in the MBF and CHF in order to

reduce the competition for nutrients and water.

Soil sampling

Three 20 m 9 20 m sample plots were set up by random

design within each of forest type stand in March 2014,

giving a total of 9 sample plots. Soil samples were taken

using a soil sampler (10 cm Ø) from four corners and the

middle position of each plot (0–20 cm deep) and thor-

oughly mixed to form a composite sample. The soil sam-

ples were preserved in the ice box after being sealed in

plastic bags. Half of each soil sample was passed through a
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2-mm nylon mesh and saved at -20 �C in cryogenic

refrigerator for analysis of microbial community structure.

The remaining half of the mixed samples were air-dried

and sieved with a 0.25-mm nylon mesh for analysis of soil

organic carbon content, structure and other soil properties.

Chemical and microbial community structure

analysis

Soil pH was analyzed with a pH meter using an aqueous

suspension (soil-to-water ration of 1:2, W:V). Organic

carbon was determined by the wet oxidation using con-

centrated H2SO4 and K2Cr2O7, and titrating with

Fe(NH4)2(SO4)2�6H2O and total N was measured by a

semi-micro Kjeldahl method. Available P and K were

determined by the NaHCO3 extraction-colorimetry and

NH4OAc extraction-flame photometry method, respec-

tively. All the methods described above followed Lu

(2000).

Soil samples were further analyzed with cross-polariza-

tion magic-angle-spinning (CPMAS) solid-state NMR

spectroscopy. Soil samples were pretreated with hydrogen

fluoride (HF) solution to increase the signal-to-noise ratio of

the spectrum. The HF pretreatment was recommended by

Mathers et al. (2000). The HF treated soil samples were

subjected to 13C NMR analysis by a Bruker (Spectrospin,

Rheinstetten, Germany) Avance 600 MHz NMR spec-

trometer. The experiments were carried out using a 7 mm

CPMAS probe, at a carbon frequency of 75.5 MHz, MAS

spinning frequency at 5000 Hz, with a contact time of 2 ms,

and recycle delay time of 2.5 s. The NMR spectra were

divided into the following seven resonance regions repre-

senting different chemical environments of a 13C nucleus:

alkyl C (0–50 ppm), O-alkyl C (50–110 ppm), aromatic C

(110–160 ppm) and carbonyl C (165–220 ppm) (Huang

et al. 2008). The area under the curve in each region was

calculated by integration, and the relative contents of dif-

ferent C fractions were obtained. There were two indices of

SOC stability which were included: (1) Alkyl C to O-alkyl

C ratio (A/O-A) = C0–50 ppm/C50–110 ppm (Huang et al.

2008) and (2) aromaticity = C110–165 ppm/C0–165 ppm

(Zhang et al. 2013a, b).

The extraction and analysis of PLFAs were realized as

described by Frostegård et al. (1993). Citrate buffer

(3.2 ml, 0.15 M), chloroform (4 ml), and methanol (8 ml)

were mixed to extract soil lipids. The phospholipid fatty

acid (PLFA) was methyl esterificated after being separated

using silicic acid chromatography. The compositions of the

PLFA samples were analyzed by gas chromatograph

(Agilent, 6890 N, USA) with an HP-5MS column

(25.0 m 9 200 lm 9 0.33 lm). Sample volume was

1 lL, diversion ratio was 10:1, and carrier gas (N2)

velocity was 0.8 ml min-1. The column temperature in

second-order procedure was increased from 170 to 260 �C
(5 �C min-1), and then increased to 310 �C at a rate of

40 �C min-1, and maintained for 1.5 min. The composi-

tions of PLFA were analyzed by MIDI Sherlock microbial

identification system (Version 4.5, MI-DI, Inc., Newark,

DE). Then the obtained PLFAs were used to calculate the

microbial biomass and the richness of each community.

The unit to express the amount of fatty acids was

nmol g-1 water-free soil. Meanwhile, the relative abun-

dance of the PLFA was expressed in mol %. In this research,

the communities of Gram? bacteria were characterized by

PLFA i14:0, i15:0, a15:0, i16:0, i17:0 and a17:0. Gram-

bacteria were characterized by 16:1x7c, cy17:0, 18:1x7c
and cy19:0 (Zogg et al. 2006). Bacteria were characterized

by i14:0, i15:0, a15:0, 15:0, i16:0, 16:1x7c, 17:0, i17:0,
a17:0, cy17:0, 18:1x7c, cy19:0 (Frostegård and Bååth

1996). Fungi were characterized by 18:1x9c and 18:2x6c
(Federle 1986). Arbuscular mycorrhizal fungi were repre-

sented by 16:1x5c (Olsson 1999). Actinobacteria were

indicated by Me16:0, Me17:0 and Me18:0. Protozoans were

characterized by 20:4w6, 9, 12 and 15c (Yu et al. 2003). The

ratios of fungi and bacteria were included in the data anal-

ysis. The same was done with the ratios of Gram-positive

bacteria (G?) and Gram-negative bacteria (G-).

Statistical analyses

The data presented in this research are the average of three

replications [average ± standard deviation (SD)]. The one-

way analysis of variance (ANOVA) was applied to test the

Table 1 Basic information of the selected forest stands

Forest

type

Stand

density

(plant ha-1)

Age

(year)

Average

DBH

(cm)

Average

height

(m)

Canopy

density

(%)

Altitude

(m)

Aspect Slope

(�)
Rock

type

Forest litter

(t ha-1 year-1)

Forest

litter

carbon

(Kg m2)

Soil

sampling

depth

(cm)

CBMF 1950 25 18.6 13.0 80 440 Southwest 25 Limestone 4.76 0.22 20

MBF 3150 25 10.2 11.0 80 430 Southwest 24 Limestone 2.16 0.08 20

CHF 375 25 15.1 8.0 80 430 Southwest 23 Limestone 3.62 0.15 20

CBMF stands for conifer-broadleaf mixed forest, MBF stands for moso bamboo forest, CHF stands for Chinese hickory forest, DBH stands for

diameter at breast height
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forest-stand change effects on the physical and chemical

properties, organic C chemical composition and microbial

community, based on the Duncan’s multiple comparison

method (a = 0.05). Before performing the ANOVA anal-

ysis, the normality and homogeneity of raw data were

tested and data were log-transformed if homogeneity of the

variance was not met. The principal component analysis

(PCA) was performed by R statistical package (version

3.3.3). Other statistical analyses were carried out with

SPSS� for windows (version 18.0).

Results

Soil chemical and physical properties

The highest soil pH, SOC, and C/N ratio and lowest total N,

available P and K were found in the CBMF soil samples

(Table 2). 25 years after the forest type changed from

CBMF to the MBF and CHF, the pH, SOC content and C/N

ratio significantly decreased. There was no significant dif-

ference between the MBF and CHF soils in these factors.

Soil organic content structure

The solid-state 13C NMR spectrogram of SOC includes 4

obvious resonance areas and corresponding organic C

fractions: alkyl C (0–50 ppm), O-alkyl C (50–110 ppm),

aromatic C (110–160 ppm), carbonyl C (160–220 ppm)

(Fig. 1). Integration over the major areas of 13C resonance

to find areas under the curve provided the ratios of different

organic carbon groups to total organic carbon. Overall, the

O-alkyl C (37.2–38.2%) dominated the SOC in all the three

forest stands. However, the forest-type shift changed the

signal intensity of different C fractions in the SOC

(Table 3). The alkyl, O-alkyl and carbonyl C contents

increased, while aromatic C significantly decreased by

converting CBMF to MBF and CHF. The alkyl to O-alkyl

C ratios did not significantly change. The aromaticity sig-

nificantly decreased by forest-type shift.

PLFA analyses

Total PLFA concentration, as an indicator of active soil

microbial biomass, was highest in the CBMF soil samples

(Fig. 2). Meanwhile, soil bacteria PLFAs, fungus PLFAs,

actinobacteria PLFAs, arbuscular mycorrhizal fungi (AMF)

PLFAs and protozoan PLFAs ranked as follows:

CBMF[CHF[MBF. The differences between them

were significant (P\ 0.05).

The soil microbial community significantly changed

25 years after the forest-type conversion from CBMF to the

MBF and CHF (Figs. 3, 4). The relative abundance anal-

ysis of PLFA showed that bacteria dominated in the soils,

while the second most abundant component was the fungus

and actinobacteria. Arbuscular mycorrhizal fungi and

protozoans were less abundant in the soil. The relative

abundance of soil G- bacteria biomass ranked as follows:

CBMF[MBF[CHF (P\ 0.05). But the relative

abundance of soil G? bacteria biomass ranked as follows:

CBMF[CHF[MBF (P\ 0.05). The relative abun-

dance of fungus and arbuscular mycorrhizal fungi (AMF)

between the three forest types did not show a significant

change. The relative abundance of soil actinobacteria in the

bamboo forest was significantly lower than that in the other

forest types. The relative abundance of protozoan biomass

in the CBMF was significantly higher than that in MBF and

CHF. 25 years after the forest type changed from CBMF to

the plantation forests of bamboo and hickory, the ratio of

soil fungus to bacteria showed a significant rise, while the

ratio of G? bacteria to G- bacterium declined signifi-

cantly (Fig. 4).

Soil communities, analyzed by PCA of PLFA levels,

significantly differed among different vegetation types

(Fig. 5). The PLFA levels in the soil could be divided into

clear three clusters, CBMF, CHF and MBF soils. The first

and second principle component (PC1, PC2) accounted for

93.7% of the variation in PLFA levels (Fig. 5). PC1 dif-

ferentiated the CBMF soil from other plantation soils,

whereas PC2 had positive loading and differentiate MBF

from CHF soil.

Table 2 Changes in soil properties of different forest types

Forest

types

pH Soil organic carbon

(g kg-1)

Soil organic carbon

density (Kg m2)

Total N

(g kg-1)

Available P

(mg kg-1)

Available K

(mg kg-1)

C/N

CBMF 6.2 ± 0.2a 19.24 ± 2.31a 4.62 ± 0.38a 1.08 ± 0.17a 2.4 ± 0.3b 114.7 ± 12.4a 17.8 ± 1.2a

MBF 5.4 ± 0.3b 13.34 ± 1.87b 3.20 ± 0.27b 1.27 ± 0.18a 5.8 ± 0.5a 123.6 ± 14.5a 10.5 ± 1.3b

CHF 5.5 ± 0.2b 13.76 ± 2.06b 3.30 ± 0.28b 1.36 ± 0.19a 6.3 ± 0.7a 145.3 ± 15.8a 10.1 ± 1.1b

CBMF stands for conifer-broadleaf mixed forest, MBF stands for moso bamboo forest, CHF stands for Chinese hickory forest

Different letters in the same column indicate values are significantly different at P = 0.05 level according to Tukey’s HSD multiple range test
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Discussion

The effect of forest-type change on soil organic

carbon and its chemical composition

In this study, 25 years after converting CBMF into MBF

and CHF, the SOC in top soils (0–20 cm) significantly

decreased (Table 2), which was similar to the findings of

Wu et al. (2014b) who reported that converting natural

ever-green broad-leafed forests to plantations (Chestnut

forest and CHF) reduced SOC in subtropical China. The

possible mechanisms for the decrease in SOC in the MBF

and CHF soils samples include: (1) there is less human

disturbance in CBMF and its arbor-shrub-grass multiple

layered forest ecosystem provides a large amount of litter-

fall input to the soils (4.76 t ha-1 year-1 for CBMF, only

CHF

CBMF

MBF

A B C D

Fig. 1 Solid-state13C NMR

spectrogram of SOC includes 4

obvious resonance areas.

A Carbonyl C; B Aromatic C; C

O-alkyl C; D Alkyl C. CBMF

stands for conifer-broadleaf

mixed forest, MBF stands for

moso bamboo forest, CHF

stands for Chinese hickory

forest

Table 3 Distributions of different chemical shift ranges in total signal intensity (%) for 13C NMR in organic carbon of different forests

Forest

type

Alkyl C

(0–50 ppm)

O-alkyl C

(50–110 ppm)

Aromatic C

(110–160 ppm)

Carbonyl C

(160–220 ppm)

Alkyl C/O-alkyl

C

AC (%)

CBMF 24.8 ± 3.5a 37.2 ± 2.3a 24.8 ± 1.8a 13.2 ± 1.4a 0.67 ± 0.1a 28.6 ± 2.7a

MBF 26.3 ± 2.5a 38.2 ± 1.4a 20.2 ± 1.2b 15.3 ± 1.6a 0.69 ± 0.1a 23.8 ± 2.5b

CHF 26.1 ± 3.2a 37.8 ± 1.5a 20.3 ± 1.2b 15.7 ± 1.2a 0.69 ± 0.1a 24.7 ± 2.3b

CBMF stands for conifer-broadleaf mixed forest, MBF stands for moso bamboo forest, CHF stands for Chinese hickory forest

Alkyl C/O-alkyl C = (C0–50 ppm)/(C50–110 ppm); AC = Aromaticity = [(C110–165 ppm)/(C0–165 ppm)] 9 100%

Different letters in the same column indicate values are significantly different at P = 0.05 level
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2.16 and 3.62 t ha-1 year-1 for MBF and CHF, respec-

tively, Table 1), which affects the incorporation of litter

into the soil (Wiesmeier et al. 2009); (2) the simple forest

structures and relatively high soil temperatures in MBF and

CHF could accelerate decomposition rate of soil organic

matter (Li et al. 2014); (3) serious soil erosion in planta-

tions caused a huge loss of soil organic carbon (Wu et al.

2014a); (4) the fertilizer application in MBF and CHF

accelerates the decomposition of organic matter (Manci-

nelli et al. 2010). Our results demonstrate that SOC con-

centrations in MBF and CHF are being depleted, and

necessary measures should be taken to maintain soil

fertility.

Solid-state 13C CPMAS NMR has been extensively

used to investigate the response of chemical composition

of SOC to different management practices. Significant

differences in the ratios of C fractions to total SOC were

found among different studies (Chen et al. 2004; Huang

et al. 2008; Li et al. 2014), due to different forest and soil

types. In this study, O-alkyl C dominated the SOC

regardless of forest-type change, which was consistent

with the findings of Chung et al. (2012) in a natural

Hinoki cypress (Chamaecyparis obtusa) forest in Taiwan

and Li et al., (2014) in Chestnut plantation soils in sub-

tropical China. However, Ussiri and Johnson (2007)

found that the alkyl C predominated in the SOC in Bh

horizon of a hardwood forest soil. Fertilization and tillage

could play an important role in the chemical composition

of SOC (Huang et al. 2011). It was reported that long-

term fertilization increased the alkyl C content and the

A/O-A ratio in the top soil of a second rotation Pinus

radiate D (Huang et al. 2011). In our study, alkyl C and

O-alkyl C content increased, but aromatic C content and

aromaticity decreased after converting CBMF into MBF

and CHF with long-term fertilization. This finding is

similar to the results of Zhang et al. (2013a, b) who found

that the aromaticity significantly decreased in a MBF

under a long-term intensive management, compared to

the natural forest stand. However, Shang et al. (2012)

reported that after conversion of natural shrub into

Fig. 2 Soil microbial PLFAs under different forest stands: a total

PLFAs; b bacteria PLFAs; c fungi PLFAs; d actinobacteria PLFAs;

e AMF PLFAs; f protozoan PLFAs AMF is arbuscular mycorrhizal

fungi; Different letters in the same column indicate values are

significantly different at P = 0.05 level. CBMF stands for conifer-

broadleaf mixed forest, MBF stands for moso bamboo forest, CHF

stands for Chinese hickory forest
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chestnut forest and 20 years of intensive management,

the stability of SOC increased significantly. On the other

hand, some studies showed that fertilization and tillage

did not impact the chemical composition of SOC (Gon-

zález Pérez et al. 2004). The differences among the above

studies are probably related to the variations in soil type,

plant species, and environmental factors (Wang et al.

2010), while the contribution of each factor to the change

in the chemical composition of SOC in the converting

CBMF to MBF and CHF needs to be investigated in the

future.

The effect of forest-type change on soil microbial

community structure

The composition of the soil microbial community chan-

ged significantly 25 years after conversion from CBMF

into MBF and CHF (Figs. 3, 4). Since the location and

site condition are almost the same in this research, forest

types and management practices are considered to be the

main factors that caused the significant differences in

microbial community. The type and amount of litter, as

well as root system secretions, could have selective

stimulating effect on the growth of the edaphon, so as to

affect microbial community characteristics (Waid 1999).

Fig. 3 Relative abundance of

forest soil microbial PLFAs.

CBMF stands for conifer-

broadleaf mixed forest, MBF

stands for moso bamboo forest,

CHF stands for Chinese hickory

forest. Different letters in the

same column indicate values are

significantly different at

P = 0.05 level

Fig. 4 A Ratio of soil fungus to bacteria, B the ratio of G?/G-

bacteria. CBMF stands for conifer-broadleaf mixed forest, MBF

stands for moso bamboo forest, CHF stands for Chinese hickory

forest. Different letters in the same column indicate values are

significantly different at P = 0.05 level

Fig. 5 Plots of the two main principal components (PCs) from

principal component analysis of the mol % of microbial phospholipid

fatty acid content in soil samples from different forest types
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Chang and Chiu (2015) found the bamboo rhizome sys-

tem reduces opportunities for the growth of other plants

and further reduces seedling abundance and species under

a bamboo canopy. Additionally, different management

practices affect soil microbial community structure by

changing the soil environment (Bi et al. 2010; Chen et al.

2013).

Studies have shown that the composition of the soil

microbial community is influenced by soil pH, and soil

nutrient and carbon recycling efficiency (Fierer et al. 2007;

Högberg et al. 2007). In our study, the value of soil pH was

significantly correlated with the PLFAs in forest soil

(R = 0.81–0.92, P\ 0.05, not shown). After conversion of

CBMF into MBF, the both soil pH and the PLFAs

decreased. The significant reductions of relative abundance

of bacterial PLFAs, which are greater than the PLFAs of

fungi, resulted in significant growth of the ratio of fungi to

bacteria (Figs. 3, 4), and the ratios are as follows: CBMF

(0.49)\CHF (0.66)\MBF (0.78). This is similar to the

result of Bardgett’s research (Bardgett et al. 1993), namely

the richness of total fungi in forest soil would increase with

the enhancement of soil acid, and the bacterial PLFAs

would decrease with the reduction in soil pH. The ratio of

G?/G- bacteria indicated the quality of SOM; a low ratio

of G?/G- may be due to induced growth of G- bacteria

under substrate-rich conditions (Margesin et al. 2009;

Chang and Chiu 2015), which results in high levels of G-

bacteria in plantation soils. Low rations of G?/G- in the

MBF and CHF agreed with low AC values (Table 3),

indicating easily decomposable organic matter in their

soils. Chang and Chiu (2015) found that the ratio of G?/

G- decreased in MBF, compared to the adjacent Japanese

Cedar forest, revealing an increase in easily decomposable

organic matter in the moso plantation.

Conclusions

The SOC content decreased significantly 25 years after the

conversion of CBMF into MBF and CHF. In addition to the

less input of forest litter in MBF and CHF, long-term fer-

tilizer application also led to the SOC decrease in their

soils. Compared to the CBMF, the stability of SOC pool in

MBF and CHF significantly decreased (P\ 0.05) and so

does the PLFAs. Converting the CBMF to MBF and CHF,

the ratio of soil fungus to bacteria showed a significant rise,

while the ratio of G?/G- bacteria decreased significantly.

Therefore, necessary measures such as less intensive

management and more organic manure application should

be carried out to improve the soil fertility and quality in the

MBF and CHF, in order to maintain a sustainable devel-

opment in the forest industry.
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