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Abstract Heuristic methods are commonly used in com-

plicated spatial forest planning problems to find the best

combination of management alternatives for stands. The

performance of heuristic methods depends on the param-

eters that guide their search processes. This study used

numerical optimization to find the optimal parameter val-

ues for simulated annealing (SA), threshold accepting

(TA), great deluge (GD), tabu search (TS), genetic algo-

rithm (GA) and ant colony optimization (AC) when they

are used for combinatorial optimization in forest planning.

Ant colony optimization was implemented using the Max–

Min Ant System, which was applied for the first time to

forest planning problem. Solutions found by different

heuristic methods for a non-spatial and a spatial forest

planning problem were compared in a situation where the

search time was restricted. The comparisons revealed that

SA and TA were the best methods for fast search in both

non-spatial and spatial problems. GA and AC were the

least satisfactory methods, and GD and TS were between

the best and the worst heuristics. The main reason for the

poor performance of GA and AC was their slow search

process. Differences between heuristic methods decreased

when the allowed search time increased.

Keywords Simulated annealing � Threshold accepting �
Great deluge � Tabu search � Genetic algorithm � Ant
colony optimization � Max–Min Ant System � Hooke and

Jeeves � Heuristic search

Introduction

A typical forest planning problem consists of finding the

optimal combination of treatment schedules for the stands

of a forest. Combinatorial optimization is commonly used

in this task. The methods for combinatorial optimization

fall into two categories: mathematical programming and

heuristics (e.g., Bettinger et al. 2009). Heuristic methods

have been increasingly used as an alternative to mathe-

matical programming (e.g., Pukkala and Kangas 1993;

Boston and Bettinger 1999, 2002; Falcão and Borges 2002;

Liu et al. 2006). Other methods such as dynamic pro-

gramming and nonlinear optimization are frequently used

in stand management optimization where the optimized

variables are continuous (e.g., Haight et al. 1985; Valsta

1992; Pukkala 2007).

Most of the used heuristics fall to the category of global,

or centralized, methods since the quality of a solution and

the effects of changes that are made in the solution are

evaluated at the forest level (globally). Decentralized

methods optimize the management of each individual

stand, but, when doing this, they are able to take into

account forest-level constraints. Examples of decentralized

methods are cellular automata (Strange et al. 2002; Hei-

nonen and Pukkala 2007; Mathey et al. 2007) and the

method of reduced costs (Hoganson and Rose 1984; Puk-

kala et al. 2009).

The most common global heuristics are simulated

annealing, tabu search and genetic algorithm (Reeves 1993;
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Borges et al. 2002). Simulated annealing (SA) is a cooling

method since it mimics the cooling process of melted

metal. Other heuristics that can also be called as cooling

methods are threshold accepting (TA) and great deluge

(GD, Bettinger et al. 2002). All these methods accept also

inferior moves (such changes in the solution that make it

worse), but the probability of accepting inferior moves

decreases when the optimization proceeds and the process

cools. The purpose of accepting inferior moves is to pro-

vide a way to get away from local optima.

Tabu search (TS) uses tabu lists for the same purpose.

Recent moves are temporally forbidden, which forces the

method to explore a wider set of alternative solutions.

Typical of tabu search is that several candidate moves are

generated, and the best non-tabu candidate is accepted

(Reeves 1993). While tabu search and all cooling methods

operate with one solution, genetic algorithms (GA) operate

with a population of solutions, which are combined to

obtain a new generation of solutions (Reeves 1993). The

solutions are called chromosomes. The objective function

value calculated for a solution is called fitness.

Ant colony optimization (AC) is another heuristic,

which operates with more than one solution (Zeng et al.

2007). In AC, solutions are called ants. Pheromone tracks

left by the ants affect the way in which new ants select

treatment schedules for stands when they construct their

solutions. AC is a widely used heuristic method (Blum

2005; Dorigo et al. 2006), but it has been used only once in

forest management planning (Zeng et al. 2007).

The advantage of heuristics is their flexibility. They can

be used in problems in which the additivity and propor-

tionality requirements of linear programming are not met.

The objective variables can be spatial or non-spatial. The

only requirements of heuristics are that the objective

variable is numerical and there is a method for calculating

its value. Heuristics are easy to use in multiobjective

optimization. The relationships between objective variables

and objective function (OF) can be linear or nonlinear, and

the effects of different objective variables on the objective

function value can be additive, multiplicative or a combi-

nation of both. Although mathematical programming

methods can be used in complicated spatial (Baskent and

Keles 2005; Constantino et al. 2008; Könny}u et al. 2014.)

and stochastic (Eyvidson and Kangas 2014) problems, it is

likely that the use of heuristic methods continues to

increase since the complexity of forest management prob-

lems is increasing due to the increasing number of products

and services that should be considered in forest planning.

The problem of heuristic methods is that they do not

necessarily find the optimal solution. Usually, they find a

good solution, but it is not assured that the solution is the

global optimum. However, the practical significance of this

limitation may be small since there are much bigger

sources of uncertainty in forest planning. These uncer-

tainties include errors in inventory data and growth models,

as well as uncertainties related to future timber prices,

regeneration of trees, pest outbreaks, diseases and various

abiotic hazards.

Another problem is the difficulty to find the best

parameters for the heuristics. Each method has a few

parameters which greatly affect the performance and time

consumption of the method. The optimal parameter values

depend on the type of the problem, which means that dif-

ferent parameter values should be used in different prob-

lems. It is extremely tedious to systematically analyze the

effect of different parameter combinations on the perfor-

mance of the heuristic. For example, if the heuristic has 5

parameters and 10 different values of each parameter are

compared, the number of parameter combinations is

105 = 100,000. Therefore, when seeking good parameter

values for the comparison of different heuristic methods

(Bettinger et al. 2002; Pukkala and Kurttila 2005), it is

common to examine one parameter at a time and ignore the

interactions of parameters. However, due to the interrela-

tionships between parameters, this approach does not

guarantee that the best parameter values were found. This

limitation has also an effect on the comparisons of alter-

native heuristic methods since the parameters used may be

more optimal for certain heuristic than for the others.

An alternative to trial and error is to use optimization in

the search for optimal parameter values. This would make

the comparisons between different heuristic methods more

‘fair’ since none of the methods is impaired by poorly set

parameters. There is already one study that used opti-

mization to find the best parameter values for heuristic

methods (Pukkala and Heinonen 2006). However, several

of the well-known heuristic techniques (TS, GA, GD, AC)

were not included in the optimizations.

This study aimed at providing a fair comparison of the

most common global heuristics in non-spatial and spatial

forest planning problems. The analysis consisted of two

steps. First, the parameters of each method were optimized

on the constraint that each method had the same time to

find the solution. Second, the OF values produced by dif-

ferent heuristics with the optimal parameter values were

compared.

Methods

The heuristic methods were used to find the optimal

combination of treatment schedules generated for the

stands of a forest. The treatment schedules were produced

before running the heuristics. The CMForest software (Jin

et al. 2016) was used to produce the schedules. In the case

study area used in this study the average number of
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treatment schedules was 14.5 per stand, and the number of

stands was 888. This means that the magnitude of the

number of different combinations of treatment schedules

(size of decision space) was 14.5888, which is a huge

number. The task of the heuristic was to find the best of

these combinations.

Each heuristic can be implemented in different ways. In

this study SA, TS and GA were used as explained in

Pukkala and Heinonen (2006), who in turn based their

implementations on the advices given in Reeves (1993).

TA and GD were implemented as described in Bettinger

et al. (2002). Because there is plenty of literature on all

these methods (e.g., Reeves 1993; Bettinger et al. 2002;

Borges et al. 2002; Pukkala and Kurttila 2005), they are

described only briefly below. The AC heuristic used in this

study is based on the descriptions of Blum (2005) and

Dorigo et al. (2006).

Simulated annealing

SA begins with an initial solution. The initial solution is the

best of several random combinations of treatment sched-

ules of stands. Moves (changes) are made to the initial

solution by selecting first a random stand and then a ran-

dom schedule for this stand from those produced before-

hand. The schedule that is currently in the solution is

replaced by the randomly selected alternative schedule.

The replacement (move) is maintained if it improves the

OF value; otherwise, it is maintained with the following

probability:

p ¼ exp
OFCandidate � OFCurrentð Þ

T

� �
ð1Þ

where OFCurrent is the OF value of the solution before

implementing the move, OFCandidate is the OF value after

the move, and T is ‘temperature’ which determines the

probability of accepting inferior moves. The temperature is

decreased toward the end of the search, which means that

the probability to accept inferior moves also decreases.

Several candidate moves are produced at each temperature.

The search is stopped when the temperature reaches a pre-

defined low value, which is called freezing temperature. A

new temperature is obtained by multiplying the current

temperature by a multiplier smaller than 1. It is possible to

increase or decrease the number of candidate moves per

temperature when the process cools. An increase means

that the search is intensified toward the end of the search.

SA has the following parameters:

• P1: number of random searches done to obtain the

initial solution

• P2: starting temperature

• P3: freezing temperature

• P4: cooling multiplier (\1)

• P5: search intensity at initial temperature, expressed as

the proportion of the number of stands (1.0 means that

the number of evaluated candidate moves is equal to

the number of stands)

• P6: multiplier of search intensity, to obtain the search

intensity in the next temperature

Threshold accepting

TA is fairly similar to SA, and in this study, it was

implemented in a nearly similar way as SA. The difference

is that whereas SA accepts inferior moves with certain

probability, TA accepts all moves which produce an OF

value greater than the current value minus a threshold. For

example, if the current OF value is 0.9 and the threshold is

0.05, all moves that produce a solution with OF value

greater than 0.85 are accepted. Cooling is implemented so

that the threshold is reduced toward the end of the search.

Search is terminated once the threshold value is close zero.

This threshold may be called as freezing threshold.

TA has the following parameters:

• P1: number of random searches done to obtain the

initial solution

• P2: starting threshold

• P3: freezing threshold

• P4: cooling multiplier (\1), to obtain the next threshold

• P5: search intensity at initial threshold, expressed as the

proportion of the number of stands

• P6: multiplier for search intensity, to obtain the search

intensity at the next threshold

Great deluge

GD can also be classified as cooling method. Cooling is

implemented via rising water level. Water level is the

lowest accepted OF value. Water has an initial level.

Always when a move improves the solution, there is a rain

event, which rises the water level. The amount of rain gets

smaller when the search continues. This type of search

stops when the water level is equal to the current OF value.

The search continues with another search mode, namely

direct ascent (hill climbing). The direct ascent search mode

selects a random stand and replaces its current treatment

schedule by another, randomly selected schedule simulated

for the same stand. All improving moves are accepted, and

all moves which do not improve the solution are rejected.

Direct ascent steps are repeated for a certain number of

iterations.
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GD has five parameters:

• P1: number of random searches done to obtain the

initial solution

• P2: initial water level

• P3: initial rain

• P4: rain multiplier (\1), to obtain the magnitude of the

next rain

• P5: number of direct ascent iterations at the end of the search

Tabu search

TS is somewhat different from the coolingmethods. The first

difference is that several candidate moves are produced and

only one of them is accepted. The number of candidates can

be anything from two to the highest possible value (total

number of schedules minus number of stands). The best non-

tabu candidate is accepted even if it produces an OF value

lower than the current value. If all candidate moves are in the

tabu list (forbidden), the move that has the shortest tabu

tenure is accepted (shortest tabu tenure means that the move

will be the first to be removed from the tabu list). Moreover,

if a move would produce a better OF value than the best

found so far, the move is accepted even if it is tabu.

Another feature is the use of tabu lists, which prevent

the search process from repeating recent moves. The two

schedules that participate in a move go to a tabu list in

which they stay for a certain number of iterations. Iteration

refers to the generation of a set of candidate moves and

selecting the best of them. For example, an initial tabu

tenure 10 means that the schedule which goes to the list is

tabu for 10 iterations. Every iteration reduces the remain-

ing tabu tenures of all listed schedules by 1.

The tabu search heuristic used in this study has two tabu

lists, one for the schedules that are replaced by another

schedule (schedules that leave the solution) and the other list

for schedules that replace the removed schedule (schedules

that enter the solution). Thewhole stand is tabu as long as the

entering schedule is tabu. Tabu search is terminated when a

certain number of iterations are completed.

The parameters of TS are:

• P1: number of iterations

• P2: number of candidate moves produced per iteration

• P3: length of the tabu tenure of leaving schedules

• P4: length of the tabu tenure of entering schedules

Genetic algorithm

GA can be implemented in several different ways. Com-

mon to all implementations is that, opposite to all previous

heuristics, they operate with several solutions. These

solutions are called chromosomes. New chromosomes (off-

spring) are produced by combining two parent chromo-

somes using crossing-over. The new chromosome may

have mutations, i.e., small changes somewhere in the

chromosome. When GA is applied to forest planning, a

gene corresponds to a stand, and different treatment

schedules of the stand are the alleles of the gene. A chro-

mosome is a list of schedules which are included in the

solution (Fig. 1).

In this study, only one off-spring was produced per

iteration (generation). Two parent chromosomes were

selected from the current population. For the first parent,

the probability of selection depended on the fitness value

(OF value) of the chromosome, so that the best chromo-

some had the highest probability to become selected. The

second parent was selected randomly, using the same

probability for all chromosomes.

Then, two crossing-over places were selected randomly.

The genes located in the chromosome before the first and

after the second point were taken from the first parent, and

the remaining genes were taken from the second parent

(Fig. 1). For example, if the solution (chromosome) con-

sisted of treatment schedules for 100 stands and the crossing-

over placeswere 25 and 66, the schedules for stands 1–24 and

67–100 were taken from the first solution and the schedules

of stands 25–66 were taken from the second solution.

Mutations were applied to the new off-spring. A muta-

tion means that a random gene (stand) is selected, and its

schedule is replaced by another, randomly selected

schedule simulated for the same stand. Mutation rate

changed during the GA search process.

After a new off-spring was produced, one chromosome

was removed from the population. The probability of

removal was inversely proportional to the ranking of the

chromosome (worst chromosomes had the highest proba-

bility of removal). The search was stopped when a certain

pre-defined number of generations were completed.

The parameters of GA are:

• P1: number of chromosomes

• P2: number of random searches that are used to produce

an initial chromosome

• P3: number of generations

• P4: initial mutation rate (at first generation)

• P5: final mutation rate (at last generation)

Mutation rate was changed gradually from the initial to the

final rate. Rate 2.5 means that two mutations are made with

certainty and a third mutation is made with the probability

of 0.5.

Ant colony optimization

The original plan in this study was to use the AC algorithm

proposed for forest planning by Zeng et al. (2007).
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However, preliminary analyses revealed that this algorithm

was not working satisfactorily in the forest planning

problems analyzed in this study. Therefore, each of the

three variants of ant colony optimization described in

Dorigo et al. (2006), namely Ant System, Max–Min Ant

System, and Ant Colony System, was adapted to forest

planning and tested. It turned out that the Ant System was

inferior to the other variants, and the Ant Colony System

was not better than the Max–Min Ant System. Therefore,

the Max–Min Ant System was selected for parameter

optimization.

In the Max–Min Ant System used in this study, all

treatment schedules are given the same initial pheromone

level. Each ant of the first ant iteration constructs a solution

by selecting a random treatment schedule for each stand.

The objective function value is calculated for each ant.

The pheromone levels of all treatment schedules are

updated at the end of each iteration. In the Max–Min Ant

System only the best ant updates the pheromones. This ant

can be the best ant of the last iteration (iteration-best) or the

best ant of all iterations completed so far (best-so-far). In

our study, both the iteration-best ant and the best-so-far ant

updated the pheromones of the treatment schedules. The

pheromone update was done as follows:

sij  ð1� qÞ � sij þ Dsbestij

h i smax

smin

ð2Þ

where sij is the pheromone level of treatment schedule i of

stand j, q is the pheromone evaporation rate, and smin and

smax are the minimum and maximum pheromone levels,

respectively. The amount of pheromone addition was equal

to half of the objective function value of the solution

generated by the iteration-best or best-so-far ant:

Dsbestij ¼
OFbest=2 if i belongs to the solution

0 otherwise

�
ð3Þ

After completing the first iteration and updating the pher-

omone levels of all treatment schedules the same number

of ants constructed new solutions so that the probability of

selecting a schedule depended on the pheromone levels of

the treatment schedules as follows:

pkij ¼
saijPnj
i¼1 s

a
ij

ð4Þ

where pij
k is the probability that ant k selects schedule i for

stand j, sij is the pheromone of schedule i of stand j, and nj
is the number of treatment schedules simulated for stand

j. The heuristic information included in most ant colony

algorithms (Dorigo et al. 2006) was not used in the AC

heuristic tested in this study.

The same process of constructing solutions and updating

pheromones was repeated for a certain number of ant

iterations. The best solution constructed during the whole

search process (best-so-far) was the solution found by the

AC heuristic.

The parameters of AC are:

• P1: number of ants

• P2: number of iterations

• P3: evaporation rate (q in Eq. 2)

• P4: probability exponent (a in Eq. 4)

• P5: initial pheromone

• P6: minimum pheromone (smin)

• P7: maximum pheromone (smax)

Case study problems

The heuristics were optimized and compared using data

from the Mengjiagang Forest, located in the Heilongjiang

Province in Northeast China. The forest has been divided

into 93 compartments, and each compartment has been

further divided into subcompartments so that the total

number of subcompartments is 888. Subcompartment,

which corresponds to stand, was the calculation unit in the

simulation of treatment alternatives. The total area of the

case study forest is 15,533 hectares.

The CMForest software (Jin et al. 2016) was used to

simulate alternative treatment schedules for the stands for

three 10-year periods. The total number of alternatives

simulated for the 888 stands was 12,940, which gives an

average of 14.57 schedules per stand. Schedules repre-

senting even-aged management were simulated for planted

Stand 1 2 3 4 5 6 7 8 9 10
Parent 1 3 2 11 13 7 15 1 9 4 6
Parent 2 12 5 10 4 5 7 7 8 11 1
Off-spring a�er crossing-over 3 2 11 4 5 7 7 9 4 6
Off-spring a�er muta�on 3 2 11 4 11 7 7 9 4 6

Fig. 1 Production of off-spring in genetic algorithm. Two parent

chromosomes (solutions) and crossing-over points (thick vertical

lines) are selected. The middle part of the off-spring is taken from the

second parent, and the rest is taken from the first parent. Mutations

can be made in the newly produced off-spring (the gray-shaded cells

with boldface numbers show one mutation). The numbers in the

chromosomes indicate the number of the treatment schedule which is

included in the solution represented by the chromosome
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stands, and selective cuttings were simulated for all other

stands. Details of the automated simulation tool of

CMForest can be found in Jin et al. (2016).

The parameters of the heuristics were optimized for a

non-spatial and spatial problem. The forest planning

problems were formulated in a utility theoretic way as

follows:

maxU ¼
XI

i¼1
aiuiðqiÞ ð5Þ

subject to

qi ¼ QiðxÞ; i ¼ 1; . . .; I ð6Þ

where U is total utility, ai is the weight, ui is the subutility

function, and qi is the quantity of objective variable i. Qi is

the procedure which calculates the value of objective

variable i from the information of those treatment sched-

ules that are included in the solution, and x is a vector

which indicates the ID numbers of those schedules which

are included in the solution (see Fig. 1).

Subutility functions scale all objective variables to range

0–1. In addition, a subutility function tells how the utility

depends on the quantity of the objective variable. The

weights (ai) were scaled so that their sum was equal to 1.

Therefore, the total utility also ranged from 0 to 1.

The utility function of the non-spatial problem was as

follows

U ¼ 0:25u1 HIð Þ þ 0:25u2 HIIð Þ þ 0:25u3 HIIIð Þ
þ 0:25u4 V30ð Þ ð7Þ

where HI, HII and HIII are the harvested volumes of the

first, second and third 10-year period and V30 is the total

growing stock volume at the end of the third 10-year per-

iod. The spatial problem had two additional objective

variables:

U ¼ 0:1667u1 HIð Þ þ 0:1667u2 HIIð Þ þ 0:1667u3 HIIIð Þ
þ 0:1667u4 V30ð Þ þ 0:1667u5 CCð Þ þ 0:1667u5 CNCð Þ

ð8Þ

where CC is the length of the common boundary between

such adjacent stands which are both cut during the same

10-year period, and CNC is the boundary between such

adjacent stands of which one is cut and the other is not cut

during a certain 10-year period (Kurttila et al. 2002; Palahı́

et al. 2004). Maximization of CC leads to aggregated

harvest blocks and large total area of harvested stands, and

minimization of CNC leads to compact harvest blocks and

small total area of harvested stands. Previous research has

shown that simultaneous use of these two variables as

management objectives leads to good aggregation of har-

vest blocks (Islam et al. 2010).

The utility functions for harvested volumes were for-

mulated so that a removal of 300,000 m3 gave the maximal

subutility, and deviations to both directions decreased

utility. The cutting target of 300,000 m3 is close to the

10-year volume increment of the case study forest. Linear

subutility functions were used for V30 and CC. The maxi-

mum possible value gave subutility 1, and if the value of

the objective variable was zero, subutility was also zero.

The subutility function of CNC was also linear, but now the

maximum possible value of CNC resulted in subutility 0,

and the lowest possible value of cut-uncut border (0 m)

resulted in subutility 1. This means that CNC was

minimized.

Optimization method

The method of Hooke and Jeeves (1961) was used to find

the optimal values of the parameters of each heuristic. The

direct search of the Hooke and Jeeves method consists of

alternating steps of exploratory and pattern searches. The

exploratory search changes the value of one variable at a

time, and all changes that improve the objective function

are accepted. After examining all optimized variables in

the exploratory search the algorithm goes to pattern search,

which makes simultaneous changes in more than one

variable. Then the step size (magnitude of change) is

halved, and the sequence of exploratory and pattern sear-

ches is repeated. This process is continued until the step

size becomes smaller than the stopping criterion of the

algorithm.

Since the Hooke and Jeeves direct search algorithm does

not necessarily converge to the global optimum, the search

was repeated a few times, starting from different initial

solutions (different initial combinations of the parameters

of the heuristic). The parameter optimizations for the non-

spatial forest planning problem were repeated 5 times, and

2 or 3 repeated direct searches were used when the

parameters were optimized for the spatial problem, for

which the heuristic search was more time-consuming.

The starting point of the first direct search was an initial

guess by the authors (‘Start’ in Table 1). The other direct

searches started from the best of 100 random combinations

of the parameters of the heuristic. The random parameter

values were drawn from uniform distributions specified by

the minimum and maximum values of the respective

parameter (Low and High in Table 1). The initial step size

of the direct search was 10 % of the range of variation

(Low–High). The direct search was terminated when the

step size was less than 1 % of the initial step size. Since the

direct search was allowed to move beyond the Low–High

range, every parameter was also given a minimum allowed

and maximum allowed value (Min and Max in Table 1).
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All values beyond the Min–Max range were replaced by

Min or Max.

All tested parameter combinations were passed to the

heuristic search algorithm, which solved the forest plan-

ning problem using these parameter values. The utility

value of the management plan was passed to the Hooke and

Jeeves algorithm. Based on this feedback the Hooke and

Jeeves algorithm either accepted or rejected the change it

made to the parameters of the heuristic.

Each heuristic method was given the same search time.

The time limitation was implemented by using a penalty

function. The penalty was zero if the used search time was

Table 1 Ranges and starting

values for the optimized

parameters of the heuristic

algorithms

Parameter Min Low Start High Max

Simulated annealing

Initial random searches (no.) 1 1 100 1000 10,000

Initial temperature 0.00001 0.0001 0.001 0.01 0.1

Cooling multiplier 0.5 0.8 0.9 0.925 0.95

Freezing temperature 0.00000001 0.0000001 0.00001 0.0001 0.001

Initial search intensity 0.1 0.5 1.0 2.0 10.0

Search intensity multiplier 0.1 0.8 1.05 1.1 1.2

Threshold accepting

Initial random searches (no.) 1 1 100 1000 10000

Initial threshold 0.00001 0.0001 0.001 0.01 0.1

Cooling multiplier 0.5 0.8 0.9 0.93 0.96

Freezing threshold 0.00000001 0.0000001 0.00001 0.0001 0.001

Initial search intensity 0.1 0.5 1.0 5.0 10.0

Search intensity multiplier 0.1 0.8 1.05 1.1 1.3

Great deluge

Initial random searches (no.) 1 1 100 1000 10,000

Initial relative water level 0.4 0.6 0.8 0.9 0.95

Initial rain 0.000001 0.00001 0.001 0.01 0.1

Rain multiplier 0.8 0.9 0.99 0.999 0.99999

Final direct accent searches 1 1 100 1000 10,000

Tabu search

Number of iterations 1 100 1000 50,000 100,000

Candidates per iteration 1 1 10 100 1000

Tabu tenure for leaving schedule 0 1 10 50 100

Tabu tenure for entering schedule 0 0 5 50 100

Genetic algorithm

Number of chromosomes 2 4 20 100 300

Random searches per chromosome 1 1 10 100 1000

Number of generations 1 50 100 2000 10,000

Starting mutation rate 0 0 1 10 100

Ending mutation rate 0 0 1 10 100

Ant colony optimization

Number of ants 2 5 30 60 500

Number of iterations 3 10 100 1000 5000

Pheromone evaporation rate 0.01 0.05 0.2 0.7 0.9

Probability exponent 0.1 1.0 1.5 4.0 10.0

Initial pheromone 0.01 0.1 1.0 6.0 10.0

Minimum pheromone 0.001 0.01 0.1 1.0 5.0

Maximum pheromone 0.1 1.0 4.0 8.0 20.0

‘Start’ is the starting value of the first Hooke and Jeeves direct search. Low–High is the range of the random

searches that were conducted to find the starting point for subsequent direct searches. Min–Max is the range

within which the direct search was restricted
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less than the allowed limit and increased linearly up to one

when the search timewas twice the allowed time. Thismeans

that the objective function value (Utility–Penalty)was zero if

the search time was equal to twice the allowed search time.

All calculations were done with Lenovo ThinkCentre

M8500t computer (CPU I7-3770, memory 24 GB).

The allowed time was found by applying all heuristics to

the non-spatial and spatial forest planning problem, using

parameters recommended in earlier literature (Reeves

1993; Bettinger et al. 2002; Pukkala and Kurttila 2005;

Pukkala and Heinonen 2006). Based on these searches, two

allowed search times were defined for the non-spatial and

spatial problem. The first time, leading to ‘fast search,’ was

the time that the quickest heuristics needed for the search,

and the second, leading to ‘slow search,’ was the time that

the slowest heuristics used to complete their search pro-

cess. In the non-spatial problem, the fast time was 1 s and

the slow time was 7 s. In the spatial problems, the fast

search time was 10 s, and slow search time was 60 s.

Results

Optimal parameter values of the heuristics

Simulated annealing

For the fast solving of the non-spatial problem, the optimal

parameters of SA were 44 initial random searches (the

starting point was the best of 44 random solutions) with an

initial temperature on 0.002674, freezing temperature of

0.000018 and cooling multiplier of 0.875 (Table 2, Non-

spatial, fast). The number of generated candidate moves in

the initial temperature was 0.740 times the number of

stands (888) resulting in 657 candidates. The search

intensity was increased by 5.1 % in every new temperature

(iteration multiplier was 1.051). However, there was some

variation between the five repeated Hooke and Jeeves

optimizations. In the three best ones (2nd, 3rd and 4th

solution in Table 2) the number of initial random searches

was 18–149, initial temperature ranged from 0.001728 to

0.003150, and freezing temperature ranged from 0.000018

to 0.000098. The search intensity also varied and the two

parameters related to search intensity were interrelated so

that when the initial intensity was high, it decreased toward

the end of the search, and vice versa.

When more time was allowed for the search, the number

of initial random searches increased, initial temperature

increased, freezing temperature was not much affected,

cooling became slightly slower, and the search intensity

became slightly higher (Table 2, Non-spatial, slow). These

conclusions can be made when looking at the results of all

repeated Hooke and Jeeves optimizations.

The number of initial random searches was smaller in

the spatial problems (except in the second optimization for

‘Spatial, slow,’ which resulted in low utility value), and

freezing temperatures were lower than in the non-spatial

problems. The main difference between fast and slow

search for the spatial problem was slightly higher initial

temperature and more quickly increasing search intensity

in the slow search.

Threshold accepting

Typical to TA was high variation in the number of initial

random searches, suggesting that the search result is not

sensitive to this parameter (Table 3). In the fast search for

non-spatial problem, the initial threshold was 0.004437–

0.009934 and the cooling multiplier was 0.814–0.867. A

clear difference to SA was about two times more intensive

search at the initial threshold with almost constant search

intensity during the whole search process. Increasing search

Table 2 Optimal parameter values of simulated annealing for dif-

ferent problems and solution times found in two to five repeated

Hooke and Jeeves optimizations

Utility P1 P2 P3 P4 P5 P6

Non-spatial, fast (1 s)

0.871563 100 0.000010 0.000005 0.914 0.550 1.095

0.873159 18 0.003150 0.000098 0.925 1.654 1.018

0.872876 149 0.001728 0.000075 0.896 2.826 0.991

0.873618 44 0.002674 0.000018 0.875 0.740 1.051

0.872072 142 0.006262 0.000101 0.820 2.196 1.061

Non-spatial, slow (7 s)

0.876482 150 0.002485 0.000010 0.912 1.150 1.080

0.875883 495 0.008804 0.000010 0.894 1.242 1.073

0.876303 196 0.003274 0.000065 0.915 1.683 1.093

0.876773 238 0.008150 0.000019 0.898 1.968 1.067

0.876936 334 0.005014 0.000052 0.911 1.618 1.071

Spatial, fast (10 s)

0.773342 1 0.001000 0.0000120 0.916 1.338 1.050

0.766615 84 0.005682 0.00000001 0.873 3.603 0.976

0.769635 27 0.003712 0.00000001 0.842 2.817 1.012

Spatial, slow (60 s)

0.783857 1 0.001990 0.000012 0.912 1.000 1.095

0.780256 395 0.009051 0.000010 0.894 1.236 1.073

The best combination is in boldface, and combinations which were

interpreted as inferior are in italics

P1: number of random searches done to obtain the initial solution; P2:

starting temperature; P3: freezing temperature; P4: cooling multiplier;

P5: search intensity at initial temperature expressed as the proportion

of the number of stands; P6: multiplier for search intensity to obtain

iteration intensity in the next temperature
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time led to higher number of initial random searches, slower

decrease in threshold and more intensive search.

The optimal parameters for a fast search in the spatial

problem did not differ much from those for a fast search in

the non-spatial problem. The starting threshold was sys-

tematically lower, and the freezing threshold was always

low in the spatial problem. For the slow search in spatial

problem, TA adopted a higher number of initial random

searches, slower cooling and gradually increasing search

intensity.

Great deluge

In GD, fast search for the non-spatial problem used

114–200 initial random searches and 112–901 direct ascent

search steps at the end of optimization (Table 4, Non-

spatial, fast). Between them, the great deluge itself started

from an initial water level of 0.663–0.899, initial rain of

0.000134–0.000464 and rain multiplier of 0.908–0.998.

When more time was allowed for the search, the main and

most systematic difference was smaller initial rain, which

resulted in slower cooling (Table 4, Non-spatial, slow).

The optimal parameters for the spatial problem were not

systematically different from the optimal parameters for

non-spatial problem. The same difference was found

between fast and slow search: Initial rain was smaller when

more time was allowed for the search, resulting in slower

cooling.

Tabu search

In fast tabu search for the non-spatial problem, TS used

5000–7000 iterations, produced 4–12 candidate moves per

iteration and forbade the treatment schedules that partici-

pated in the last move from participating in another move

for 18 to 43 iterations (Table 5). Note that when the tabu

tenure is longer for the entering schedule (P4 in Table 5)

than for the leaving schedule (P3), parameter P3 has no

effect on the search process since all schedules of the

stands are tabu as long as the entering schedule is in the

tabu list.

The number of iterations increased when 7 s was

allowed for the search instead of 1 s. The other parameters

Table 3 Optimal parameter values of threshold accepting for dif-

ferent problems and solution times found in two to five repeated

Hooke and Jeeves optimizations

Utility P1 P2 P3 P4 P5 P6

Non-spatial, fast (1 s)

0.871326 100 0.000010 0.00000001 0.888 0.550 1.050

0.873143 140 0.004684 0.000014 0.855 4.053 0.961

0.873014 26 0.005653 0.00000001 0.830 2.814 0.997

0.874443 1 0.009934 0.000046 0.867 4.852 0.991

0.873516 106 0.004437 0.000025 0.814 2.716 1.034

Non-spatial, slow (7 s)

0.877368 1 0.004217 0.000032 0.903 2.814 1.080

0.877147 731 0.007558 0.000057 0.840 4.737 1.114

0.877256 527 0.008241 0.000046 0.898 4.651 1.053

0.877316 324 0.006659 0.000040 0.862 5.328 1.089

0.877064 85 0.007242 0.000099 0.896 3.068 1.093

Spatial, fast (10 s)

0.772545 100 0.001247 0.000010 0.900 1.000 1.050

0.769973 1 0.002642 0.00000001 0.864 4.503 0.991

0.770380 27 0.002714 0.0000001 0.866 3.264 0.997

Spatial, slow (60 s)

0.785600 512 0.002732 0.000020 0.922500 1.112 1.082

0.786061 596 0.004294 0.000032 0.926779 1.956 1.063

The best combination is in boldface, and combinations which were

interpreted as inferior are in italics

P1: number of random searches done to obtain the initial solution; P2:

starting threshold; P3: freezing threshold; P4: cooling multiplier (\1)

to obtain the next threshold; P5: search intensity at initial threshold

expressed as the proportion of the number of stands; P6: multiplier of

search intensity to obtain iteration intensity at the next threshold

Table 4 Optimal parameter values of great deluge for different

problems and solution times found in two to five repeated Hooke and

Jeeves optimizations

Utility P1 P2 P3 P4 P5

Non-spatial, fast (1 s)

0.870343 200 0.815000 0.000134 0.998 112

0.869558 114 0.701618 0.000396 0.978 321

0.868180 265 0.878283 0.000464 0.963 901

0.868224 131 0.663305 0.000412 0.965 616

0.868948 189 0.898819 0.000169 0.908 235

Non-spatial, slow (7 s)

0.873074 199 0.800000 0.00001 0.990 1

0.872446 114 0.716618 0.00001 0.961 446

0.871250 1077 0.742962 0.000047 0.952 275

0.868355 836 0.831954 0.000424 0.972 923

0.873127 214 0.883819 0.00001 0.908 360

Spatial, fast (10 s)

0.768642 64 0.789687 0.000056 0.996 122

0.760376 126 0.686618 0.000086 0.971 353

0.727339 251 0.740539 0.000328 0.960 403

Spatial, slow (60 s)

0.783397 100 0.845000 0.000010 0.980 200

0.775985 152 0.682860 0.000017 0.983 359

The best combination is in boldface, and combinations which were

interpreted as inferior are in italics

P1: number of random searches done to obtain the initial solution; P2:

initial water level; P3: initial rain; P4: rain multiplier; P5: number of

direct access iterations at the end of the search
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were not systematically affected. The spatial problem

seems to need a higher number of candidate moves and

longer tabu tenures for those treatment schedules that a

removed from the solution. The main difference between

fast and slow search was higher number of iterations in the

slow search.

Genetic algorithm

The overall observation that characterized the optimal

parameter values of GA was very low number of chro-

mosomes, which was the lowest possible (2) in a majority

of optimizations (Table 6). This means that the algorithm

operated with only two solutions that were combined to

obtain an off-spring, after which one of the three solutions

was removed from the population. Most probably, the

reason for such a low number of solutions was the short

allowed search time. With a ‘normal’ population size, GA

would be clearly slower than the other heuristics analyzed

in this study (except AC).

In the fast search processes (both non-spatial and spa-

tial), the number of random searches that were used to

produce each of the chromosomes was 10–30, and the

number of generations was 65–237. The number of muta-

ted ‘genes’ (stands) was 1–10, which means that the

treatment schedules of 1–10 stands out of the 888 stands of

the case study forest were changed after the first version of

the off-spring was produced by crossing-over. The muta-

tion rate sometimes increased (final mutation rate, P5 was

higher than P4) and sometimes decreased (P4 was higher

than P5) during the search process. This suggests that it

would be enough to use a constant mutation rate (of about

5/888) during the whole search.

Increasing search time increased the number of gener-

ations. Also the number of random searches that were used

to produce an initial solution increased. These changes

were fairly systematic.

Ant colony optimization

For fast AC search either the number of ants or the number

of ant iterations was low (Table 7). It seems that fast search

Table 5 Optimal parameter values of tabu search for different

problems and solution times found in two to five repeated Hooke and

Jeeves optimizations

Utility P1 P2 P3 P4

Non-spatial, fast (1 s)

0.871251 3456 6 10 5

0.871239 3801 10 15 18

0.871146 4470 8 9 0

0.871922 4996 8 (31) 49

0.870744 703 100 53 32

Non-spatial, slow (7 s)

0.871831 8485 5 20 7

0.873206 41,237 4 48 20

0.873884 38,010 4 (35) 47

0.873486 38,854 4 6 6

0.873064 32,439 3 7 22

Spatial, fast (10 s)

0.758833 5990 19 14 5

0.763130 10,646 13 (31) 51

0.759913 11,877 10 (7) 12

Spatial, slow (60 s)

0.763935 15,970 10 (5) 15

0.767338 41,024 11 (2) 6

The best combination is in boldface, and combinations which were

interpreted as inferior are in italics. When the tabu tenure is longer for

the entering schedule (P4) than for the leaving schedule (P3),

parameter P3 has no effect on the search. These cases are in

parentheses

P1: number of iterations; P2: number of candidate moves produced

per iteration; P3: length of the tabu tenure for leaving schedules; P4:

length of the tabu tenure for entering schedules

Table 6 Optimal parameter values of genetic algorithm for different

problems and solution times found in two to five repeated Hooke and

Jeeves optimizations

Utility P1 P2 P3 P4 P5

Non-spatial, fast (1 s)

0.777793 15 10 100 1.000 0.000

0.798590 12 12 116 5.278 7.552

0.811681 2 30 237 4.609 5.050

0.824934 2 13 160 9.374 9.368

0.777383 44 1 248 8.502 2.008

Non-spatial, slow (7 s)

0.861927 2 50 1050 3.000 5.000

0.868495 2 74 1151 2.899 11.287

0.866467 2 97 954 10.024 3.056

0.869369 2 88 1207 1.221 11.407

0.869210 2 91 1453 5.558 8.448

Spatial, fast (10 s)

0.672784 4 15 213 8.859 6.050

0.652924 11 10 148 2.125 1.500

0.651844 14 14 65 5.216 7.302

Spatial, slow (60 s)

0.719818 5 89 863 8.975 4.237

0.719461 2 60 961 8.000 4.000

The best combination is in boldface, and combinations which were

interpreted as inferior are in italics

P1: number of chromosomes; P2: number of random searches that are

used to produce an initial chromosome; P3: number of generations;

P4: initial mutation rate (at first generation); P5: final mutation rate (at

last generation)
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with reasonable results is only possible with a very low

number of ants. In this respect, the results correspond to

those obtained for GA: Small population size (chromo-

somes or ants) must be used in fast search. Both the number

of ants and the number of iterations increased when more

time was allowed for the search.

Since the results still varied a lot between repeated

optimizations, especially in terms of utility value, addi-

tional optimizations were conducted with a longer search

time (very slow in Table 7) to see whether the results of

repeated optimizations would stabilize, making it easier to

make conclusions about suitable parameter values. Now

the utility values stabilized, and the results suggested

12–30 ants with 89–244 ant iterations. If all optimizations

for the non-spatial problem that resulted in good utility

values are looked together, it may be concluded that a

suitable maximum pheromone is 4–6, minimum pher-

omone is 0.001–0.15, and the initial pheromone should be

2–4. Parameter a of Eq. 4 should be 1.1–1.9. It seems that

longer allowed search times lead to higher number of ants

and iterations and lower evaporation rate.

Also in the spatial problem the number of ants or ant

iterations tended to increase with increasing allowed search

time. However, there seems to be much uncertainty about

the optimal values of some parameters. This may be

because of the interrelationships between parameters. For

example, evaporation rate was often low when the initial

pheromone was low and higher evaporation rates often

occurred with high initial pheromone levels.

Search process with optimal parameter values

Figure 2 shows examples of the development of the utility

value in the search process for the non-spatial problem in

the slow search (7 s). The best parameter values (boldface

in Tables 2–6) were used. Typical of all cooling methods

(SA, TA and GD) was the high but decreasing oscillation

of the utility value of the current solution and a gradual

increase in the utility of the best solution found so far. The

reason for the decreasing oscillation was decreasing prob-

ability to accept inferior moves, i.e., cooling. In GD, the

lower limit of the range of oscillation increased steadily,

which was a result of rising water level. The utility of SA

reached a high level later than in TA, which is because of

higher number of initial random searches in SA (334, see

Table 2) than in TA (1, Table 3). However, the number of

initial random searches varied a lot between repeated

Hooke and Jeeves optimizations for both SA and TA,

which means that since both of these methods are fast, they

can spend a part of the allowed search time for initial

random searches although these searches are not critically

important for the outcome of the search.

The corresponding diagram looked quite different for

TS (Fig. 2, Tabu search), which quickly found a good

solution, which could not be improved much during the rest

of the search process. The range of oscillation did not

decrease during the search process because there was no

cooling. Inferior moves were to be accepted during the

whole search process because of constant tabu tenures.

In GA, the utility of the best chromosome and the

average utility of all chromosomes increased almost lin-

early during the whole search process. This means that GA

needed the whole allowed time to find a good solution.

Figure 3 shows the development of the utility of the

best-so-far and iteration-best ants and the mean utility of all

ants of the current iteration in fast, slow and very slow AC

search for the non-spatial problem. When the number of

Table 7 Optimal parameter values of ant colony optimization for

different problems and solution times found in two to five repeated

Hooke and Jeeves optimizations

Utility P1 P2 P3 P4 P5 P6 P7

Non-spatial, fast (1 s)

0.789248 30 10 0.200 1.500 1.000 0.100 4.000

0.771419 18 5 0.660 1.007 1.795 0.352 2.361

0.764368 46 3 0.384 1.135 0.184 0.001 6.480

0.767516 13 5 0.588 1.199 3.396 0.596 6.615

0.838710 2 150 0.569 1.118 4.319 0.001 4.249

Non-spatial, slow (7 s)

0.777701 19 5 0.135 1.500 0.410 0.100 4.000

0.867802 43 45 0.578 1.082 2.699 0.001 4.614

0.783820 27 30 0.259 0.985 1.678 0.767 7.840

0.779662 11 41 0.474 1.015 3.729 0.537 6.727

0.782094 9 68 0.693 1.063 1.772 0.681 3.625

Non-spatial, very slow (60 s)

0.869057 30 100 0.135 1.650 1.885 0.051 4.000

0.868354 22 89 0.367 1.931 2.433 0.039 6.810

0.866709 12 244 0.048 1.672 2.265 0.151 6.626

Spatial, fast (10 s)

0.660024 14 100 0.070 1.350 0.010 0.001 3.650

0.640932 7 5 0.578 1.232 2.385 0.253 2.361

0.647730 34 5 0.200 1.182 4.975 0.489 3.783

Spatial, slow (60 s)

0.712679 30 100 0.143 1.800 0.410 0.100 3.300

0.713957 33 89 0.424 1.931 5.383 0.039 6.110

0.710568 12 244 0.113 1.972 2.264 0.151 7.283

Spatial, very slow (120 s)

0.712785 41 100 0.200 2.100 1.000 0.100 3.300

0.721106 47 175 0.146 1.251 2.550 0.012 7.041

0.684041 9 317 0.058 2.592 5.416 0.299 6.110

The best combination is in boldface, and combinations which were

interpreted as inferior are in italics

P1: number of ants; P2: number of iterations; P3: evaporation rate (q
in Eq. 2); P4: probability exponent (a in Eq. 4); P5: initial pher-

omone; P6: minimum pheromone; P7: maximum pheromone
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ants was 46, the iteration-best became almost always the

new best-so-far ant. With fewer ants, the curve for the

iteration-best ant often differed from the best-so-far curve,

and sometimes it took several iterations to improve the

best-so-far solution. When there were more than two ants,

differences in their utility values decreased gradually and

the mean utility approached the utility of the best ant.

The development of the 10-year harvests during the

search was similar in SA and TA (Fig. 4) after the end of

the random searches, which lasted longer in SA. The

pattern was completely different in GD, which needed

almost the whole allowed time to find solutions in which

the harvested volume was close to 300,000 m3 for all three

10-year periods. In this respect, GD and GA were similar,

but there was less oscillation in GA (Fig. 4 bottom).

Common to both methods was that they used the whole

allowed computing time to reach a solution which satisfied

the cutting targets and had a good utility value.

TS very quickly found a solution in which the 10-year

harvests were near 300,000 m3, after which they varied

only little during the rest of the search. Common to all

methods was the gradually increasing harvested volume of

the first 10-year period and decreasing harvest of the third

period.

In the fast AC search the harvest of the first 10-year

period did not reach the required 300,000 m3 suggesting

that 1 s was a too short search time for the AC heuristic to

find good solutions (Fig. 5). The required harvested vol-

umes were reached in the slow and very slow search, and

the development of the periodical harvests resembled to

those in GA. The smoother progress of the harvested vol-

ume in the slow search can be explained by the high

number of ants resulting in a new best-so-far solution at

every iteration.
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Ranking of the heuristics

In the fast search for the non-spatial problem, TA, SA and

TS were the best methods and GA and AC were clearly

worse than the other heuristics (Fig. 6, top). All methods

benefitted from increased computing time, but the

improvement of utility was much larger in GA and AC than

in the other methods. SA was the best method with 7-s

computing time, but TA was nearly as good. GA was again

the worst method, and GD and TS were halfway between

the two worst (GA and AC) and the two best (SA and TA)

methods.

In the spatial problem, SA was the best method in the

fast search (10 s) and TA was the second, but the order was

reversed when the search process was allowed to last for

60 s (Fig. 6, bottom). GA and AC were again clearly

weaker than the other methods, and GD was better than TS.

Based on all the optimizations, it is easy to rank the five

tested heuristics as follows: SA and TA are the best

methods, GD is the third in ranking, TS is the fourth, and

GA and AC are the least satisfactory heuristics when the

same computing time is allowed for all heuristics. AC was

slightly better than GA.

Discussion

This study is the second one in which optimization was

used to find the best combinations of parameters that guide

the search processes of heuristic methods used in forest

management planning (the first is Pukkala and Heinonen

2006). The study is the first one that optimized the

parameters of great deluge, genetic algorithm and ant

colony optimization. The Min–Max Ant System was used

for first time in forest management planning.
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slow search for non-spatial problem when optimal parameter values

are used for each heuristic. For genetic algorithm, the harvested
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The purpose of parameter optimization was to help other

users of heuristic methods to set their parameters so that

good solutions are found in reasonable computing time.

Although the results of repeated optimizations varied, some

conclusions on recommendable parameter values for sim-

ilar forest planning problems can be given. For example,

the cooling multiplier of SA should be about 0.9. This is a

significant result since very fast cooling (e.g., 0.7 or 0.8)

and very slow cooling (e.g., 0.95 or 0.99) could be ruled

out. A suitable number of iterations in each temperature

were 1–2 times the number of stands. If the search time

does not need to be very short, the number of iterations

could be increased by 5 % in every new temperature. The

number of random searches that are done to obtain the

initial solution for the SA heuristics is not an important

parameter.

The results were equally clear for the TA heuristic.

More problematic parameters, from the generalization

point of view, are the initial and freezing temperatures of

SA, and the initial and freezing thresholds of TA. However,

generalization becomes easier if these parameters are

related to the unit and range of variation of the objective

function and the influence that one move (or stand) can

have on the objective function value. For example, the

optimal initial temperature of SA was found to be

approximately 0.002 in most cases. In the utility maxi-

mization of this study, the maximum influence of a stand

on the OF value of the solution is approximately

1/888 = 0.001126, i.e., the maximum possible utility

divided by the number of stands. A suitable initial

temperature was equal to the maximum value of the

objective function divided by the number of stands and

multiplied by two.

The results on starting and cooling temperature may be

applied to other cases as follows. If the maximized variable

is net present value, its maximum value is approximately

2,500,000 USD, and there are 1500 stands, a suit-

able starting temperature would be 2 9 2,500,000/

1500 = 3333. The magnitude of freezing temperature

should 0.5–1 % of the initial temperature, i.e., around

15–30. Similar rules apply to the initial and freezing

thresholds of the TA heuristic. This shows that although the

optimal parameters of the heuristics are problem-specific,

some generalizations to similar forest planning problems

can be made from the results of this study. Therefore, the

results of this study make it easier for forest managers to

find suitable parameters for the heuristic methods they use

to solve forest planning problems.

Generalizationwould be easier if parameter optimizations

are made for several forests and forest planning problems

varying in size, objective function and constraints. This

would make it possible to develop rules or even models for

the optimal parameter values of the heuristics.

The optimal parameter values for the SA, TA and TS

heuristics were reasonably close to those obtained by

Pukkala and Heinonen (2006). This earlier study suggests

slightly slower cooling in SA and TA (a cooling multiplier

of 0.92–0.94) than found in our study (0.9). To compensate

for the increased search time due to slower cooling, the

number of iterations at the initial temperature or threshold

was lower in the study of Pukkala and Heinonen (2006).

They found that the number of candidate moves that are

generated at each iteration of tabu search was mostly

1–5 % of the number of stands, whereas the corresponding

proportion in our study was mostly 0.5–1.2 % of stands.

The length of the tabu tenure was of the same magnitude in

both studies.

Our study suggests that SA and TA are the best

heuristics for typical combinatorial forest planning prob-

lems if the search time cannot be very long. Also in Puk-

kala and Heinonen (2006) TS was slightly inferior to SA

and TA. Similarly to Zeng et al. (2007), our study suggests

that SA works better in forest planning problems than the

GA and AC heuristics. Bettinger et al. (2002) found that all

cooling methods (SA, TA and GD) worked better than TS

and GA, which is in line with our study. However, when

tabu search was used with 2-opt moves, it was equally good

as the cooling methods. A 2-opt move means that the move

consists of a simultaneous change in the treatment schedule

of two stands. Pukkala and Kurttila (2005) found that SA

was better than TS and GA in simple forest planning

problems, but GA was the best method in the most com-

plicated problem that included two hierarchical levels and
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Fig. 6 Utility values obtained with the optimal parameter values

found for different heuristic methods in the fast (left, light tone) and

slow (right, dark tone) search for the spatial and non-spatial forest
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both spatial and non-spatial objective variables. However,

similarly to our study, GA needed a longer time to find

good solutions. Liu et al. (2006) found SA to be a better

heuristic than the GA and hill climbing (HC) algorithms for

solving a spatially constrained forest planning problem. SA

and HC were approximately 10 times faster than GA.

As a conclusion, our study suggests that the cooling

methods, especially SA and TA, are the most recom-

mendable heuristics for solving combinatorial forest plan-

ning problems when short search time is important. When

the solutions must be found quickly, for instance in an

iterative analysis of the trade-offs between different

objectives, the population-based heuristics GA and AC

may not be good choices. However, if search time is not an

issue, none of the heuristics should be ruled out. The results

obtained for different heuristics depend on the way the

methods are implemented as an algorithm and a computer

program. There is much flexibility in the implementation of

the heuristics, especially TS, GA and AC. Therefore, the

results obtained for them in this study would improve if

more efficient implementations are developed.
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