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Abstract During the last decades the Mediterranean zone

in Europe has experienced an increment in the incidence of

forest wildfires. This increase is partly explained by higher

mean temperature and lower relative humidity, while

socioeconomic change has lead to the abandonment of

farms, resulting in an increase in an unusual accumulation

of forest fuels, increasing the risk of wildfires. Mapping

wildfire risk is highly important because wildfires are

known to potentially lead to landscape changes and to

modify fire regime by inducing potential changes in veg-

etation composition. Also, they pose a hazard to human

property and life. Maps of wildfire risk based on statistical

models provide a measure of uncertainty for the inferences

derived from such risk maps, leaving a quantitative error

margin for managers and decision takers. Further, some of

the model parameters often have a physical or a biological

interpretation which can give ecologists and forest engi-

neers answers about scientific questions of interest. In this

paper, we analyze the incidence of wildfires in the province

of Castellón in Spain in order to identify risk factors

associated with wildfire incidences during the years

2001–2006. We used the discrete nature of wildfire events

to build such models using point process theory and

methods and included information about elevation, slope,

aspect, land use and distance to nearest road as covariates

in our modeling process. Our results show that wildfire risk

in Castellón is associated with all the covariates considered

and that three land-use categories have the highest risk of

wildfire incidence. Also, wildfire incidences are not inde-

pendent and some degree of interaction exists, which

indicates that the commonly used Poisson point process

models are not applicable in this case, but instead area-

interaction models should be considered.

Keywords Environmental covariates � Risk mapping �
Spatial interaction � Spatial point processes � Wildfires

Introduction

During the last decades, Spain and all the Mediterranean

zone in Europe have experienced an increment in the

incidence of forest fires and consequently an increase in the

risk of forest fire ignition (Moreira et al. 2011; Wittenberg

and Malkinson 2009). It is worth noting here that we will

mean by forest fire risk the probability that a fire ignites at

a given location within a study area (Hardy 2005) and by

forest fire incidence the number of fires per unit area. Thus,

fire incidence refers to the observed spatial pattern (number

and location) of wildfires occurring in a given study area,

while fire risk refers to a probability measure obtained from

a mathematical model. In Spain, the increase in forest fires

incidence is partly explained by climate change as well as

Handling Editor: Dr. Hans Pretzsch.

& C. Dı́az-Avalos

zhangkalo@gmail.com

P. Aragó
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socioeconomic transformation in rural areas. Climate

change has resulted in higher mean temperature and lower

relative humidity, while socioeconomic change has lead to

the abandonment of farms, resulting in an increase and an

unusual accumulation of forest fuels (Vilar del Hoyo et al.

2011). The accumulation of forest fuels and the higher

temperature can potentially lead to the outbreak of wild-

fires. Yet, however, the risk of wildfires is not expected to

be uniform since it is not only the quantity but also the

vegetation type which is directly related to the probability

of ignition of a wildfire. Other factors associated with the

risk of wildfire ignitions are related to variables such as

vegetation types, human activities, land use, among others

(Moreira et al. 2011; Carmo et al. 2011).

The spatial variation shown by climate and by vegeta-

tion composition and coverage and by socioeconomic

factors suggests strongly that wildfire risk is not evenly

distributed over medium- to large-sized areas. It is known,

for example, that quantity and quality of forest fuels are

related to topography and geomorphology, which also

affect relative humidity and rainfall (Caballero et al. 2007).

Wildfire incidence is high in the Mediterranean region

of Spain due to the high temperatures and low humidity

during summer months, a climatic trend with high sea-

sonality that extends to the last months of spring and the

beginning of autumn. In the province of Castellón (north-

east of Spain), the process of afforestation in different

agricultural areas and the increasing abandonment of rural

activities have led to a situation of high vulnerability to

fires, particularly in Mediterranean mountainous areas,

where the aforementioned factors have led to forests being

abandoned and their subsequent expansion, proliferation

and fuel continuity (Bastarrika Izagirre and Chuvieco

Salinero 2006). The four major natural causes of wildfire

ignitions are lightning, volcanic eruption, sparks from rock

falls and spontaneous combustion (National Interagency

Fire Center 2011). In Spain, a significant proportion of the

wildfires is provoked by arsonists (Ministerio de Medio

Ambiente 2006), making this kind of fires difficult to

predict using only the weather risk index.

Predicting where a wildfire will occur is not possible due

to the many factors involved in the process of wildfire

incidence. However, one may construct maps showing the

probability of wildfire ignition or risk maps, using data of

wildfire incidence aggregated by non-overlapping geo-

graphic regions with known area or by the use of the

coordinates of the starting location of past wildfire events,

assuming an adequate statistical model. Risk maps are

needed in the process of risk management by government

agencies managing natural resources, by fire fighting

agencies and by the general public.

Methods to construct maps of wildfire ignition risk

should be based on easily measurable variables (covariates)

to be useful for forest and risk managers. An approach that

has been followed to construct wildfire risk maps is based

on logistic regression. For example, Vilar del Hoyo et al.

(2011) used logistic regression to model human-caused

wildfire risk in central Spain. Dı́az-Avalos et al. (2001)

used a spatial autologistic model with covariates to con-

struct forest fire risk maps in Oregon, using a Bayesian

approach. Other approaches have used spatial point process

models, in which the so-called intensity function is pro-

portional to wildfire risk (Juan et al. 2012; Mateu et al.

1998; Møller and Dı́az-Avalos 2010; Turner 2009; Serra

et al. 2014). The inclusion of covariates in the modeling

helps to account for the spatial variation associated with the

association between the expected mean number of fires per

unit area and the covariates, thus reducing the variance of

the model parameter estimates (Martı́nez-Fernández et al.

2013).

Statistical models are usually preferred because they

provide a measure of uncertainty for the inferences

derived from the risk maps, leaving a quantitative error

margin for managers and decision takers. Further, some

of the model parameters often have a physical or a

biological interpretation which can give ecologists and

forest engineers answers about scientific questions of

interest.

In this paper, we analyze the incidence of wildfires in

the province of Castellón in Spain in order to identify risk

factors associated with wildfire incidences during the years

2001–2006 using the locations of the wildfires centroids.

Our goals are to construct wildfire risk maps for the pro-

vince, to identify which factors are relevant to explain the

spatial variation of wildfire incidence and to analyze the

interaction among wildfires. To attain our goals, we need to

find and fit statistical models to the observed spatial pattern

of wildfire incidence. The resulting models and risk maps

can provide aid in tasks such as planing wildfire fighting

campaigns, to assess the hazard for the human populations

and can also be helpful to plan fire prevention and pre-

suppression activities. We use the discrete nature of wild-

fire events to build such models using point process theory

and methods.

The rest of the paper is organized as follows: In

‘‘Study area and data’’ section, we describe the study area

and the data sets. Section ‘‘Statistical analysis’’ gives all

the details needed to clarify why and how we fit the

models as well as some diagnostics to assess model fit.

Section ‘‘Results’’ describes and discusses the results and

the interpretation and implication of such results. Also, in

‘‘Results’’ section we discuss how the maps constructed

can be used in planning fire fighting strategies, controlled

burns and other related tasks. We finish with conclusions

and description of future open research lines in ‘‘Dis-

cussion’’ section.
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Study area and data

The province of Castellón is located in the northeast of the

Iberian Peninsula (Fig. 1). It is delimited by the mountain

range called Sistema Iberico to the west and the Mediter-

ranean sea to the east. It also has borders with the provinces

of Catalonia in the north and Valencia in the south. Cas-

tellón has a surface area of 6632 km2, which represent

1.3 % of the Spanish national territory. The topography

and geology of Castellón allows the existence of a wide

variety of vegetation types, which include coniferous for-

ests, oak forests, mixed forests, shrubs and grasslands,

among others. According to the Coordination for the

Information on the Environment (CORINE), there are

forty-four vegetation types in the province of Castellón.

Some of the tree species that compose these vegetation

types produce litter that is highly flammable, as is the case

of the Mediterranean pine (Pinus halepensis).

The database considered in this paper includes infor-

mation about all the wildfires recorded in the study area

during the period 2001–2006 . The information includes

the geographic coordinates of the centroid of the fire at its

final size, the year, elevation, slope, aspect, land use, dis-

tance to nearest road to the wildfire’s centroid, isother-

mality and soil permeability. This last covariate may be

taken as a proxy for fuel moisture, as less permeable soils

tend to retain water and moisture. However, soil perme-

ability may well relate with fuel moisture of the deeper

horizon in the forest floor (humus) for some point after

rain. Thus, moisture should not be expected to exert an

influence over longer time periods, because the moisture of

slow-drying fuels depends essentially of time since rain.

Note also that slow-drying fuels contribute very weakly to

fire ignition and fire spread. Although other authors such as

Koutsias et al. (2013) have acknowledged the association

between fire incidence and precipitation, we did not have

those data available for our study area during the time

scope of this study. Except for the geographic coordinates

and the year, the rest of the information was obtained from

the corresponding digital maps for the province of Cas-

tellón. Figure 2 shows the distribution of the wildfires

occurring in Castellón by year for the time period consid-

ered in our analysis. Except for time, all the other variables

were also used as spatial covariates. In particular, four

continuous covariates: slope, aspect, distance to nearest

road and elevation, and one categorical covariate (land use)

were included in the modeling process.

Slope is the steepness or degree of incline of a surface.

As slope cannot be directly computed from elevation

points, one must first create either a raster or TIN surface.

In this paper, the slope for a particular location was com-

puted as the maximum rate of change of elevation between

that location and its surrounding pixels. Slope was

expressed in degrees.

Regarding land use, we used the CORINE database

(Coordination of Information on the Environment). In

particular, we used the CORINE land-cover map for the

year 2006 (European Environment Agency 2007; Heymann

et al. 1994), on a 1:100.000 scale with a minimum mapping

unit (MMU) of 25 ha; the linear elements listed are those

with a width of at least 100 m.

In this paper, we reclassified land use into nine cate-

gories (Table 1). We arbitrarily assigned a probability of

zero to wildfire risk in category 9, so from now on we will

refer exclusively to categories 1 through 8. All the

covariates were defined on a grid of 360,000 points cov-

ering Castellón. The digital images for some of the

covariates are shown in Fig. 3. The main causes of wild-

fires in Castellón during 2001–2006 were lightning strikes,

followed by negligence and arsonism. It is expected that

fires due to those causes be associated with different risk

factors. For this reason, we made separate statistical

models for wildfires caused by lightning strike (natural

cause) and for negligence, arsonism and other human-re-

lated causes.

Statistical analysis

The statistical analysis of the wildfire patterns for the years

2001–2006 in Castellón was done using the theory and

methodology of spatial point processes (Cressie 1993;

Diggle 2003; Møller and Waagepetersen 2007). Although

we could have followed the most common logistic and

autologistic approaches, those methods cannot be extended

easily to different spatial scales. On the other hand, asFig. 1 Geographic location of the province of Castellón, Spain.
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spatial point process modeling is based on the first- and

second-order properties, The spatial continuity of such

properties allows models fitted at a given scale to be

adapted to a coarser or thinner resolution scale without

much difficulty. A full description of such theory is beyond

the scope of this paper, and the interested reader is referred

to the previously mentioned authors. Here we will only

describe the theoretical parts that are relevant to explain

our analytical methods.

First- and second-order properties

We will denote the points of a spatial point process by

x = (long, lat), and we will make a distinction of the the-

oretical spatial point process and the spatial point pattern

observed whenever the context of the text does not make

clear to which one of the two we are referring. Point pro-

cess models can be characterized by their first- and second-

order properties, which are analogous to first and second

moments of ordinary random variables. We will denote by

A the study area, also known as the observation window.

The (first-order) intensity function of a spatial point

process is defined as

kðxÞ ¼ lim
jdxj!0

E½NðdxÞ�
jdxj

� �
; ð3:1Þ

Fig. 2 Spatial location of

wildfires occurring in Castellón

from 2001 to 2006. 2001 (top

left) and 2006 (down right)

Table 1 Land use in Castellón and codes assigned

Code Land use

1 Coniferous forests

2 Dense forests

3 Fruit trees and berries

4 Artificial non-agricultural vegetated areas

5 Transitional woodland Scrub

6 Scrub

7 Natural grassland

8 Mixed forests

9 Urban, beaches, sand, bare rocks and water bodies

The categories represent an aggregation of a more diverse catego-

rization for land use published by Heymann et al. (1994)

0
10

20
30

40
50

60
70

0
50

0
10

00
15

00

0
20

0
40

0
60

0
80

0

Fig. 3 Spatial variation of the covariates available for this study. Continuous: slope (left), elevation (center), permeability (right)
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where dx denotes a small region containing the point x. and

E½�� denotes the expected value of the random variable

inside the brackets.

kðxÞ may be interpreted as the expected number of

events occurring in an infinitesimal set of area dx and is

known as the intensity function of the point process. The

intensity function is unknown and has to be estimated from

the data fx1; . . .; xng from the observed spatial point pat-

tern. Estimation may be done by posting a parametric

model khðxÞ for the intensity function or nonparametrically,

using kernel density estimators (Cressie 1993; Diggle

2003)

bkðxÞ ¼ 1

n

Xn
i¼1

Kn

1

h2
x� x0i
h

� �
ð3:2Þ

where h is know as the bandwidth and controls the amount

of smoothing in the estimation of k. Nonparametric esti-

mates of kðsÞ are commonly used as exploratory tools to

gain insight about the type of parametric model that should

be fitted to the data and have been used in fire incidence

mapping by Koutsias et al. (2004), de la Riva et al. (2004)

and Amatulli et al. (2007).

We fitted nonparametric kernel estimators to the

observed wildfire patterns for each year considered in our

study. The resulting estimates are shown in Fig. 4. The

maps for k̂ for each year show that wildfires in Castellón

tend to occur in some fixed areas forming clusters of dif-

ferent sizes. Part of such clustering may be related to

factors such as elevation, land use, or others. Nevertheless,

the plots suggest that the class of point process models that

should be fitted to the observed patterns needs to consider

clustering and the possible effect of covariates. Possible

choices are the non-homogeneous Poisson point process or

an interaction model that can allow clustering, such as the

area interaction (Fig. 5).

The second-order intensity is a measure of the depen-

dency structure of the events in A and is given by

k2ðxi; xjÞ ¼ lim
jdxij;jdxjj!0

E½NðdxiÞNðdxjÞ�
jdxijjdxjj

� �
ð3:3Þ

The second-order intensity does not have a biological

interpretation as it relates to data. An alternative very

useful statistic is the reduced second moment function

(Ripley 1976, 1981)

KðhÞ ¼ k�1E½NoðhÞ� ð3:4Þ

where NoðhÞ is the number of extra events at a distance h

from an arbitrary event x 2 A. When the points of the

process distribute independently at random within A we

speak of complete spatial randomness (CSR), which can be

modeled with an homogeneous Poisson process (Cressie

1993; Diggle 2003). In this case, the intensity function

(3.1) is a constant k, and a nonparametric estimator of

K(h)is given by

K̂ðhÞ ¼ jAj
nðn� 1Þ

X
x 6¼y

Iðjx� yj � hÞwAðx; yÞ ð3:5Þ

where jAj is the area or volume of the study area, x and y

are arbitrary data points and wAðx; yÞ is a border effect

correction.
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Fig. 4 Nonparametric intensity function estimates for wildfires occurring in Castellón region in the different years considered in this study using

kernel density estimator
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The reduced second moment function is also known as

Ripley’s K-function or simply as the K-function.

The intensity function provides information related to

the homogeneity of the process within A, while second-

order properties provide information related to the inter-

action between points in a spatial point pattern and can be

used to test the null hypothesis of CSR (Illian et al. 2008).

For a point pattern with n points, nonparametric tests for

CSR are constructed by simulating s spatial patterns of size

n from an homogeneous spatial Poisson process, under

CSR, and using such simulated patterns, compute confi-

dence bands for the K-function

UðhÞ ¼ max
i¼2;...;s

K̂iðhÞ
� �

LðhÞ ¼ min
i¼2;...;s

K̂iðhÞ
� �

The hypothesis of CSR is rejected if the empirical K-

function obtained from the observed point pattern fall

outside the confidence bands for some set of distances h.

Nonparametric tests based on second-order moments allow

to conclude whether or not an observed spatial point pat-

tern follows a random, clustered or dispersed distribution

pattern. Non-homogeneity of kðsÞ may often be explained

through spatial varying covariates such as temperature,

litter depth and elevation above sea level, among others.

When information on spatial covariates is available, a

common choice for the form of the intensity function is

log½kðxÞ� ¼ zTb ð3:6Þ

where z is a vector whose entries are the values of the

covariates at the point x, and b is a vector of coefficients.

For model identifiability, we used sum contrasts for the

categorical variables, i.e., the coefficients associated with

the satisfy the restriction
P

j bj ¼ 0.

Tests of CSR which are constructed from functional

summary statistics of an observed pattern such as the K �
function are useful for two reasons: When CSR is

conclusively rejected, the behavior of such summary

statistics provide clues about the kind of model which

might provide a reasonable fit to the data. They also sug-

gest preliminary estimates of model parameters. In our

case, we tested first the null hypothesis of complete spatial

randomness (CSR) using the K-function in order to gain

further insight about weather clustering or repulsion was

evident in the observed wildfire patterns.

For those years for which the CSR hypothesis was

rejected and the evidence was for clustering, we fitted first

non-homogeneous Poisson point process (NHPP) models,

with intensity function of the form 3.6. NHPP models are a

natural alternative to CSR, since they preserve the

assumption of independence between events of Poisson

point processes. Although the NHPP models may not be

good to capture strong clustering in the observed patterns,

they are useful as a first step to check whether the spatial

variability in the observed spatial pattern may be explained

by the spatial variation of the covariates. Also, in case the

NHPP gives a good fit to the data, the significance of the

covariate effect may be done using the fact that the coef-

ficient estimators are asymptotically normal if the number

of data is large enough (Waagepetersen 2007), as is our

case. Because the intensity function is not constant on A,

we used the corrected version for the K � function (Møller

and Waagepetersen 2007) to test goodness of fit, namely

K̂inhomðrÞ ¼ jAj�1
Xn
i¼1

X
j6¼i

Ið0\kxi � xjk� rÞ
k̂ðxiÞk̂ðxjÞ

w�1
ij : ð3:7Þ

For an inhomogeneous random Poisson process with

intensity function kðuÞ, the inhomogeneous K-function is

KinhomðrÞ ¼ pr2, exactly as for the homogeneous case. We

can then define the Linhom-function as

LinhomðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KinhomðrÞ=p

p
Note that the inhomogeneous K-function depends on the

first-order properties of the point process.
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Fig. 5 Histograms of wildfire incidences by covariate (cause, distance and slope) in Castellón, for the years 2001–2006
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Wildfires burn areas that occupy a wide surface.

Although the shape of the burned area is highly irregular, it

is expected that the incidence of a wildfire in a given zone

affects the probability of another wildfire starting within

the burned area. This results in negative interaction

between wildfires at least for some short term. Therefore,

we also explored the goodness of fit of area-interaction

models (Baddeley and van Lieshout 1995). For a bounded

number of events s1; . . .; sn, the area-interaction model has

a density of the form

f ðs1; . . .; snÞ ¼ abnðsÞc�AðsÞ ð3:8Þ

where a is a proportionality constant, b is the intensity

function of the process, c is the interaction parameter, n(s)

is the number of points of the process, and A(s) is the area

of the region formed by the intersection of balls of radius

r centered at the points of the process. For the intensity b
we choose a log-linear form as in (3.6). The interaction

parameter c can be any positive number. If c ¼ 1 then the

model reduces to a Poisson process with intensity j. If
c\1 then the process is regular, while if c[ 1 the pro-

cess is clustered. Thus, an area-interaction process can be

used to model either clustered or regular point patterns.

Two points interact if the distance between them is less

than 2r. If c ¼ 0, then a hardcore process is encountered

in which there are no points within the hardcore distance

(r) of any point in the point process; that is, there is total

inhibition.

Goodness of fit for the NHPP and for the area-interac-

tion models was done by simulating patterns under the

fitted models with the same number of wildfires for each

year. Each of the simulated patterns was used to compute

the empirical non-homogeneous K-function to obtain the

envelopes. We used the rank test ( Grabarnik et al. 2011) to

compute the 95 % envelopes to get a better approximation

to the true p value for the test. To fit the models, we used

the R free software (R Development Core Team 2010), and

the contributed package spatstat (Baddeley and Turner

2000, 2005), which can be obtained from the R project

Web site www.r-project.org.

In all cases, the intensity function was standardized to

integrate to 1.0 in the study area, thus becoming a proba-

bility density function. Therefore, the intensity function

kðxÞ is proportional to the probability of ignition of a

wildfire in x and thus to the risk of wildfire at x.

Results

The number of wildfires occurring on each year considered

in this study is shown in Table 2. The number of fires per

year showed high variability during the time span of this

study, with an average of 110.5 fires per year. Years 2002,

2003 and 2005 were those that deviated more from the

average, due to high precipitation in both years during the

summer months, resulting in an increase in fuel moisture.

The spatial distribution of the wildfires (Fig. 2) and the

kernel estimators of the intensity function (Fig. 4) indi-

cated the presence of multiple hot spots, where wildfires

tend to occur at a significant higher rate than in the rest of

the province. The majority of the wildfires observed in

Castellón between 2001 and 2006 occurred at distances

closer than 400 m from the nearest road. This last covariate

is a proxy of human-caused wildfires, as most of the human

activities tend to occur near roads. The empirical odds of

wildfire for the different vegetation classes is shown in

Fig. 6, where one can see that the risk of wildfires stan-

dardized by the area covered by each land-use category

was higher for classes one, six and seven, which corre-

spond to coniferous forests, scrub and natural grasslands.

Areas covered by that kind of vegetation have been rec-

ognized as fire prone (González et al. 2006).

The multiplicative structure of the area-interaction

model permits to analyze the results of the spatial and the

temporal components of the model separately. The inten-

sity parameter was given a log-linear structure dependent

on the covariates, as in (3.6), where Z is a matrix whose

entries are the values covariates. The parameter estimates

of the significant covariates for each year are shown in

Table 3. The absolute value of the coefficient estimates

related to elevation, slope and distance to nearest road is

small due to the variation range of those continuous

covariates. When multiplied by the values of the corre-

sponding covariate and exponentiating the result gives

either the increase or the decrease in the intensity function

associated with the covariate. Comparing the values of

exp bjðZjk � ZjlÞ provides a measure of the relative change

in the probability of wildfire caused by a change Zjk � Zjl in

the covariate. Thus, for example, in 2001, a change of

100 m in elevation resulted in a decrease of 10 % in the

probability of wildfire, keeping the rest of the covariates at

fixed values. Analogous results are obtained for slope and

distance to nearest road.

Table 2 Annual distribution of

wildfires occurring in Castellón

by year

Year Number of

wildfires

2001 120

2002 65

2003 88

2004 120

2005 160

2006 110

All years 663
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Table 3 shows the coefficient estimates for the logarithm

of the intensity function (Eq. 3.6) for naturally caused

wildfires. The sign and value for the different coefficients

for the years considered are not constant and indicate that

the importance and association of the covariates to wildfire

risk are not constant over time. The coefficients for the log

intensity function for human-caused wildfires are shown in

Table 4. Unlike the coefficients for the naturally caused

wildfires, the sign of the coefficients for most of the

covariates remains constant for the years considered in this

study.

Distance to nearest road has a negative or neutral effect

on the probability of wildfire. This covariate has been

considered a proxy of human activity, which is another

important cause of wildfires in the study area as well as in

other parts of the Mediterranean basin (Wittenberg and

Malkinson 2009; Vilar del Hoyo et al. 2011). The negative

coefficients for this covariate indicate that human-caused

wildfires are more likely to occur near the roads, where

arsonists and other human activities are often observed.

The parameter b0 can be thought as the basal risk for

each year if the other b coefficients are kept equal to zero

and the interaction parameter c is equal to unity. Under this

consideration, we see that the variation of b0 along the

years followed the same trend as the yearly number of

wildfires shown in Table 2. Thus, we may think of b0 as a
parameter related to the average annual risk in the whole

province and in consequence of the number of wildfires per

year fnt; t ¼ 2001; . . .; 2006g and that the remaining b
coefficients increase or decrease the wildfire risk according

to the spatial variation shown by the linear combination of

the covariates. The table also shows that for areas covered

with coniferous forests the risk of wildfire was high, in

particular during 2001 and 2002. Except for areas with land

use 2, 4 and 7, the fire risk associated with land use fol-

lowed a similar trend along the years considered in our

study, with higher wildfire risk during 2001 and 2002 and

moderate risk the rest of the years (Fig. 7).

The estimates of the interaction parameter c for natu-

rally caused wildfires took values below 1.0 for the years

2002 and 2005 (Table 4) and for the years 2001 and 2002

for human-caused wildfires (Table 4) indicating the pres-

ence of repulsion among the wildfires for those years and

causes. This results in a more regular pattern of wildfire

spatial distribution than under complete spatial random-

ness. For the rest of the years in this study, the positive

value of c indicates the presence of clustering of wildfire

incidences. The fact that the parameter c is not closer to 1.0
provides evidence that the incidences of wildfires in Cas-

tellón are not independent events, but the result of a

complex process where the incidence of a wildfire in a

given location somehow affects the probability of ignition

of other wildfires.

Figure 8 shows the intensity function estimates for the

naturally caused wildfires. The areas of high intensity show

different location for the different years. This is a result of

the variability of the covariate effects described in previous
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Fig. 6 Odds of wildfire incidence for different land-use classes

Table 3 Parameter estimates

for the inhomogeneous area-

interaction models fitted to the

wildfire incidences in Castellón,

Spain, for the years 2001 to

2006 for natural causes

Coefficient Year

Estimate 2001 2002 2003 2004 2005 2006

b0 4.481 5.329 6.726 -1.639 6.726 -9.749

Elevation 4.49E-4 -8.65E-4 0.002 6.99E-4 0.001 -0.001

Slope 0.022 0.002 0.030 0.023 0.028 0.048

Distance to nearest road -5.90E-4 8.87E-5 -0.002 5.97E-4 3.28E-4 -0.001

Isothermality 0.045 -0.180 -0.048 0.149 0.095 0.370

Permeability -0.003 0.011 -0.005 1.04E-5 -0.013 0.001

Interaction (log½c]) 0.621 -12.645 4.108 1.058 -27.613 0.732

Only significant coefficients are shown
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paragraphs where we described the results of the models

fitted to the intensity function for the observed wildfire

patterns. The map for the intensity function of human-

caused wildfires (Fig. 9) shows that the higher-risk values

occurred in a centered band going from southwest to

northeast, where the elevation ranges between 0 and

500 m, where the highest risk was located in the southeast

part of the province, not in high elevation areas where the

Iberian Range is located in Castellón. Note that the maps

do not resemble the spatial pattern of the covariates

(Fig. 3), as what we show in the maps in Fig. 9 is the

combination of all the components in model 3.8.

The risk maps also provide insight about the spatial

variation of wildfire risk, and for non-overlapping areas A

and B within the study area, the ratio (q).

q ¼
R
A
kðuÞduR

B
kðuÞdu

may be evaluated to get a measure of the relative risk of

wildfire in those areas or to compare the estimated annual

Table 4 Parameter estimates

for the inhomogeneous area-

interaction models fitted to the

wildfire incidences in Castellón,

Spain, for the years 2001 to

2006 for human-related causes

Coefficient Year

Estimate 2001 2002 2003 2004 2005 2006

b0 �1.035 4.375 �9.717 �5.453 7.426 5.739

Elevation �0.002 �7.85E-4 �5.47E-4 �0.001 �5.59E-4 �0.001

Slope 0.027 0.0024 0.07 0.013 0.004 �0.017

Distance to nearest road �0.001 �0.002 6.02E-4 �0.001 �7.27E-4 4.54E-5

Isothermality 0.202 0.163 0.457 0.333 0.185 0.090

Permeability �1.80E-4 �0.011 �0.004 �1.003 �0.017 �0.007

Interaction (log½c]) �1.256 �70.960 3.025 1.479 2.492 4.193

Only significant coefficients are shown

Fig. 7 Inhomogeneous

L-function for area-interaction

models fitted to the wildfire

incidence data in Castellón

including all the covariates for

the years 2001–2004
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changes in wildfire risk in the same area if we take A ¼ At

and B ¼ Atþk with k ¼ 1; 2; . . .. This information is useful

for risk managers in the process of risk evaluation and as an

input for risk management (Caballero et al. 2007; Hane-

winkel et al. 2006). Government agencies and forest

managers can also use relative risks to decide where to put

the resources for fire control and fighting and provide a

more efficient response in case of wildfire occurrence.

Discussion

The leading cause of wildfires in Castellón during

2001–2006 was lightning strikes, followed by negligence

and arsonism (Fig. 5, upper). These three causes accounted

for over 75% of the wildfires during the time span of our

study. This supports the assertion that climate change and

changes in land use are among the main factors associated

Fig. 8 Estimated intensity function obtained from the area-interaction models for the years 2001–2006 in Castellón, natural causes

Fig. 9 Estimated intensity function obtained from the area-interaction models for the years 2001–2006 in Castellón, human causes
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with wildfire incidence (Pausas 2004). For the particular

case of Castellón, land-use changes are the consequence of

rural abandonment. Terrains with slopes lower than 30

degrees and closer than 400 m to the nearest road are rel-

atively easy to access for humans. Our results show that

most of the wildfires occurred in hill sides facing south or

east, in slopes with less than 30 degrees. Hills sides facing

east and south receive a higher amount of solar energy

along the year, and thus, the moisture content in the fuel in

those hillsides is expected to be lower than in hillsides

facing north or west, resulting in different risk of wildfire

ignition. This was confirmed through formal statistical

analysis, although factors such as relative humidity and

wind speed are likely to influence the risk of fires, partic-

ularly for west-facing slopes. Note, however, that our

analysis is on an annual basis and that variables such as

relative humidity and wind speed vary at an hourly basis,

and that the average annual variability due to those and

other non-observed covariates is included in the residual

point process (Baddeley et al. 2005) in an analogous way

to generalized linear models. Higher temperatures are

perhaps associated with the highest number of wildfires per

year during 2005. Wildfires tend to be less selective as their

size increase, so factors such as vegetation type are less

significant for bigger wildfires (Barros and Pereira 2014).

This explains in part why land use was not a significant

covariate in the models.

For 2004 all the covariates showed a positive association

to wildfire incidence in Castellón. For year 2001, on the

other hand, the elevation, slope and isothermality were

associated with increase in the wildfire incidence while

distance to the nearest road and soil permeability were

associated with lower incidence. For the rest of the years,

there was also variation of the signs of the coefficients,

indicating that the effect of most of the covariates on the

wildfire incidence is not constant along time. Slope was the

only covariate that showed positive association for the

whole study period for naturally caused wildfires. This

variability in the effects of the covariates is indicative that

naturally caused wildfires may occur in the whole province

of Castellón but show a slight association to physical and

climatic factors, which show variation along time.

Elevation and permeability showed negative coeffi-

cients, something that could be expected because the

higher the elevation the lesser human presence in the

province. Because soil permeability can be considered a

proxy of fuel moisture, the negative coefficients for this

covariate suggest that human-caused wildfires tend to

occur in areas where fuel moisture is lower. On the other

hand, slope and isothermality showed positive coefficients

for the six years. The positive coefficients for isothermality

indicate that human-caused wildfires are more likely to

occur in areas where temporal variation of temperature is

low, perhaps due to the higher population density in those

areas. In Castellón such areas are found mostly in coastal

areas, where dry and hot weather conditions prevail most of

the year. Regarding slope, the coefficients have the same

sign as for naturally caused wildfires, which suggests that

the effect of slope is the same regardless of the cause, and

the positive values may be due to the fact that fire propa-

gates easier in steep terrains, facilitating a small fire to

become a wildfire. The relative risks between the different

land-use categories were not constant across time. This

may be because in a given year wildfires may occur at a

slightly higher rate in areas with a particular land use or

have larger wildfires, suggesting that for the next year the

fuel loads are lower and therefore the expected number of

wildfires will be smaller. This is in fact the idea behind the

use of controlled fires to reduce wildfire incidence

(Hutchinson et al. 2005).

The presence of interaction between the wildfires is

probably a consequence of the burned area in previous

years, which left a patchy arrangement of unburned areas

where wildfires can occur. It is not the clear reason for the

change from repulsion to clustering in the observed wild-

fire pattern, although a possible explanation is that the

repulsion during years 2001 and 2002 for human-related

causes and 2002 and 2005 for natural causes left wide

unburned areas that became fire prone the last two years.

Another possible explanation is that the number of wild-

fires and the burned area is not too high and therefore the

change from a regular distribution pattern to a clustered

one is due to the variation in the number of wildfires along

the years under study. The area-interaction model covers a

wide range of possible scenarios, going from regular pat-

terns with strong repulsion to point processes with mod-

erate clustering. The fit to the wildfire data of Castellón

was acceptable, as no empirical L-function lies outside the

confidence bands obtained by simulating point patterns

using the parameter estimates for each year.

For human-caused wildfires the high intensity areas are

located near coastal areas, in particular in the southern part

of the province, where the capital city Castellón is located

(Fig. 9). This figure shows a well-defined pattern, associ-

ated with the areas where most of the human population

(about 80 %) lives, making those areas more likely to have

a human-caused ignition, which combined to the dry

weather prevailing in the coastal areas makes the presence

of a wildfire to have a higher probability of ignition. The

expansion of the low-risk zone is in part because of the

increased amount of rain, which has a direct association to

elevation and to the reduced human presence due to farm

abandonment. Overall, we see from Figs. 8, 9 that in terms

of wildfire risk the province of Castellón may be roughly

divided into three zones: A high-risk zone comprising the

coastal plains where most of the human activities take
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place, a medium-risk zone is distributed in a central strip in

the NE–SW direction, which contains areas where farms

and agricultural activities used to take place and where

field abandonment has increased fuel loads in the recent

years, and a low-risk area, located in the NW part of the

province, where most of the forest of the province are

located.

Other authors have approached the problem of produc-

ing forest fire risk maps using methods such as GIS

(Vázquez and Moreno 1998), logistic regression (Preisler

and Westerling 2007), autologistic regression (Koutsias

2003) and empirical generalized linear models (Barbero

et al. 2014), among others. Some of such approaches either

are based on pure descriptive methods or ignore the pres-

ence of spatial dependence observed in the data. The use of

inferences based on pure descriptive methods may be

misleading because the variability of empirical data sets,

and therefore posing a model for the observed data as we

have done, has the advantage of providing external vali-

dation to the inferences obtained from such models. Our

approach also acknowledges the presence of spatial

dependence through the incorporation of spatially varying

covariates and through the inherent spatial association of

non-Poisson point process models like the ones we have

fitted to the wildfire data in Castellón, allowing the

assessment of the effect of changes in the covariate values

on the risk of wildfires for different locations within the

study area. Although posting and fitting models may be

difficult in some cases, it is a clear improvement as com-

pared to pure descriptive or non-spatial methods of analysis

of fire risk.

Conclusions

The first step in risk assessment is the estimation of the

probability of wildfire. The standard tool to model the

probability of fires in forest ecosystems has been logistic

regression as in Wittenberg and Malkinson (2009) or in

Vilar del Hoyo et al. (2011). Here we have proposed the

use of spatial point process models with interactions, a

well-known methodology that acknowledges the non-in-

dependence between wildfire events. The general form of

the model we used allows its application in wider areas as

long as information about wildfire incidence and covariate

information are available. It is worth pointing that the

significance of the covariates used for modeling wildfire

risk in a given area is likely to change when the model is

applied in a different area, or if the study area becomes

broader than the original. This, however, is not a disad-

vantage of the model used here, as the general form allows

to adapt the model in case drastic spatial changes in veg-

etation composition or in topography may occur. Our

results show that the spatial variation of forest wildfire risk

is associated with the environmental covariates and to

human factors considered in our analysis. Distance to

nearest road was used as a proxy for human activity in the

study area, but the model fit may improve if information

about population density, socioeconomic activities and

other related information becomes available. Castellón’s

province is a mountainous area and forest is restricted to

the interior part of the province. Unlike what happens in

other provinces of Spain, such as Catalonia, where forest

wildfire risk is associated with abandonment of agricultural

land (Serra et al. 2014), wildfire presence in Castellón is

higher in forest-covered areas. However, for the last two

years analyzed the higher-risk zone occurred in the flat area

close to the sea. This change in the spatial distribution of

wildfire risk is likely associated with non-observed human-

related covariates, as the vegetation cover and geographic

features of the province did not change during the time

span of this study.

We have compared the incidence of wildfires separated

in two wide classes, which has showed that both classes

have a different association with the climatic and physical

factors included as covariates. Naturally caused wildfires

do not show a specific spatial pattern for the different years

but are nevertheless slightly associated with the covariates

we have included in our study. On the other hand, human-

caused wildfires show a well-defined pattern with higher

incidence associated with the covariate values observed in

coastal areas.

Although kernel estimates have been used previously to

study the spatial distribution of forest fires incidence (Dı́az-

Avalos and Alvarado 1998; Koutsias et al. 2004; de la Riva

et al. 2004; Amatulli et al. 2007), those are only non-

parametric estimators and are not useful for spatial pre-

diction nor to asses the existence of association between

wildfire incidence and suspected risk factors. Parametric

models such as the ones fitted in our study besides pro-

viding predictive estimators for the association between the

intensity function of wildfire incidence are also useful to

asses the effect of changes of those factors on such inten-

sity function.

The statistical modeling approach to forest wildfire risk

mapping provides to forest fire managers a valuable tool

for planning forest wildfire prevention task and surveil-

lance. These maps show not only areas with high wildfire

risk but also may be used to distinguish between those

forest areas with high risk of wildfire by natural causes and

those with high risk of wildfire because of human activities.

Point process methods are a sensible approach to model the

probability of wildfire ignition. However, this approach

works better if reliable databases including historical

records of forest fire locations as well as digitalized maps

of spatial varying variables are available to the modeler.
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Such databases are becoming available due to the

increasing quantity of data acquired with remote sensing

technologies and the increasing accessibility to such

information. Thus, it is reasonable to expect that the

number of applications of spatial point process models to

forest fires data will increase in the near future and that

improved models and fire risk maps will become available

to risk managers and to the general public. Predictive

models for the final size of wildfires and the factors

influencing such size are yet to be developed. Better

management of wildfire risk is therefore a goal that is being

attained as research continues.
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