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Abstract Our research group has recently proposed a

strategy to simulate net forest carbon fluxes based on the

coupling of a NDVI-driven parametric model, Modified

C-Fix, and of a biogeochemical model, BIOME-BGC. The

outputs of the two models are combined through the use of

a proxy of ecosystem distance from equilibrium condition

which accounts for the occurred disturbances. This mod-

eling strategy is currently applied to all Italian forest areas

using an available set of NDVI images and ancillary data

descriptive of an 8-year period (1999–2006). The obtained

estimates of forest net primary production (NPP) are first

analyzed in order to assess the importance of the main

model drivers on relevant spatial variability. This analysis

indicates that growing stock is the most influential model

driver, followed by forest type and meteorological vari-

ables. In particular, the positive influence of growing stock

on NPP can be constrained by thermal and water limita-

tions, which are most evident in the upper mountain and

most southern zones, respectively. Next, the NPP esti-

mates, aggregated over seven main forest types and twenty

administrative regions in Italy, are converted into current

annual increment of standing volume (CAI) by specific

coefficients. The accuracy of these CAI estimates is finally

assessed by comparison with the ground data collected

during a recent national forest inventory. The results ob-

tained indicate that the modeling approach tends to over-

estimate the ground CAI for most forest types. In

particular, the overestimation is notable for forest types

which are mostly managed as coppice, while it is negligible

for high forests. The possible origins of these phenomena

are investigated by examining the main model drivers to-

gether with the results of previous studies and of older

forest inventories. The implications of using different NPP

estimation methods are finally discussed in view of

assessing the forest carbon budget on a national basis.

Keywords Modified C-Fix � BIOME-BGC � Forest

inventory � Current annual increment � Regional estimates �
Italy

Introduction

The assessment of forest production is a central issue in

applied ecology and is becoming increasingly important for

evaluating the role of forest ecosystems as possible carbon

sink (Hagedorn et al. 2001; Waring and Running 2007;

Kolström et al. 2011). Information on forest production has

been traditionally collected through user-driven national

forest inventories (Corona and Marchetti 2007; Corona

et al. 2011). In Italy, a national forest inventory (INFC) was

recently completed (Gasparini et al. 2009a). One of the

main objectives of this inventory is to provide an updated
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national estimate of forest growing stock (i.e., carbon net

primary productivity, C-NPP), which can be derived from

wood volume increment statistics through the use of bio-

mass expansion factors (BEFs) (Evrendilek 2004; Federici

et al. 2008). Such statistics are presently published at re-

gional level, together with other information on main forest

features (type, basal area, volume, etc.). The NPP estimates

derived from INFC, however, are only partially in agree-

ment with those derived from other data sources (e.g.,

Arrigoni et al. 1998; Chirici et al. 2007; Valentini et al.

2014). This indicates the existence of a challenging

framework, where uncertainties are rather high.

Recent investigations conducted in other countries have

confirmed that the modeling of forest production over large

European areas is complex due to its high spatial and

temporal variability and requires the application of so-

phisticated modeling strategies difficult to be generalized

for large areas (Osborne et al. 2000; Pietsch and Hasenauer

2006; Chirici et al. 2007). One of these strategies has been

recently developed and applied by our research group to

obtain spatial production estimates for the main Italian

forest categories (Maselli et al. 2006, 2009a). The method

is based on the use of a NDVI-driven parametric model,

Modified C-Fix, to calibrate and stabilize the functions of a

biogeochemical model, BIOME-BGC (Maselli et al.

2009a). This approach can efficiently predict monthly and

annual gross primary production (GPP) of all Italian forests

at a spatial scale of about 1 km2.

The conversion of GPP into NPP estimates is, however, a

non-trivial issue. The two variables, in fact, are only par-

tially interrelated when forest resources are strongly influ-

enced by management practices or other disturbing factors

(wildfires, pests and diseases). As noted by Maselli et al.

(2009b), forest GPP is an expression of total ecosystem

productivity, which includes the contribution of both trees

and understory vegetation (brushes and grasses). The latter

component can even prevail when tree density is low due to

the effect of heavy disturbances, which is relatively fre-

quent in Italy as well as in most other European and North

American countries (FRA 2010). In contrast, the forest NPP

which can be derived from tree increments is completely

related to the accumulation of woody biomass, which is

obviously limited in case of low tree density. This can give

rise to a substantial uncoupling between forest GPP and

NPP, which can be further complicated by the effects of

variable tree aging and stand development phases (Gower

et al. 1996; Song and Woodcock 2003). These factors,

which are also influenced by the mentioned disturbances,

affect the respiration and allocation patterns of forest

ecosystems and alter the relationship between GPP and NPP

(Thornton et al. 2002; Van Tuyl et al. 2005; Petritsch et al.

2007; Bergeron et al. 2008; Chiesi et al. 2012).

To address this issue, Maselli et al. (2009a) introduced

the concept of ecosystem distance from the quasi-equilib-

rium condition (sensu Odum 1971), which is aimed at

describing the actual status of forests consequent on bio-

mass reduction. Such conditions are simulated by the use of

BIOME-BGC and are then converted into the conditions of

real ecosystems through a proxy variable given by the ratio

of real over potential tree volumes. The approach is gen-

erally applicable on a regional scale, with implications and

limitations which are fully discussed in the same paper.

The current investigation aims at testing the applica-

bility of this approach to assess forest NPP on a national

scale in Italy. In particular, the modeling approach is ap-

plied over the Italian territory at the spatial resolution of

1 km2 using consistent spatially distributed input data

layers (terrain morphology, meteorology, forest type and

growing stock, etc.). The NPP estimates obtained are first

analyzed in order to assess the importance of the main

model drivers on relevant spatial variability. These esti-

mates, aggregated over seven main forest types and twenty

administrative regions, are then converted into current

annual increment of standing wood volume (CAI) by the

use of BEFs and validated through comparison with INFC

data.

The paper is organized as follows. The main features of

Italian forests are first described together with those of the

ground and remote sensing data utilized. The modeling

strategy is then introduced, followed by the main steps used

for applying it on the national territory, performing a

sensitivity analysis and validating the NPP estimates

against INFC increment data. Next, the results are de-

scribed and discussed, with distinctive reference to the

examination of the main sources of uncertainty in the

evaluation of NPP. The paper is concluded by a section

which highlights the potential contribution of the approach

for the assessment of forest carbon budget on a national

scale.

Study area and data

Main features of Italian forests

Italy is geographically situated between 36� and 47�300

north latitude and between 5�300 and 18�300 east longitude.

Its orography is complex due to the presence of two main

mountain chains, the Alps in the north and the Apennines

in the centre south. Italian climate is also very variable

following the latitudinal and altitudinal gradients and the

distance from the sea. In general, it ranges from Mediter-

ranean warm to temperate cool. The country is adminis-

tratively divided into 20 regions (Fig. 1).
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According to the CORINE Land Cover 2006 map

(ISPRA 2010), forest land (including bushland) covers

nearly 92,000 km2 in Italy. INFC (see www.infc.it), whose

data are based on the FAO (2010) forest definition, reports

a total extent of forest areas equal to 87,600 km2. Thirty-

two percent of the forest formations is included in the

Alpine biogeographical region, 16 % in the Continental

region and 52 % in the Mediterranean region (sensu

Habitat Directive of the European Commission 43/92).

According to INFC, the most widespread forest formations

are dominated by various oak species (Quercus spp.), a

fourth of which is characterized by the prevalence of ev-

ergreen oaks, and beech (Fagus sylvatica). Large part of

broadleaved forests are managed as coppices (Ciancio et al.

2006; Gasparini et al. 2009a). Among conifers, the most

abundant forest formations are dominated by Norway

spruce (Picea abies), followed by mountain pines (Pinus

sylvestris, P. nigra) and Mediterranean pines (P. halepen-

sis, P. pinaster, P. pinea). The main eco-climatic charac-

teristics of these forests are summarized in Table 1, while

their spatial distribution is shown in Fig. 1. Table 2 reports

relevant growing stock and CAI averages drawn from

INFC.

Data used

The digital elevation model (DEM) of Italy used for the

current study has a pixel size of 1 km2 and was derived

Fig. 1 Distribution of the seven

forest types listed in Table 1 as

derived from the CORINE Land

Cover 2006 map of Italy with

superimposed boundaries of the

twenty administrative regions in

Italy. The upper-right window

shows the DEM of Italy
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from the EU-DEM dataset carried within the framework of

the Global Monitoring for Environment and Security

(GMES) project (more info at http://www.eea.europa.eu/

data-and-maps/data/eu-dem). This DEM is projected in the

UTM-32 North reference system, which is taken as a

standard for the processing of all other information layers.

Basic daily weather variables (minimum and maximum

temperature and precipitation) for the Italian national ter-

ritory were derived from the E-OBS dataset (Haylock et al.

2008; van den Besselaar et al. 2011). This is a dataset

designed for use in a wide range of applications, which has

a grid spacing of 0.25� and a time-period coverage from

1950 to present. The dataset has been recently downscaled

to 1-km resolution by the use of a DEM (Maselli et al.

2012). The same study shows that the accuracy of the

downscaled dataset is high for daily temperatures (par-

ticularly maximum), and lower for rainfall. In the current

case, daily data of 8 years were considered (from 1999 to

2006), which approximately corresponded to the period

immediately preceding and contemporaneous to that of

INFC data collection (from 2003 to 2006, see below).

A forest-type map was derived from the CORINE Land

Cover 2006 map of Italy (ISPRA 2010). The original

CORINE dataset of Europe classifies forests at 1:1,00,000

scale (minimum mapping size of 25 ha) in three general

classes: broadleaved, coniferous and mixed (EEA 2002).

The available forest map instead classifies forests and other

wooded lands in 26 types on the basis of the dominant tree

species, maintaining the geometric and thematic congru-

ency with the original CORINE dataset. The forest map of

Italy was produced by manual photointerpretation of

Landsat imagery supported by several ancillary informa-

tion (ISPRA 2010). In a previous work (Maselli et al.

2006), the original vector dataset was rasterized at the

available DEM resolution (1 km2) grouping the original

classes into twelve main forest types (FTs). Among these

forest types, the seven, which are most widespread and

representative over the Italian territory, were selected in

conformity with what already done by Chiesi et al. (2007)

for Tuscany (Central Italy).

A 1-km map of forest growing stock has been recently

produced for the Italian national territory through the

combination of ground and satellite data (Maselli et al.

2014). More particularly, growing stock data from regional

inventories have been combined with optical and LiDAR

imagery acquired from satellite platforms to yield the map

shown in Fig. 2. The reliability of this map, assessed at

regional scale through comparison with INFC data, is de-

cidedly high (root mean square error, RMSE = 48 m3

ha-1; mean bias error, MBE = 11 m3 ha-1).

Table 2 Average growing stock and CAI of six forest types (FTs) obtained from the indicated sources (see text for details)

FT Average INFC

growing stock

(m3ha-1)

Average INFC CAI

(m3 ha-1 year-1)

Average growing stock

from Maselli et al. (2014)

(m3 ha-1)

Average CAI

from current simulation

(m3 ha-1 year-1)

1 72 2.44 78 2.3

2 97 2.86 123 4.9

3 176 6.48 225 10.3

4 231 5.19 256 6.8

5 131 3.57 111 2.1

6 379 7.69 386 9.1

Table 1 Definition and main features of the seven forest types (FTs) considered and the corresponding CORINE cover classes

FT Dominant forest species CORINE class definition Mean elevation (m) Mean temperature (�C) Mean rainfall (mm)

1 Evergreen oak Holm oak 428 15.3 577

2 Deciduous oak Mediterranean broadleaves 518 13.4 757

3 Chestnut Chestnut 623 12.4 925

4 Beech Beech 1,220 9.2 956

5 Plain/hilly conifers Mediterranean pines 349 15.5 605

6 Mountain conifers White fir/Norway spruce 1,418 6.7 894

7 Mediterranean macchia High maquis 348 16.1 502

The main eco-climatic features of the FTs were derived from the available ancillary data (DEM, meteorological dataset, see text for details)
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Normalized difference vegetation index (NDVI) images

taken by the Spot-Vegetation (VGT) sensor were obtained

from the archive of VITO (http://free.vgt.vito.be), which

freely distributes preprocessed 10-day maximum value

composite (MVC) images for the entire globe since April

1998. The applied preprocessing steps comprise the ra-

diometric calibration of the original channels and their

geometric and atmospheric corrections (Maisongrande

et al. 2004). The final product of these steps is 10-day

NDVI MVC images having a pixel size of about 1 km2. All

10-day images of Europe were downloaded for the same

period mentioned above (January 1999–December 2006).

From these images, a window over Italy was selected,

preprocessed as described in Maselli et al. (2006) and

further composited over monthly periods (e.g., Fig. 3).

The assessment of the model outputs was based on

reference forest data derived from the standing volumes

and the CAIs measured by the INFC (Gasparini et al.

2009a, b). This inventory comprised a three-phase sam-

pling (Fattorini et al. 2006). The first two phases were

aimed at estimating the forest area and its distribution into

different classes according to qualitative attributes (e.g.,

ownership, management issues, vegetation structure and

conditions, site features). The third phase was aimed at

collecting quantitative measurements of tree and stand at-

tributes by means of ground surveys carried out on about

7,000 plots. During this last phase, which was carried out

from 2003 to 2006, several forest variables (tree stem di-

ameter, tree height, tree stem diameter increment, etc.)

were collected on a plot basis. Statistics from these mea-

Fig. 2 Map of growing stock

produced by the combination of

regional inventory and satellite

data (see Maselli et al. 2014 for

details)
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surements are provided only in an aggregated form for all

Italian administrative regions. For more information and

for accessing online to the full-descriptive statistics pro-

duced by the Italian NFI, we refer to www.infc.it.

Modeling strategy

Modified C-Fix

C-Fix is a Monteith-type parametric model driven by

temperature, radiation and the fraction of absorbed photo-

synthetically active radiation (fAPAR), quantified through

its generalized relationship with the NDVI (Veroustraete

et al. 2002, 2004). NDVI, which is mathematically defined

as NDVI = [NIR - R]/[NIR ? R] where NIR stands for

near-infrared reflectance (0.7–1.1 lm wavelength) and R

stands for red reflectance (0.6–0.7 lm wavelength), is an

indicator of plant photosynthetic activity, and particularly

of fAPAR (Baret and Guyot 1991; Bannari et al. 1995).

C-Fix combines NDVI-derived fAPAR with field-based

estimates of incoming solar radiation and air temperature in

order to simulate total photosynthesis (Veroustraete et al.

2004). The model is conceptually simple and generally

applicable, and can use inputs averaged over different time

periods (most commonly 10 days to monthly). Maselli

et al. (2009b) proposed a modification of C-Fix aimed at

improving the model performance in Mediterranean areas,

which are characterized by a long summer dry season

during which vegetation growth is limited by water avail-

ability (Bolle et al. 2006). Modified C-Fix includes an

additional water stress factor, Cws, that is obtained from a

simplified site water balance and limits photosynthesis in

case of short-term water stress. Accordingly, the annual

GPP (g C m-2 year-1) of a forest ecosystem can be

computed as:

Fig. 3 Spot-VGT NDVI image

of August 2006, corrected as

described in Maselli et al.

(2006)
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GPP ¼ e
X12

i¼1

TcoriCwsifAPARiRadi ð1Þ

where e is the radiation use efficiency, Tcor i is a factor ac-

counting for the dependence of photosynthesis on air tem-

perature, Cwsi is the water stress factor, fAPARi is the fraction

of absorbed PAR, and Radi is the solar incident PAR, all

referred to month i. In the current case, e is equal to

1.2 g C MJ-1 APAR (Maselli et al. 2010), Tcor is the MODIS

temperature correction factor (Heinsch et al. 2003), Cws is

computed as the ratio between precipitation and potential

evapo-transpiration as described in Maselli et al. (2009b), and

fAPAR is derived from the top of canopy NDVI according to

the linear equation proposed by Myneni and Williams (1994).

BIOME-BGC

BIOME-BGC is a biogeochemical model developed at the

University of Montana to estimate the storage and fluxes of

water, carbon and nitrogen within all terrestrial ecosystems

(Running and Hunt 1993). It requires daily climate data,

information on the general environment (i.e., soil, vegetation

and site conditions) and parameters describing the eco-

physiological characteristics of vegetation. The model uses a

‘‘big-leaf’’ approach, meaning that vegetation canopy is

treated as a unique transpiring and photosynthesizing entity

which is characterized by its leaf area index (LAI) (Running

and Hunt 1993). BIOME-BGC is capable of finding a quasi-

climax equilibrium with local eco-climatic conditions

through the spin-up phase, whose aim is to quantify the

initial amount of all carbon and nitrogen pools; after that, it

proceeds with a normal simulation which estimates all res-

piration and allocation processes corresponding to the re-

quested study years (White et al. 2000; Churkina et al. 2003).

The modeling of quasi-climax condition has important

consequences on the simulated carbon budget. The sum of all

simulated respirations becomes in fact nearly equivalent to

GPP, which makes that annual NPP approaches heterotrophic

respiration (Rh) and net ecosystem exchange (NEE) tends to

zero. Also, such modeling renders the obtained GPP estimates

similar to those produced by C-Fix, which are descriptive of

all the ecosystem components (Maselli et al. 2009a).

The version of the model currently used (BIOME-BGC

4.2) includes complete parameter settings for six main

biome types (White et al. 2000). Previous methodological

works concerned the modification of these settings to adapt

to Mediterranean ecosystems, which show eco-climatic

features markedly different from those for which the model

was originally developed (see Chiesi et al. 2007; Maselli

et al. 2009a). In particular, the vegetation parameters of

BIOME-BGC were calibrated for the seven FTs of Table 1

by the use of GPP estimates derived from C-Fix. The

calibration consisted of slightly modifying the BIOME-

BGC eco-physiological parameters related to stomata

conductance, which control all the main transpiration and

production processes (Chiesi et al. 2010).

Correction for actual forest conditions

The strategy proposed by Maselli et al. (2009a) to address the

mentioned uncoupling between ecosystem GPP and woody

NPP is based on the integration of the outputs of C-Fix with

those of BIOME-BGC. The respiration and allocation estimates

obtained in the previous steps must in fact be transformed into

estimates of real forest ecosystems, which are generally far

from equilibrium conditions due to the occurred disturbances.

The modeling strategy considers the ratio between actual and

potential stem volume (or growing stock) as an indicator of

ecosystem proximity to climax. This ratio can therefore be used

to correct the photosynthesis and respiration estimates obtained

by the previous model simulations. According to this strategy,

actual forest NPP, NPPA, is approximated as:

NPPA ¼ GPP � FCA�Rgr � FCA � Rmn � NVA ð2Þ

where GPP, Rgr, and Rmn correspond to the GPP, growth

and maintenance respirations estimated by BIOME-BGC,

and the two terms FCA (actual forest cover) and NVA

(actual normalized volume) describe the ecosystem prox-

imity to equilibrium conditions (Maselli et al. 2009a). In

particular, NVA is the ratio between actual (measured or

estimated) and potential (simulated by BIOME-BGC)

growing stock, and FCA represents the fraction of forest

canopy cover, which is obtained by combining NVA and

BIOME-BGC maximum LAI following Beer’s law. In this

way, net carbon flux predictions change nonlinearly as the

ecosystem approaches equilibrium conditions.

Due to the previously described functional equivalence

of C-Fix and BIOME-BGC GPP estimates, the outputs

from the two models can be combined by multiplying

BIOME-BGC photosynthesis and respiration estimates for

a ratio between C-Fix and BIOME-BGC GPP (Maselli

et al. 2008). A detailed description of the entire strategy is

reported in Maselli et al. (2009a), along with all the as-

sumptions and the approximations for its application.

Data processing

Application of the modeling strategy

The described modeling strategy was applied to all Italian

forests over the 8 study years at spatial and temporal scales,

which represent a novelty with respect to previous inves-

tigations (Maselli et al. 2009a, 2010). In those cases, in

fact, the strategy was applied on aggregated spatial and/or
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temporal scales, while in the current simulation all model

runs were carried out at 1-km-pixel resolution and daily

time step.

First, Modified C-Fix was driven by the downscaled

E-OBS dataset and the Spot-VGT imagery. To this aim,

daily solar radiation was derived from 1-km temperature

and rainfall estimates by the use of MT-CLIM (Thornton

et al. 2000); it was then converted into PAR applying a

coefficient equal to 0.464 (Iqbal 1983). The CORINE land

cover map reclassified into seven main forest types was

transformed into relevant abundance images. Using these

images, monthly spatially variable multi-temporal NDVI

profiles of each forest type were then extracted from the

Spot-VGT MVC imagery using the methodology of

Maselli (2001). This methodology is capable of estimating

spatially variable NDVI end-members of pure classes re-

lying on the higher spatial resolution land cover map. The

monthly NDVI values of the seven FTs were linearly in-

terpolated on a daily basis and recombined with the me-

teorological data through Eq. (1) to predict the GPP for

each FT. The recombination of these estimates with the

CORINE abundance images yielded corresponding GPP

maps for the entire Italian territory.

Next, BIOME-BGC was fed with the same meteoro-

logical dataset and CORINE map, using the parameter

settings identified as optimum for each FT. Daily estimates

of GPP and respirations were thus obtained, together with

annual values of stem carbon and LAI. All these data were

aggregated on an annual basis, averaged over the whole

study period and combined through Eq. (2) with the actual

per-pixel growing stock estimates derived from the avail-

able map in order to produce a mean forest NPP map.

Sensitivity analysis and accuracy assessment

A sensitivity analysis was first conducted to quantify the

importance of the main model drivers in determining the

spatial variability of the obtained NPP estimates on the

national territory. This was carried out by computing the

percentage of spatial NPP variance explained by each main

model driver, i.e., mean annual temperature, mean annual

rainfall, mean annual NDVI, forest type and growing stock.

The same analysis was repeated considering separately

broadleaved (i.e., FT1, FT2, FT3, FT4 and FT7) and

coniferous (i.e., FT5 and FT6) forests. Next, attention was

focused on the most important model driver, investigating

the spatial variability of its influence on NPP by means of

spatially (or geographically) weighted variance analysis

(Brunsdon et al. 1996; Maselli 2002).

The accuracy assessment was carried out using the re-

gional INFC data. Specifically, regional mean values were

extracted from the NPP map produced by the modeling

strategy for the seven forest types considering the

administrative regions where the presence of each forest

type was significant (at least 10 1-km2 pixels). These val-

ues were transformed into CAI estimates through the

formula:

CAI ¼ NPPA � SCA=BEF=BWD � 2 � 100 ð3Þ

where SCA is the Stem C allocation ratio, BEF is the

volume of aboveground biomass/standing volume biomass

expansion factor (both dimensionless), and BWD is the

basic wood density (Mg m-3). The SCAs of the seven

forest types are those of BIOME-BGC, while BEFs and

BWDs are taken from Federici et al. (2008) and Maselli

et al. (2010). The multiplication by two accounts for the

transformation from carbon to dry matter, and multiplica-

tion by 100 for the change in magnitude from g m-2 to

Mg ha-1. The modeled CAI values were finally validated

versus the INFC CAIs. The accuracy assessment was

summarized using the coefficient of determination (r2), the

RMSE and the MBE.

Results

The seven FTs considered are mostly distributed over hilly

and mountain zones (Table 1; Fig. 1). The climatic fea-

tures of these zones range from Mediterranean dry (FT7,

FT1 and FT5) to Mediterranean temperate (FT2 and FT3)

and temperate humid (FT4 and FT6) following both

latitudinal and altitudinal gradients. Broadleaved species

are found along the whole climatic range (from FT7 to

FT4), while conifers are mostly found in the driest (FT5)

and wettest (FT6) areas. Mean growing stocks derived

from both INFC and the map of Maselli et al. (2014)

generally follow the main eco-climatic gradient, increasing

from the driest to the most humid ecosystems (Table 2;

Fig. 2). The same gradient is followed by INFC CAI av-

erages (Table 2).

The mean annual forest GPP simulated over the study

period mostly ranges from 700 to 1800 g C m-2year-1.

In general, Mediterranean forest types (FT1 among

broadleaved, and FT5 among needleleaves) show the

highest GPP levels. These forests grow in temperate ar-

eas, and their photosynthetic activity is limited mainly by

water availability during the dry season. Mountain

ecosystems (FT4 and FT6), which are limited by the

thermal factor during most of the year, show the lowest

GPP levels. Overall, the prevalence of thermal limitation

determines decreasing trends of GPP from Southern, plain

areas to northern mountain zones, following the main

latitudinal and altitudinal gradients. These trends are

complicated by the previously mentioned occurrence of

summer water stress in the most arid areas of central-

southern Italy.
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The NPP map produced by the modeling strategy is

shown in Fig. 4. NPP follows both GPP gradients and the

distribution of growing stock. NPP, in fact, generally fol-

lows growing stock variability with two exceptions: Forest

production decreases on the upper mountain zones (over

1,500 m, mainly on the Alps and, secondarily, on the

Central Apennines) due to thermal limitation and, less

evidently, in southern Italy (particularly in the two main

islands, Sicily and Sardinia) due to water stress. The

highest NPP values (around 800–900 g C m-2 year-1) are

therefore reached at intermediate altitudes on the Alps and

Apennines.

The results of the sensitivity analysis are summarized in

Fig. 5. Out of the meteorological factors, mean temperature

and rainfall explain a similar percentage of NPP variance

(around 45 %). A lower percentage of NPP variance is

explained by NDVI (9 %), which drives only C-Fix func-

tioning. Forest type determines almost 50 % of NPP vari-

ance. Growing stock is by far the most influential model

driver, explaining over 60 % of NPP variance. The sum of

all explained variances is obviously higher than 100 %, due

to the strong intercorrelations among the drivers, which all

follow the previously mentioned main eco-climatic gradi-

ents related to latitude and altitude. When considering

separately broadleaved and coniferous forests, the impor-

tance of mean temperature is higher for the latter, while the

opposite is true for rainfall. The influence of NDVI is quite

low and slightly higher for conifers, while that of FT and,

above all, growing stock is much higher for broadleaves.

Following these results, spatially weighted variance

analysis was focused on growing stock; the spatial vari-

ability of this analysis was regulated by means of a

Fig. 4 Map of mean annual

forest NPP computed by the

modeling strategy here

proposed over the period

1999–2006
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negative exponential weighting function having a distance

range of 33 km. The resulting spatially weighted percent-

age of NPP variance explained by growing stock is shown

in Fig. 6. This variance is very high over most of the Italian

territory, with major reductions on the highest Alpine

mountains and, to a lower degree, the Central Apennines.

Minor reductions in NPP variance are found in Sicily and

Sardinia.

The comparisons between measured (INFC) and mod-

eled CAI values yield the results summarized in Table 3

and in Fig. 7. The reported accuracy statistics are com-

puted for reduced numbers of points due to the absence, or

marginal presence, of some forest types in some regions.

The overall accuracy for each forest type is from low to

moderate, with significant overestimation for FT2, FT4

and, above all, FT3. As regards the global comparison of

Fig. 7, the agreement between the two data series is good

both in terms of correlation and errors, with a moderate

tendency to overestimation which mostly derives from

similar errors found for the three deciduous broadleaf

forest types.

Discussion

The application of Modified C-Fix and BIOME-BGC on a

national scale relies on the consolidated capacity of these

models to correctly predict the annual GPP of Mediter-

ranean forests at 1-km2 spatial resolution (Maselli et al.

2009a). Distinctively, Modified C-Fix, being driven by a

direct estimate of fAPAR, is usually more accurate than

BIOME-BGC and less sensitive to possible errors in the

conventional model drivers (meteorological data, site in-

formation, etc.) (Maselli et al. 2009b). In contrast, the latter

biogeochemical model allows a complete simulation of all

main forest processes (photosynthesis, respirations, allo-

cations, etc.). Combining the outputs of the two models

therefore permits the optimal exploitation of the respective

potentials (Turner et al. 2004).

The ability of the two models to predict the main forest

processes is not sufficient to guarantee the correct estima-

tion of NPP, due to the complexity of the relationships

which link total ecosystem production to woody biomass

accumulation. Both forest GPP and NPP predicted by

Monteith’s approaches and those simulated by BIOME-

BGC are, in fact, descriptive of fully stocked, quasi-equi-

librium forest ecosystems (Maselli et al. 2009a; Hasenauer

et al. 2012). In reality, this NPP can be significantly re-

duced by various kinds of forest disturbances (e.g., thin-

ning and cutting operations, wildfires), which limit the

woody biomass that actually grows. This situation prevents

the application of simple estimation methods which con-

sider woody NPP as a constant ratio of GPP (Waring et al.

1998). In the current case, the constant ratio approach

provides CAI estimates which are almost two times higher

than those from INFC (data not shown). A similar over-

estimation is obtained when directly using the NPP/GPP

fractions simulated by BIOME-BGC, which are still de-

scriptive of forest ecosystems at equilibrium conditions.

The modeling strategy of Maselli et al. (2009a) was

specifically developed to account for the effects of intense

forest disturbances. The current application of this strategy

yields regional CAI estimates which are globally in good

agreement with the INFC estimates, but are still higher

than those. Part of this discrepancy is due to the intrinsic

and mostly unavoidable inaccuracy of the modeling ap-

proach applied and of the data layers used. Among these,

the meteorological drivers affect the functions of both basic

models used; as a consequence, the modeling approach is

similarly sensitive to temperature and precipitation. Tem-

perature is more influential on coniferous species, which

are almost all evergreen, and the opposite is true for rain-

fall. These last patterns can be explained considering the

greater role exerted by water limitation for deciduous

species (Turner et al. 2004), which in our case correspond

mostly to broadleaves.

The sensitivity of NPP to NDVI is quite low and slightly

higher for coniferous species, which are prevalently dis-

tributed on the highest Alpine zones where vegetation

phenology is constrained by the thermal factor. This C-Fix

driver, in fact, is important to determine the temporal GPP

evolution of forest ecosystems and, additionally, stabilize

relevant model functions. In particular, the results obtained

by Chiesi et al. (2007) indicate that the integration of C-Fix

and BIOME-BGC outputs notably reduces the negative

effects of inaccurate ground data thanks to the information

provided by NDVI-derived fAPAR estimates. The accu-

racy of the currently used NDVI dataset is enhanced by the

extraction method applied, which is effective in reducing

local errors and noise (Maselli 2002).

Fig. 5 Results of the sensitivity analysis; percentage of NPP variance

explained by the main model drivers over the entire Italian national

territory for all, broadleaved and coniferous species
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In addition to meteorological and remotely sensed data,

the current modeling of forest NPP and CAI utilizes spa-

tially distributed estimates of FT and growing stock. FT

determines all BIOME-BGC eco-physiological parameters

and is therefore important in differentiating the relevant

processes (i.e., photosynthesis, respirations, allocations).

These processes mostly differ between evergreen and de-

ciduous forests, which are both present among broadleaves.

This explains the highest importance of FT for this func-

tional group. The FT estimates currently used are derived

from the CORINE land cover map of Italy, which is surely

accurate at the considered spatial scale but could be re-

placed by any other information layer descriptive of forest

cover.

Growing stock is the main driver of the whole modeling

approach, due to the importance of initial carbon pools in

determining woody biomass accumulation (Turner et al.

2004, Maselli et al. 2009a). This is particularly the case for

broadleaved forests, while the impact of growing stock is

Table 3 Accuracy of CAI estimates obtained by the modeling

strategy here proposed versus the regional estimates reported by INFC

FT No. regions r RMSE

(m3 ha-1)

MBE

(m3 ha-1)

1 9 0.470 0.57 -0.11

2 15 0.469 2.08 2.11

3 10 0.156 4.04 3.85

4 17 0.560* 1.75 1.47

5 8 0.665 1.62 -1.31

6 8 0.813* 1.83 0.91

* Significant correlation, P \ 0.05

Fig. 6 Spatially weighted

percentage of NPP variance

explained by growing stock

over the entire Italian national

territory (see text for details)
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minor for conifers. Such behavior can be attributed to the

contrasting effects of thermal and water limitations on

coniferous forests, which are widespread in both coldest

(highest) and driest (most southern) areas. This is con-

firmed by the spatially weighted variance analysis, which

shows that major minima of growing stock influence on

NPP exist in the highest Alpine and, to a lesser degree,

Apennine zones. These minima are evidently due to the

thermal limitation of forest growth, which weakens the

positive relationship between woody biomass and NPP.

Similarly, secondary minima of growing stock influence

are found in the most southern, driest regions, where the

same relationship is constrained by water stress. The map

of growing stock produced by Maselli et al. (2014) repre-

sents an improvement with respect to previous Pan-Euro-

pean products (e.g., Gallaun et al. 2010), but still shows

minor systematic errors for some FTs: the growing stock of

FT5 is, in fact, underestimated, while that of all other FTs

is variably overestimated. This is directly reflected on the

CAI values obtained by the current method, which are

similarly overestimated or underestimated (Table 2), con-

firming the relevance of growing stock as model driver.

The general CAI overestimation currently found is

similar to that obtained by Maselli et al. (2010) and is

likely related not only to the modeling approach applied

but also to the reference data used. The disagreement be-

tween measured and estimated CAI values, in fact, could

be affected by the measurement protocol applied in the

collection of the ground data. According to that protocol,

not all the field plots where conventional forest attributes

are measured (number of trees, basal area, standing vol-

ume, etc.) are surveyed to derive the increment statistics,

due to the complexity which is inherent in the collection

and analysis of tree cores (Gasparini et al. 2009a). For the

same reason, within each selected plot the cores are taken

only from a limited number of tree stems (from four to ten),

which mostly coincide with the biggest (oldest) plants. The

mean relative CAI of these trees (i.e., CAI/growing stock)

is then extrapolated to predict the total growing stock of the

plot. Since relative CAI generally tends to decrease with

tree size (age), such a procedure likely brings to CAI un-

derestimation. This hypothesis is supported by Marziliano

et al. (2012), who have theoretically stressed that the INFC

protocol applied for estimating increments invariably leads

to underestimation in the case of mature even-aged stands.

Simulation analyses carried out using growing stock and

CAI data taken in various study sites (Chiesi et al. 2012,

2014) indicate that within-plot tree heterogeneity can re-

duce the CAI determined through the INFC protocol par-

ticularly for coppice forests, where few dominant plants are

intermingled with many smaller trees. Such a hypothesis is

supported by further statistical analysis of the data shown

in Fig. 7, whose results are summarized in Table 4. In spite

of the notable CAI overestimation (MBE = 1.3 m3

ha-1 year-1), the intercept and slope of the regression

equation defined considering all data points are not sig-

nificantly different from 0 and 1, respectively. The same is

the case considering only points of species which are

Table 4 Statistics obtained by linearly regressing the CAI estimated by the modeling strategy here proposed (dependent variable) on INFC CAI

estimates (independent variable)

Data points considered (number) r Intercept

(m3 ha-1 year-1)

Slope

(dimensionless)

All species (67) 0.804** 0.90 1.10

High forest species (25) 0.916** -0.72 1.12

Coppice species (42) 0.797** 2.21** 1.01

First, all data points of Fig. 5 are considered; next, these points are split into species which are managed as high forest and species which are

prevalently managed as coppice

** Correlation and intercept significantly different from 0, P \ 0.01

Fig. 7 Comparison between the regional estimates of CAI provided

by INFC and those estimated by the modeling strategy here proposed

(n = 67, **highly significant correlation, P \ 0.01)
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managed as high forests, for which CAI is marginally un-

derestimated (MBE = -0.2 m3 ha-1 year-1). In contrast,

a notable overestimation (MBE = 2.2 m3 ha-1 year-1)

and an intercept significantly higher than 0 (2.2 m3

ha-1 year-1, P \ 0.01) are obtained when considering

only points of species mostly managed as coppice. This

indicates that the modeling strategy here proposed over-

estimates CAI, with respect to the INFC estimates, mostly

for these forests, where intra-plot tree size heterogeneity is

usually maximum. Such an explanation is in agreement

with Maselli et al. (2010), who has evidenced that the CAI

statistics of the forest inventory carried out by the Tuscany

regional administration are consistently higher than the

corresponding values provided by INFC for the same

region.

All these considerations confirm the existence of the

problematic framework mentioned in the introduction. As a

matter of fact, the disagreements from the various inven-

tories as well as the overestimation of our modeling ap-

proach with respect to INFC data are likely originated by a

number of causes. In addition to the mentioned application

of different data collection and elaboration protocols, a

major problem could be finally related to the use of dif-

ferent definitions of forest area and forest classes (Tosi and

Monteccone 2004). This is a well-known source of

uncertainty in the collection of forest statistics, since

categorical definitions are generally variable depending on

the context and objectives of the inventory (Vidal et al.

2009). Indeed, the need for harmonizing forest inventory

protocols is a current topic issue (McRoberts et al. 2009).

Conclusions

The modeling strategy applied was specifically developed

to account for the state of forests which are kept far from

equilibrium conditions by a long and intense disturbance

history. The application of this strategy requires, in addi-

tion to the data needed to feed the two basic models

(Modified C-Fix and BIOME-BGC), spatially extended

estimates of forest standing volume, which were presently

derived from a recent data integration effort. All data layers

currently used are obviously affected by errors and

uncertainty, which negatively influence the final accuracy

of the model outputs. Moreover, the analysis conducted by

Maselli et al. (2010) indicated that also the reference CAI

measurements are affected by intrinsic uncertainty.

As a consequence, the CAI values obtained by the

modeling approach are only in moderate agreement with

INFC data and show a tendency to overestimation which is

more evident for forest stands managed as coppices. This

tendency can be attributed to both the most influential

driver used, growing stock, and the protocol applied for

collecting and elaborating the ground measurements. This

confirms the critical nature of this subject area and can

have important consequences on the regional-scale

assessment of carbon accumulation in forest ecosystems.

The use of estimation methods based on the integration of

multisource ground and remote sensing data (Chirici et al.

2012) is proposed as a possible means to explore and, if

possible, reduce such uncertainty with limited labor and

cost expenses additional to those of the ground data col-

lection and elaboration.
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