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Abstract A total of 31 taper functions from 3 different
groups of models (single, segmented and variable-form
taper functions) were fitted to diameter-height data from
203 Pinus pinaster trees sampled across even-aged stands
in Galicia (northwestern Spain). Most of the taper
functions analyzed showed problems of multicollinearity
as indicated by the condition number. A second-order
autoregressive CAR(2) error process was incorporated
into the models to minimize the effect of autocorrelation
inherent in the longitudinal data used, and to provide
valid tests of significance for model parameter estimates.
In general, variable-form taper functions provided the
most accurate predictions. The flexibility and predictive
performance of the variable-form model developed by
Kozak (For Chron 80(4):507–515, 2004) indicated its
usefulness for estimating diameter at a specific height,
merchantable volume, and total volume of Maritime
pine in the study area.

Keywords Taper functions Æ Autocorrelation Æ
Multicollinearity

Introduction

Maritime pine (Pinus pinaster Ait.) is the most common
forest species in Galicia (northwestern Spain), and oc-
curs in both naturally regenerated stands and planta-
tions. According to the third Spanish National Forest
Inventory, almost 390,000 ha of land in Galicia are
occupied by pure stands stocked with Maritime pine,
and some 240,000 ha are occupied by mixed stands,
mainly of eucalyptus and other pine or broad-leaved
species; together these correspond to nearly 45% of the
forested area in Galicia (Xunta de Galicia 2001).

Comparison of the data from the two most recent
Spanish National Forest Inventories shows that
P. pinaster cover increased slightly (by less than 5%) in
Galicia between 1987 and 1998. The area occupied by
mixed stands of P. pinaster, Pinus radiata and Pinus
sylvestris has increased by almost 57%, whereas the area
occupied by mixtures of P. pinaster and Eucalyptus spp.
(mainly E. globulus) has increased by almost 17%.

In 1999 the total harvest of P. pinaster in Galicia was
almost 2,300,000 m3, which represented approximately
39% of the total regional harvest and almost 20% of the
national Spanish timber harvest (Ministerio de Agri-
cultura 1999). Wood of Maritime pine is mainly used for
the chipboard and timber industries.

The Forest Plan of Galicia (Xunta de Galicia 1992)
outlines P. pinaster as one of the species recommended
for reforestation in the immediate future in the region,
and furthermore that the Atlantic coast of Galicia
should be considered for reforestation, mainly with this
species of pine (Rodrı́guez-Soalleiro 1997).

There are some tools currently available for calcu-
lating the wood volume of Maritime pine stands, such as
the equations used in the second National Forest
Inventory, which are generally not of proven accuracy,
and the volume equations included in some research
studies (e.g. Rodrı́guez-Soalleiro 1995). However, none
of these tools allows the estimation of merchantable
volume at any stem diameter along the trunk in accor-
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dance with wood use in the industry, in spite of the
importance of the species in Galicia.

This problem can be solved by developing stem taper
functions or stem form equations (Kozak 1988; Newn-
ham 1992; Riemer et al. 1995; Bi 2000). A stem form
equation describes a mathematical relation between tree
height and the stem diameter at that height. It is thus
possible to calculate the stem diameter at any arbitrary
height and conversely, to calculate the tree height for
any arbitrary stem diameter. Consequently, the stem
volume can be calculated for any log specification and it
is possible to develop a volume equation for classified
product dimensions (Castedo and Álvarez-González
2000; Gadow et al. 2001).

There are very few references to taper functions for P.
pinaster in the available literature; one example is the
study by Prieto and Tolosana (1991) and another that of
Palma (1998), who used the taper equations developed
by Kozak et al. (1969) and Demaerschalk (1972) to
establish the influence of age on the stem form of the
species sampled in the Portuguese coast. A taper func-
tion has not yet been developed for P. pinaster in Gali-
cia.

The objective of the present study was to evaluate the
performance of some well-known taper functions for P.
pinaster in Galicia.

Materials and methods

Data

A total of 203 trees sampled from even-aged Maritime
pine stands were used in the present study. The trees
were taken from stands located throughout the area of
distribution of Maritime pine in Galicia (Fig. 1), and
included the existing range of diameters and heights
(Fig. 2). Diameter at breast height (1.3 m above ground
level) was measured to the nearest 0.1 cm in each tree.
The trees were then felled leaving stumps of average
height 0.11 m, and total bole length was measured to the
nearest 0.01 m. Measurement intervals above breast
height varied between 1 m and 2.5 m depending on the
total tree height. In each section, two perpendicular
diameters outside-bark were measured to the nearest

0.1 cm, and were then arithmetically averaged. Log
volumes in cubic meters were calculated using Smalian’s
formula (Smalian 1837).

Figure 3 shows a plot of relative height against rela-
tive diameter, which are defined as the ratio between
height above ground level to an upper-stem diameter
and total tree height, and the ratio between an upper-
stem diameter and diameter at breast height, respec-
tively. A local regression curve with a smoothing
parameter of 0.25 was fitted using the LOESS procedure
of SAS/STAT (SAS Institute Inc. 2000a). This ap-
proach, pioneered by Cleveland et al. (1988), is flexible
because no assumptions about the parametric form of
the regression model are needed. The residuals of the
nonparametric curve were examined for detecting
abnormal data points (Bi 2000).

Models used

Many forms and types of stem profile models have been
reported and evaluated for accuracy and precision
(Sterba 1980). All of these models can be classified into
three major groups: (1) single taper models; (2) seg-
mented taper models and (3) variable form taper models.

Single taper models describe the entire profile of the
stem using a single equation. The first models developed
used lower order polynomials, in terms of the relative
height on the stem. However, they were inadequate for
describing the area near the base of the stem, therefore,
high order polynomials were used to correctly charac-
terize the butt swelling. Other single taper models use
trigonometric functions to describe the bole taper. There
are two characteristics that indicate that trigonometric
functions may provide accurate stem profile models: (1)
the analogy between trigonometric functions on the unit
circle and the relative-height-relative diameter plots
presented in many taper equations and (2) trigonometric
functions can be expressed as Taylor’s series of high-
order polynomials (Thomas and Parresol 1991). Some
single taper models use a power function of the relative
height to define the stem profile. This approach was first
introduced by Demaerschalk (1972) to develop a com-
patible volume system that ensures compatibility
between the taper function and a total volume equation.

Fig. 1 Map showing the
location of the sampled areas in
Galicia and the location of
Galicia within Spain

178



A total of 20 single taper models were fitted in the
present study; 10 of these are polynomials (Munro 1966;
Bruce et al. 1968; two models proposed by Kozak et al.
1969; Bennett and Swindel 1972; Cervera 1973; Goul-
ding and Murray 1976; Coffre 1982; Real and Moore
1986; and Jiménez et al. 1994), eight are power functions
(Demaerschalk 1972; two models by Demaerschalk
1973; Ormerod 1973; two models by Newberry and
Burkhart 1986; Reed and Green 1984; and Forslund
1990), one is a trigonometric function-based model
(Thomas and Parresol 1991) and the last is an expo-
nential model proposed by Biging (1984).

Relatively simple taper functions effectively describe
the general taper of trees. However, they fail to cha-
racterise the entire stem profile and introduce bias,
especially for the area near the butt and at the very top
sections of tree (Jiang 2004). Max and Burkhart (1976)
introduced the so-called segmented taper models to
overcome the bias-induced poor performance of single
taper models. These models use different sub-functions
for various parts of the stem, conditioned to join
smoothly, i.e. requiring the taper function to be C2. The
models selected were those of Max and Burkhart (1976),
Valenti and Cao (1986), Parresol et al. (1987) and Farrar
(1987). The first two models join three quadratic sub-
functions at two join points, the model of Parresol et al.

(1987) joins two cubic polynomials and the latter joins a
power function with a combined-variable polynomial.

A variable-form taper model describes the bole shape
with a changing exponent or variable from ground to
top to represent the neiloid, paraboloid, conic and sev-
eral intermediate forms (Kozak 1997). This approach is
based on the assumption that the stem form varies
continuously along the length of a tree (Lee et al. 2003).
In comparison with single and segmented taper models,
this approach provides the lowest degree of local bias
and greatest precision in taper predictions (e.g. Newn-
ham 1988; Kozak 1988; Pérez et al. 1990; Muhairwe
1999). Seven variable-form taper models were analyzed
in the present study: the model proposed by Riemer et
al. (1995), two models proposed by Kozak (1988, 2004),
two models proposed by Muhairwe (1999), the model
proposed by Bi (2000), and the variable-exponent model
proposed by Lee et al. (2003).

The mathematical expressions corresponding to
each of the 31 taper functions that were used are
shown in Table 1. The following notation will be used
hereafter:

D Diameter at breast height outside bark (cm)

H Total height (m)

h Height above ground level (m)

d Diameter outside bark at a height h (cm)

bi Coefficient to be estimated

X ((H � h)/(H � 1.30))

T h/H

Vm Tree roundwood volume with bark (m3). This
variable has been obtained for each tree with the
Smalian formula.

K (p/40,000) is a constant to transform squared
diameters into sections.

Z ((H�h)/(H))

p (hi/H) where hi is the stem height of inflection
point where the taper curve changes from neilod
to parabolid.

According to Pérez et al. (1990) this inflection point is
assumed to occur at between 15% and 35% of the total
height. However, in the present study the parameter p
was estimated.

Fig. 3 Relative height plotted against relative diameter with a
nonparametric local regression smoothing curve

Fig. 2 Scatter plot and frequency of height and diameter of the 203
sample trees
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Multicollinearity and autocorrelation

Multicollinearity is defined as a high degree of correla-
tion among several independent variables. This occurs
when too many variables have been included in a model
and a number of different variables measure similar
phenomena. The existence of multicollinearity is not a
violation of the assumptions underlying the use of
regression, and therefore does not seriously affect the
predictive ability of the model (Myers 1990; Kozak
1997). However, the presence of multicollinearity may
inhibit the usefulness of the results as follows: (1) the
variance of the predicted values tends to be inflated,
especially when the values are not included in the sample
used to fit the model, (2) the standard errors of the
regression coefficients often have large variances with
consequent lack of statistical significance, or have
incorrect signs or are of the wrong magnitude (Myers
1990). The existence of multicollinearity is usual when
developing taper functions with overcomplicated models
that include several polynomial and cross-product
terms.

To evaluate the presence of multicollinearity among
variables in the models analyzed, the condition number
was used; this is defined as the square root of the ratio of
the largest to the smallest eigenvalue of the correlation
matrix. The criteria for a condition number value that
indicates serious multicollinearity are arbitrary, al-
though a value of 30 is often quoted. Myers (1990)
proposed a condition number of the correlation matrix
higher than

ffiffiffiffiffiffiffiffiffiffi
1000
p

as indicative of serious multicollin-
earity.

In regression analysis, it is assumed that the error
terms are independent, identically distributed, normal,
random variables. However, construction of taper
functions requires the collection of multiple observations
for each tree (i.e., longitudinal data). Thus, it is rea-
sonable to expect that the observations within each tree
are spatially correlated, and that the assumption of
independent error terms is violated. Although a statis-
tical study of the correct analysis of the error structure
of this kind of data exists (Zimmerman and Núñez-
Antón 2001) it has often been ignored (Gregoire et al.
1995), mainly because the parameter estimates and the
predicted values remain unbiased in the presence of
autocorrelation (Kozak 1997). However, autocorrela-
tion can have several adverse consequences in terms of
the statistical inference when the aim is to identify sta-
tistically significant predictor variables (Garber and
Maguire 2003).

Two general methods have been proposed to deal
with continuous, unbalanced, multilevel longitudinal
data. The first is to incorporate random subject effects
(Gregoire et al. 1995), and the second is to model the
correlation structure directly. In the present study a
second-order continuous-time autoregressive error
structure CAR(2) was used to overcome the inherent
autocorrelation of the longitudinal data used. This error
structure permits the model to be applied to irregularlyM
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spaced, unbalanced data (Gregoire et al. 1995; Zimm-
erman and Núñez-Antón 2001), both of which are
characteristics of many forestry data sets (West et al.
1984). The CAR(2) model expands the error terms in the
following way (Zimmerman and Núñez-Antón 2001):

eij ¼ d1q
hij�hij�1
1 eij�1 þ d2q

hij�hij�2
2 eij�2 þ eij ð1Þ

where eij is the jth ordinary residual on the ith individual
(i.e., the difference between the observed and the esti-
mated diameters of the tree i at height measurement j),
dk=1 for j>k k=1,2 and it is zero for j £ k, qk are the
autoregressive parameters to be estimated, and hij�hijk
are the distances separating the jth from the jth-k
observations within each tree, hij> hij�k.

The main purpose of using the autocorrelation error
structure is to obtain unbiased and efficient estimates of
the parameters (Huang 1997; Parresol and Vissage
1998), and therefore the autocorrelation parameters qk

are generally ignored when using the model for pre-
dicting diameter and height. To evaluate the presence of
autocorrelation and the effect of the CAR(2) error
structure used, graphs representing residuals versus lag-
residuals from previous observations within each tree
were examined visually.

Fitting methodology and model validation

All the models were fitted by generalized least squares
using the MODEL procedure of the SAS/ETS statistics
programme (SAS Institute Inc. 2000b).

The accuracy and precision of diameter estimates of
each model were compared using graphic and numeric
analysis of the residuals (ei). The plots of studentized
residuals against the predicted diameter were examined
for detection of possible systematic discrepancies. Three
statistical criteria obtained from the residuals were also
examined: bias ð�EÞ; mean square error (MSE) and the
adjusted coefficient of determination (R2

adj). These
expressions may be summarized as follows:

Bias �E ¼
Xn

i¼1

yi � ŷi

n
ð2Þ

Mean square error MSE ¼
Xn

i¼1

ðyi � ŷiÞ2

n� p
ð3Þ

Adjusted coefficient of determination

R2
adj ¼ 1� ðn� 1Þ �

Xn

i¼1

ðyi � ŷiÞ2

n� p
�
Xn

i¼1
ðyi � �yiÞ2

ð4Þ

where ei ¼ yi � ŷi; and yi,ŷi and �yi are the measured,
predicted and average values of the dependent variable,
respectively; n is the total number of observations used
to fit the model and p is the number of model parame-
ters.

Akaike’s information criterion differences (AICd),
which is an index for selecting the best model that is

based on minimizing the Kullback-Liebler distance, was
used to compare models with a different number of
parameters (Burnham and Anderson 1998):

AICd ¼ n � ln r̂2 þ 2 � ðp þ 1Þ
�minðn � ln r̂2 þ 2 � ðp þ 1ÞÞ ð5Þ

where p is the number of parameters of the model and r̂2

is the estimator of the error variance of the model:

r̂2 ¼
Xn

i¼1

ðyi � ŷiÞ2

n
:

Finally, a cross-validation approach was used to
evaluate the prediction performance of the models. The
bias, mean square error (MSE) and model efficiency of
the estimates (ME), calculated by Eq. 4, were estimated
using the residuals for fitting the model to a new data set
obtained by deleting the observations of ten trees at a
time selected from the same size category from the ori-
ginal data set. Although this approach is not a real
method of model validation, it has been used as an
additional criterion for selecting the best model and for
detecting outliers (Myers 1990). Plots of the studentized
residuals against the predicted diameter and plots
showing the observed against the predicted diameter in
cross-validation were also analyzed to detect systematic
trends.

Results and discussion

After estimating the fit and cross-validation statistics of
each one of the 31 models fitted, six models were selected
for further analysis. In general, the variable-form models
showed the best results, therefore, the four best variable-
form taper equations (Kozak 1988; Riemer et al. 1995;
Bi 2000 and Kozak 2004), the best simple taper function
(Cervera 1973) and the best segmented model (Max and
Burkhart 1976) were selected. The parameter estimates
of each model are shown in Table 2, and the statistics of
fit and cross-validation are given in Table 3.

The statistics in Table 3 and analyses of residual
plots indicate that there are important differences
among the three groups of models, but not among the
variable-form taper models that showed the best per-
formance in both fit and cross-validation phases. The
taper function proposed by Kozak (2004) provided the
best results on the basis of most statistics of fit and
cross-validation.

The condition number clearly indicates the severity of
multicollinearity in the models of Cervera (1973), Max
and Burkhart (1976), and Kozak (1988), and to a lesser
extent in Bi’s (2000) model. However, the model pro-
posed by Kozak (2004) and, especially the variable-form
model proposed by Riemer et al. (1995) showed much
lower multicollinearity. Similar results were found by
Kozak (1997), who compared different variable-form
taper equations.
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Nonlinear fit of P. pinaster initially resulted in lag two
autocorrelation in all the models, as expected because of
the longitudinal nature of the data used for fitting. An

example of the fit obtained with the Kozak (2004) model
is shown in Fig. 4 (first row). Incorporation of the
CAR(2) process removed the autocorrelation, as in-

Table 3 Values of the statistics in the fitting and validation step

Model Parameters Fitting Validation

R2
adj MSE ��E D j Condition number ME MSE ��E D j

Cervera (1973) 5 0.9852 2.8616 �0.0362 1016.03 380.33 0.9777 4.3028 �0.1175 1565.54
Max and Burkhart (1976) 6 0.9873 2.4527 0.0446 431.79 340.21 0.9804 3.7867 0.0877 1081.62
Riemer et al. (1995) 3 0.9883 2.2686 0.0902 132.73 5.33 0.9832 3.2398 0.1561 486.65
Kozak (1988) 9 0.9884 2.2331 �0.0442 78.90 358.53 0.9824 3.3932 �0.2604 668.18
Bi (2000) 7 0.9886 2.2093 �0.0562 36.29 168.75 0.9845 2.9799 �0.1762 245.70
Kozak (2004) 9 0.9887 2.1871 �0.0456 2982.9359 40.92 0.9853 2.8454 �0.4041 3981.3869

Radj
2 Adjusted coefficient of determination; MSE mean square error (cm2); ��E bias (cm); D Akaike’s information criterion differences; ME

model efficiency

Table 2 Values of the estimated parameters (ns means not significance at the 95% level)

Model b1 b2 b3 b4 b5 b6 b7 b8 b9 p

Cervera (1973) 0.0078 1.5014 1.1511 �5.3109 3.6929
Max and Burkhart (1976) �5.8940 2.9258 46.1267 �3.0050 0.1328 0.8511
Riemer et al. (1995) 0.4006 0.6413 0.0985
Kozak (1988) 0.8818 0.9947 0.9986 �0.7788 0.1250 �2.9989 1.6137 0.0692 0.1724
Bi (2000) 0.3537 0.3700 0.1185 �0.1089 �0.0004 0.0431 �0.1044
Kozak (2004) 0.7914 0.9663 0.1095 0.4757 �0.4238 0.3894 1.2024 ns 0.2699

Fig. 4 Residuals as a function
of: a Lag1-residuals (left
column), b Lag2-residuals (right
column) for both fitting
methods: without error
structure (first row), and
assuming a CAR(2) error
structure
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ferred from Fig. 4 (second row). The aim of autocorre-
lation correction was to improve the interpretation of
the model’s statistical properties, and has no use in
practical applications.

Considering all of the factors analyzed, the most
suitable taper models for developing a volume equation
for Maritime pine in Galicia are the variable-form taper
equations proposed by Kozak (1988), Riemer et al.
(1995), Bi (2000) and Kozak (2004). The accuracy of

diameter predictions by these four models was evaluated
over relative height intervals and relative diameter
intervals of 10%. The box-plots obtained for each taper
function including the mean, maximum and minimum
error of prediction, the median and the inter-quartile
range are shown in Fig. 5.

There was little local bias across relative height clas-
ses in the diameter predictions obtained with the four
models selected (Fig. 5, left row). The results from these

Fig. 5 Bias and precision of
taper prediction for relative
height and diameter, expressed
as a percentage. The white
circles represent the mean of
diameter prediction error. The
box represents the interquartile
range. The maximum and
minimum error are represented
by the upper and lower small
horizontal segments crossing the
vertical bar, respectively. The
number above each bar indicates
the number of data points in the
relative class
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four models were very similar, with an average size of
error in diameter predictions below 0.3 cm for all rela-
tive height classes. The precision of prediction was rel-
atively high as shown by the narrowness of the inter-
quartile range across all relative height classes. As ex-
pected, the prediction corresponding to the section
closest to the ground was generally less precise than that
corresponding to other stem sections for the four models
analyzed.

The box-plots of diameter predictions errors (Fig. 5,
right row) showed a trend of increasing local bias across
relative diameter classes. Again, the predictions corre-
sponding to the lower stem (relative diameter upper
100%) were less precise, as indicated by the larger width
of inter-quartile range for the four models. The bias was
slightly negative for the upper stem (relative diameter
classes ranged from 15 to 35%). The diameter predic-
tions were particularly biased for the relative diameter
classes up to 145%, with all the models showing serious
overestimation of stem diameters because of the lack of
data regarding old and bigger trees that are more nei-
loidal at the lower stem, i.e. with greater butt swell.

After the analysis of average values of the statistics
obtained with the models and trends in bias along the
stem for diameter and relative height, it was concluded
that the most appropriate models for developing a vol-
ume equation with product classification for Maritime
pine in Galicia are those of Kozak (1988), Riemer et al.
(1995), Bi (2000) and Kozak (2004). All of these models
provided similar results in terms of the bias trend along
the stem. If the final choice of model is based on the
fitting and validation statistics, especially Akaike’s
information criterion, the model of Kozak (2004) is
suggested for use as taper function for P. pinaster in
Galicia.

Because ordinary residuals are intrinsically not inde-
pendent and do not have common variance, studentized
residuals are used instead to overcome these problems
(Rawlings 1988). The plot of studentized residuals
against the predicted diameters obtained with Kozak’s
(2004) model is shown in Fig. 6. It is quite clear that the
zero-studentized residuals cross the center of the data

points and that the points do not show a trend of
increasing error variances. This suggests that the taper
function was appropriately identified and the error
structure of the model is associated with the equal error
variance (homoscedasticity).

Development of a volume equation

For the development of a volume equation it is nec-
essary to use a function that describes the stem profile.
The stem taper function should be integrable and,
if it is possible, must have a generalized inverse h =
f(d).

Unfortunately, the model of Kozak (2004) is not
analytically integrable and has no generalized inverse.
Therefore, numerical integration methods (e.g. Kincaid
and Cheney 1994) and iterative procedures to estimate
height at a specific end diameter (e.g. Chapra and
Canale 2002; Rade and Westergren 2004) should be
used.
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